ログイン
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究者一覧
  2. 原口 和也
  1. 学術雑誌論文

Multiclass Visual Classifier Based on Bipartite Graph Representation of Decision Tables

http://hdl.handle.net/10252/5198
http://hdl.handle.net/10252/5198
76cccbc1-39ab-40bb-ba93-614e2a66d74a
名前 / ファイル ライセンス アクション
Proc.LION4(LNCS Proc.LION4(LNCS 6073)_169-183.pdf (732.6 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2013-11-20
タイトル
タイトル Multiclass Visual Classifier Based on Bipartite Graph Representation of Decision Tables
言語 en
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Haraguchi, Kazuya

× Haraguchi, Kazuya

WEKO 10006

en Haraguchi, Kazuya

Search repository
Hong, Seok-Hee

× Hong, Seok-Hee

WEKO 10007

en Hong, Seok-Hee

Search repository
Nagamochi, Hiroshi

× Nagamochi, Hiroshi

WEKO 10008

en Nagamochi, Hiroshi

Search repository
著者別名
識別子Scheme WEKO
識別子 10009
姓名 原口, 和也
言語 ja
書誌情報 en : Lecture Notes in Computer Science

巻 6073, p. 169-183, 発行日 2010
出版者
出版者 Springer Berlin Heidelberg
言語 en
ISSN / EISSN
収録物識別子タイプ PISSN
収録物識別子 0302-9743
DOI
関連タイプ isVersionOf
識別子タイプ DOI
関連識別子 info:doi/10.1007/978-3-642-13800-3_13
出版社版URI
言語 ja
権利情報 http://link.springer.com/chapter/10.1007%2F978-3-642-13800-3_13
著作権注記
言語 en
権利情報 The original publication is available at www.springerlink.com
テキストバージョン
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
日本十進分類法
言語 ja
主題Scheme NDC
主題 007
NIIサブジェクト
言語 ja
主題Scheme Other
主題 情報学
抄録
内容記述タイプ Abstract
内容記述 In this paper, we consider K-class classification problem, a significant issue in machine learning or artificial intelligence. In this problem, we are given a training set of samples, where each sample is represented by a nominal-valued vector and is labeled as one of the predefined K classes. The problem asks to construct a classifier that predicts the classes of future samples with high accuracy. For K = 2, we have studied a new visual classifier named 2-class SE-graph based classifier (2-SEC) in our previous works, which is constructed as follows: We first create several decision tables from the training set and extract a bipartite graph called an SE-graph that represents the relationship between the training set and the decision tables. We draw the SE-graph as a twolayered drawing by using an edge crossing minimization technique, and the resulting drawing acts as a visual classifier. We can extend 2-SEC to K-SEC for K > 2 naturally, but this extension does not consider the relationship between classes, and thus may perform badly on some data sets. In this paper, we propose SEC-TREE classifier for K > 2, which decomposes the given K-class problem into subproblems for fewer classes. Following our philosophy, we employ edge crossing minimization technique for this decomposition. Compared to previous decomposition strategies, SEC-TREE can extract any tree as the subproblem hierarchy. In computational studies, SEC-TREE outperforms C4.5 and is competitive with SVM especially when K is large.
言語 en
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 16:03:07.598729
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

Haraguchi, Kazuya, Hong, Seok-Hee, Nagamochi, Hiroshi, 2010, Multiclass Visual Classifier Based on Bipartite Graph Representation of Decision Tables: Springer Berlin Heidelberg, 169–183 p.

Loading...

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3