{"created":"2023-05-15T15:31:50.040012+00:00","id":4576,"links":{},"metadata":{"_buckets":{"deposit":"200d118b-ce15-46cd-961b-9c66b63a5d58"},"_deposit":{"created_by":17,"id":"4576","owners":[17],"pid":{"revision_id":0,"type":"depid","value":"4576"},"status":"published"},"_oai":{"id":"oai:barrel.repo.nii.ac.jp:00004576","sets":["1:536","4"]},"author_link":["9998","9997"],"item_1_biblio_info_5":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2013-01","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"1","bibliographicPageEnd":"32","bibliographicPageStart":"26","bibliographicVolumeNumber":"21","bibliographic_titles":[{"bibliographic_title":"Journal of Information Processing","bibliographic_titleLang":"en"}]}]},"item_1_description_18":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"In this paper, we study how many inequality signs we should include in the design of Futoshiki puzzle. A problem instance of Futoshiki puzzle is given as an n × n grid of cells such that some cells are empty, other cells are filled with integers in [n] = {1, 2,...,n}, and some pairs of two adjacent cells have inequality signs. A solver is then asked to fill all the empty cells with integers in [n] so that the n2 integers in the grid form an n × n Latin square and satisfy all the inequalities. In the design of a Futoshiki instance, we assert that the number of inequality signs should be an intermediate one. To draw this assertion, we compare Futoshiki instances that have different numbers of inequality signs from each other. The criterion is the degree to which the condition on inequality is used to solve the instance. If this degree were small, then the instance would be no better than one of a simple Latin square completion puzzle like Sudoku, with unnecessary inequality signs. Since we are considering Futoshiki puzzle, it is natural to take an interest in instances with large degrees. As a result of the experiments, the Futoshiki instances which have an intermediate number of inequality signs tend to achieve the largest evaluation values, rather than the ones which have few or many inequality signs.","subitem_description_language":"en","subitem_description_type":"Abstract"}]},"item_1_full_name_3":{"attribute_name":"著者別名","attribute_value_mlt":[{"nameIdentifiers":[{"nameIdentifier":"9998","nameIdentifierScheme":"WEKO"}],"names":[{"name":"原口, 和也","nameLang":"ja"}]}]},"item_1_publisher_6":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"the Information Processing Society of Japan","subitem_publisher_language":"en"}]},"item_1_relation_8":{"attribute_name":"DOI","attribute_value_mlt":[{"subitem_relation_type":"isIdenticalTo","subitem_relation_type_id":{"subitem_relation_type_id_text":"info:doi/10.2197/ipsjjip.21.26","subitem_relation_type_select":"DOI"}}]},"item_1_rights_12":{"attribute_name":"権利表記","attribute_value_mlt":[{"subitem_rights":"Copyright © 2013 by the Information Processing Society of Japan","subitem_rights_language":"en"}]},"item_1_rights_14":{"attribute_name":"著作権注記","attribute_value_mlt":[{"subitem_rights":"利用は著作権の範囲内に限定される","subitem_rights_language":"ja"}]},"item_1_source_id_11":{"attribute_name":"書誌ID(NCID)","attribute_value_mlt":[{"subitem_source_identifier":"AA00700121","subitem_source_identifier_type":"NCID"}]},"item_1_source_id_7":{"attribute_name":"ISSN / EISSN","attribute_value_mlt":[{"subitem_source_identifier":"0387-6101","subitem_source_identifier_type":"PISSN"}]},"item_1_subject_16":{"attribute_name":"日本十進分類法","attribute_value_mlt":[{"subitem_subject":"007","subitem_subject_language":"ja","subitem_subject_scheme":"NDC"}]},"item_1_subject_17":{"attribute_name":"NIIサブジェクト","attribute_value_mlt":[{"subitem_subject":"情報学","subitem_subject_language":"ja","subitem_subject_scheme":"Other"}]},"item_1_version_type_15":{"attribute_name":"テキストバージョン","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Haraguchi, Kazuya","creatorNameLang":"en","creatorNameType":"Personal"}],"nameIdentifiers":[{"nameIdentifier":"9997","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2016-01-26"}],"displaytype":"detail","filename":"JIP_21_26.pdf","filesize":[{"value":"524.3 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"JIP_21_26.pdf","url":"https://barrel.repo.nii.ac.jp/record/4576/files/JIP_21_26.pdf"},"version_id":"3d1b5f24-5c02-4ab3-a4fb-d8872a4b94e1"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"Puzzle construction","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Futoshiki puzzle","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Latin square","subitem_subject_language":"en","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"The Number of Inequality Signs in the Design of Futoshiki Puzzle","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"The Number of Inequality Signs in the Design of Futoshiki Puzzle","subitem_title_language":"en"}]},"item_type_id":"1","owner":"17","path":["4","536"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2013-11-20"},"publish_date":"2013-11-20","publish_status":"0","recid":"4576","relation_version_is_last":true,"title":["The Number of Inequality Signs in the Design of Futoshiki Puzzle"],"weko_creator_id":"17","weko_shared_id":-1},"updated":"2025-03-17T00:21:58.141036+00:00"}