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ABSTRACT

Tabu Search is a general heuristic method for combinatorial optimization
problem, which has been successfully applied vto several types of difficult
combinatorial optimization problem. We present tWo efficient parallel
implementations of Tabu Search Algorithm for graph multi-partitioning
problem. The one idea has been taken to parallelize neighbourhood space
and achieved a linear speedup. Another main approach for getting high
quality of solutions has been also- proposed. The algorithm produces
independent partial problem using simple agent and execute the multi
thread procedure in which several processes explore independently the
search space of partial problem. It produces cooperatively better solution
from partial solutions obtained by parallel thread with reduced computational
time. Finally, as the algorithm is well suited for parallel computation, an
implementation on a computational environment using MPI library is
described. querical results and speedups obtained show the efficiency of

the parallel algorithm.
(121)
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1 INTRODUCTION

Tabu Search and Simulated Annealing are novel techniques for solving
combinatorial optimization problem,iwhich have been successfully applied to
several types of difficult optimization problem. We implement basic tabu
search and basic simulated annealing algorithm, and examine here the
performance of the both basic type of meta-heuristic algorithms for graph
multi-partitioning problem. It appears that the quality of solution obtained
by both algorithms yield approximately similar results. However, We found
that the tabu search algorithm required more computational time than
simulated annealing, and there is tendency for the solutions obtained using
basic type of meta-heuristic to be trapped in bad near optimum. Therefore,
the increasing availability of parallel machines offers an interesting opportunity
to explore the possibility of new tabu search algorithms [2].

In this respect, we present two efficient parallel implementations of
Tabu Search Algorithm for graph multi-partitioning problem. The one idea
has been taken to parallelize neighbour move and achieved a linear speedup.
Another main approach, which is Multi-thread parallelism, for getting high
quality of solutions has been also proposed. Multi-thread parallelism has
been implemented using a framework in which a number of independent
threads operate on each different partial solution space, to improve the quality
of solutions. But, the problem with this kind of parallelism by iterative
search is that it strongly limits the movement possibilities between different
subproblems and thus generally induces a loss of quality of the global solution.

We overcome this difficulty by attractive searching based on tabu search,
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the extension of searching by super node move, and diversification of producing
subproblems by generator agents. It produces cooperatively better solution
from partial solutions obtained by parallel thread with reduced computational
time. Finally, as the algorithms are well suited for parallel computation, an
implementation on a computational environment using MPI library [4] is
described. Numerical results and speedups obtained show the efficiency of
the parallel algorithm.

The parallel heuristic procedure discussed in this paper, designed to
“solve” (in the sense of approximating the optimum) the graph multi-portioning
problem, is mathematically unexciting, but has performed remarkably well,
both from the point of view of the computational effort involved, and from

that of the quality of the solutions obtained on a variety of test problem.

2 GRAPH MULTI-PARTITIONING PROBLEM

The graph-partitioning problem is typical optimization problem that is
known as NP-complete and well used as benchmark in order to make the
comparison with other heuristic approaches. It is finding the minimum cost
partition of the nodes of a graph into subsets of a given si;e. The graph-
partitioning problem arises in many different guises in operations research.
The examples are planning the VLSI circuit and assignment of locations.

In this paper, we are concerned with the multi-partitioning problem
such that the total cost of edge in the cut set is minimized. This problem is
complexity but multipurpose in comparison with bi-partitioning problem
examined until now. To explain in detail, we give mathematical notation.
Let D(V,E) be a graph where Vis a set of # nodes and E is a set of edges.
Graph partition is defined as set partition {¥3, V5....,V,} such that block size,

which is number of nodes for each block, is fixed size. The graph multi-
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partitioning problem can be formulated mathematically as follows.

min e
ieV,jeV,ve<lell2. ...kl
subjectto |Vi=M; i=1...k, (1)
2 M;=n,
i€l ..kl

where ¢;; is the edge cost and M; is a block size that is given positive
number. The number of subsets, « is the size of the partition which is a fixed

number.

