WEKO3
アイテム
The Number of Inequality Signs in the Design of Futoshiki Puzzle
http://hdl.handle.net/10252/5195
http://hdl.handle.net/10252/5195494216dd-ea85-4a95-934c-8521e709b8f0
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2013-11-20 | |||||
タイトル | ||||||
タイトル | The Number of Inequality Signs in the Design of Futoshiki Puzzle | |||||
言語 | en | |||||
言語 | ||||||
言語 | eng | |||||
キーワード | ||||||
言語 | en | |||||
主題Scheme | Other | |||||
主題 | Puzzle construction | |||||
キーワード | ||||||
言語 | en | |||||
主題Scheme | Other | |||||
主題 | Futoshiki puzzle | |||||
キーワード | ||||||
言語 | en | |||||
主題Scheme | Other | |||||
主題 | Latin square | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | journal article | |||||
著者 |
Haraguchi, Kazuya
× Haraguchi, Kazuya |
|||||
著者別名 | ||||||
識別子Scheme | WEKO | |||||
識別子 | 9998 | |||||
姓名 | 原口, 和也 | |||||
言語 | ja | |||||
書誌情報 |
en : Journal of Information Processing 巻 21, 号 1, p. 26-32, 発行日 2013-01 |
|||||
出版者 | ||||||
出版者 | the Information Processing Society of Japan | |||||
言語 | en | |||||
ISSN / EISSN | ||||||
収録物識別子タイプ | PISSN | |||||
収録物識別子 | 0387-6101 | |||||
DOI | ||||||
関連タイプ | isIdenticalTo | |||||
識別子タイプ | DOI | |||||
関連識別子 | info:doi/10.2197/ipsjjip.21.26 | |||||
書誌ID(NCID) | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AA00700121 | |||||
権利表記 | ||||||
言語 | en | |||||
権利情報 | Copyright © 2013 by the Information Processing Society of Japan | |||||
著作権注記 | ||||||
言語 | ja | |||||
権利情報 | 利用は著作権の範囲内に限定される | |||||
テキストバージョン | ||||||
出版タイプ | VoR | |||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||
日本十進分類法 | ||||||
言語 | ja | |||||
主題Scheme | NDC | |||||
主題 | 007 | |||||
NIIサブジェクト | ||||||
言語 | ja | |||||
主題Scheme | Other | |||||
主題 | 情報学 | |||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | In this paper, we study how many inequality signs we should include in the design of Futoshiki puzzle. A problem instance of Futoshiki puzzle is given as an n × n grid of cells such that some cells are empty, other cells are filled with integers in [n] = {1, 2,...,n}, and some pairs of two adjacent cells have inequality signs. A solver is then asked to fill all the empty cells with integers in [n] so that the n2 integers in the grid form an n × n Latin square and satisfy all the inequalities. In the design of a Futoshiki instance, we assert that the number of inequality signs should be an intermediate one. To draw this assertion, we compare Futoshiki instances that have different numbers of inequality signs from each other. The criterion is the degree to which the condition on inequality is used to solve the instance. If this degree were small, then the instance would be no better than one of a simple Latin square completion puzzle like Sudoku, with unnecessary inequality signs. Since we are considering Futoshiki puzzle, it is natural to take an interest in instances with large degrees. As a result of the experiments, the Futoshiki instances which have an intermediate number of inequality signs tend to achieve the largest evaluation values, rather than the ones which have few or many inequality signs. | |||||
言語 | en |