ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究者一覧
  2. 原口 和也
  1. 学術雑誌論文

Multiclass Visual Classifier Based on Bipartite Graph Representation of Decision Tables

http://hdl.handle.net/10252/5198
http://hdl.handle.net/10252/5198
76cccbc1-39ab-40bb-ba93-614e2a66d74a
名前 / ファイル ライセンス アクション
Proc.LION4(LNCS Proc.LION4(LNCS 6073)_169-183.pdf (732.6 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2013-11-20
タイトル
タイトル Multiclass Visual Classifier Based on Bipartite Graph Representation of Decision Tables
言語 en
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Haraguchi, Kazuya

× Haraguchi, Kazuya

WEKO 10006

en Haraguchi, Kazuya

Search repository
Hong, Seok-Hee

× Hong, Seok-Hee

WEKO 10007

en Hong, Seok-Hee

Search repository
Nagamochi, Hiroshi

× Nagamochi, Hiroshi

WEKO 10008

en Nagamochi, Hiroshi

Search repository
著者別名
識別子Scheme WEKO
識別子 10009
姓名 原口, 和也
言語 ja
書誌情報 en : Lecture Notes in Computer Science

巻 6073, p. 169-183, 発行日 2010
出版者
出版者 Springer Berlin Heidelberg
言語 en
ISSN / EISSN
収録物識別子タイプ PISSN
収録物識別子 0302-9743
DOI
関連タイプ isVersionOf
識別子タイプ DOI
関連識別子 info:doi/10.1007/978-3-642-13800-3_13
出版社版URI
言語 ja
権利情報 http://link.springer.com/chapter/10.1007%2F978-3-642-13800-3_13
著作権注記
言語 en
権利情報 The original publication is available at www.springerlink.com
テキストバージョン
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
日本十進分類法
言語 ja
主題Scheme NDC
主題 007
NIIサブジェクト
言語 ja
主題Scheme Other
主題 情報学
抄録
内容記述タイプ Abstract
内容記述 In this paper, we consider K-class classification problem, a significant issue in machine learning or artificial intelligence. In this problem, we are given a training set of samples, where each sample is represented by a nominal-valued vector and is labeled as one of the predefined K classes. The problem asks to construct a classifier that predicts the classes of future samples with high accuracy. For K = 2, we have studied a new visual classifier named 2-class SE-graph based classifier (2-SEC) in our previous works, which is constructed as follows: We first create several decision tables from the training set and extract a bipartite graph called an SE-graph that represents the relationship between the training set and the decision tables. We draw the SE-graph as a twolayered drawing by using an edge crossing minimization technique, and the resulting drawing acts as a visual classifier. We can extend 2-SEC to K-SEC for K > 2 naturally, but this extension does not consider the relationship between classes, and thus may perform badly on some data sets. In this paper, we propose SEC-TREE classifier for K > 2, which decomposes the given K-class problem into subproblems for fewer classes. Following our philosophy, we employ edge crossing minimization technique for this decomposition. Compared to previous decomposition strategies, SEC-TREE can extract any tree as the subproblem hierarchy. In computational studies, SEC-TREE outperforms C4.5 and is competitive with SVM especially when K is large.
言語 en
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 16:03:07.598729
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3