3 SEQUENTIAL BASIC META-HEURISTICS FOUNDATIONS

3.1 Tabu Search Algorithm

Tabu search [3] is a meta-heuristic that guides a local heuristic search
procedure to explore the solution space beyond local optimality. Widespread
successes in practical applications of optimization -have spurred a rapid
growth of tabu search in the past few years. The basis for the tabu search
may be described as follows. Tabu search begins in thé same way as ordinary
local search, proceeding iteratively from one point (solution) to another until
a chosen termination criterion is satisfied. Each x<X has an associated
neighbourhood N{x)c X, where X is solution space of given problem, and
each solution x’€N(x) is reached from x by an operation called a move.
The process in which the tabu search method seeks to transcend local
optimality is based on an evaluation function that chooses the highest evaluation
move in terms of objective function and a tabu restriction. The tabu restriction
employs a strategy of modifying N(x) as the search progresses, effectively
replacing it by another neighbourhood N (a,x)=N(x)—a, where a is called a

tabu list consisting s elements of solutions visiting during the recent past, to
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avoid cycling. But, tabu list memory is designed to exert a more subtle
effect on the search through the use of attributive memory, which records
information about solution attributes that change in moving from one solution
to another. A key aspects of tabu search is the use of tabu list structures
and neighbourhood structures to organize the way in which the space is
explored.

We show basic Tabu Search algorithm by representing neighborhood
structure and tabu memory structure for this problem. First we explain
neighborhood structure for graph multi-partitioning problem, that is based
on exchange of nodes. We consider a solution x=(V3, V5,...,V,), where V; is
the subset of partitioned nodes of graph. Each solution x has a following
neighborhood N (x).

NG == (Vi Vo Voo Vi Vi) ¥, V10, Vi ¥ [V = (VA (i) Uil
V=V \liDUliLie Vs, j eV, .s#wll.

(2)

Next, we consider a tabu list structure. A data structure for tabu list
will be used to store a partial range of solution attributes rather than com-
plete visited solutions. For this problem, the attribute can consist of nodes
that are shifted by moves executed. When a node v of block V; is shifted to
another block V;, we store v as the attribute in the tabu list to avoid returning
v to V;. In some applications, the tabu search is made significantly strongly
by to do including longer-term memory. Thus we also use longer-term
memory. When node » is shifted, we increase longer-term memory element
LTM[v] by 1. The evaluation function for exchanging the nodes v; and v; is
modified using longer-term memory, that is, incremental cost+(LTM [»;]+

LTM [v;]) X BIAS /2, where BIAS is a parameter.
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3.2 Simulated Annealing Algorithm

Simulated annealing algorithm [1] provide also iterated hill-climbing
mechanism like tabu search and local search. Moves that worsen the current
solution by an amount AE are accepted with probability e 2%/T. T is a
control parameter analogous to temperature in the annealing of physical system.
In an optimization framework, we anneal a solution by performing standard
iterative improvement steps, but now accept some worsened solutions
according to this temperature rule. - Central to any annealing algorithm is
the need to evaluate many moves. During initial annealing, T is large; in
this hot regime, most uphill moves are accepted. As iterative improvement
proceeds, the temperature T is slowly reduced. Near the end of annealing,
T is small; in this cold regime, few uphill moves are accepted. The intent of
the relatively high temperature phase of the search is to discover the gross
features of the search space. Successively lower temperatures identify
more and more detail while solutions become more and more localized.
Ultimately, simulated annealing yields a very good solution on a very good
mode of the search space.

For this problem, we use the same neighborhood structure as tabu
search in the basic simulated annealing algorithm. New solution can be
generated by choosing two nodes i€V, ,j€V; for all £ and [#k, and
exchanging this two nodes between block V., and V;. The difference in
cost can be calculated incrementally from the following expression,

Afzzeir +Zejs _Zeir .—Zejs +Zez'j- (3)
S .

rev, seV,; revV, s

The decision to accept new solutions is based on the above mentioned basic

acceptance criterion.
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3.3 Computational Results for Basic Sequential Meta-Heuristic Algorithms

In this section, we evaluate the performance of basic tabu search and
basic simulated annealing algorithm for graph multi-partitioning problem.'
The algorithm used here were coded in C++ and implemented on Intel
Celeron Processor/400MHz. There are several parameters in the algorithm
that have to be adjusted. First, let us examine the effect for the most
important parameter, the tabu list size febulength, for tabu search. The
way to obtain a good tabu list size for a given problem is simply to observe
the quality of solutions when size is varied. We therefore solved a randomly
generated test problems for graphs with 500 nodes. We found that better
solutions are obtained when fabulength=20, and therefore propose that
tabulength be set to values 20. Similarly, the BIAS used in longerterm
memory is 0.20, by which better solutions are obtained. Next, we consider
the parameter’s values of the simulated annealing in order to obtain good
solutions in a reasonable amount of computational time. The initial tmp(T)
is 15 and the stop tmp(T) is 0.01, since, in spite of extending the above range
of tmp, we did not obtain a significant improvement in the quality of the
solutions. We found that phi=097, which is cooling schedule parameter,
gives an acceptable balance between solution quality and computational
speed. It appears that initial =100 and fex =1.03, which control the speed
of convergence, yield good compromises between the quality of the solutions
obtained and the time required.

We assess the performance of basic tabu search and simulated annealing
using above-mentioned parameters. We solved eight partitioning test problems
for graphs with the number of nodes ranging from 100 to 1000, which is
randomly generated. The number of edges for the graphs is 10% of the
number of nodes. Table 1 shows the cost and CPU time for tabu search

and the average cost, the best cost and worst cost, and CPU time, obtained
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after 10 repetitions of the simulated annealing. We obtained same quality of
solutions in both algorithms. However, we found that the time required for
tabu search algorithm is longer than that required for the simulated annealing

algorithm.

Table 1 Computational results for basic tabu search and simulated annealing

Program Size Tabu Search Simulated Annealing
cost time (s) mean best worst time(s)
100 3812.0 7.25 3704.8 3687.0 3734.0 29.49
200 16335.0 93.66 | 16269.6 16238.0 16342.0 75.41
300 37710.0 423.36 | 37794.0 37744.0 37879.0 147.51
400 68843.0 1357.88 | 68968.8 68770.0 69104.0 230.50
500 108055.0  2210.26 | 108425.6 108302.0 108526.0 307.12
600 157788.0 4456.19 | 157643.2 157549.0 157880.0 385.80
700 216037.0 5797.71 | 216348.2 216155.0 216730.0 464.98
800 284427.0  7385.28 | 284325.4 284153.0 284828.0 548.88
900 362989.0  9205.00 | 362609.4 362369.0 363012.0 628.17
0

1000 448997.0 10832.89 | 447511.0 447367.0 447840.0 700.38

4 PARALLEL TABU SEARCH

In Tabu Search techniques, different types of parallelism may be
distinguished. We only consider here two general classes according to the
method used for parallelism moves [2].

The First type of parallelism we consider consists in searching the next
move concurrently. The Second type can be done by partitioning the problem
itself into several independent subproblems. These algorithms are very
well suited for implementation on a MIMD parallel mechanism. The parallel

algorithms have been implemented on a network by MPI library [4].

4.1 Parallel Neighbour Move Algorithm

First, the search of the next move to perform can be parallelized. This
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will generally require the partition of the set of feasible moves in P subsets.
Each of these subsets is assigned to one process which computes its best
move. The overall best of these P moves is then determined and applied to
the current solution. That is, we divide the set of néighbourhood N(x) into
N1(®), Na(),....Ny(x), such that Vi () UN2(x)U...U Nplx) =N (x), N;(x) N\ Nj (%) =
¢, for i#j, where P is the number of processors. Each partitioned neighbour-
hood is assigned to each processors, which computes best solution, x; for
N;(x) for =1, 2,...,P. The obtained best neighbour solution of each processor
is mutually communicated between all processors together. Then we
determine a best solution in N (x) that is min {xl,xz,.‘.,xp}, and applied tb the
current solution. The synchronization is required at each iteration step.
Normally, this technique requires extensive communication since the
synchronization is required at each step. However, the basic tabu search
for this problem has broad space of neighbourhood, and this searching for
the space of neighbourhood is very time-consuming. Therefore, it is only
worth applying to this problem in which the search of f.he best move is
relatively complex and time-consuming. We estimate that this proposed
parallel algorithm, called parallel neighbour move algorithm, allows us to

reduce considerably the computational time.

4.2 Parallel Agent Passing Tabu Search Algorithm

As mention later (section 4.3), Parallel neighbour move algorithm allows
us to reduce considerably the computational time. However, the quality of
solutions by this algorithm is as same as ones by basic algorithm. Therefore,
Multi-thread parallelism has been implemented using a framework in which
a number of independent threads operate on each different partial solution
space, to improve the quality of solutions. But, the problem with this kind

of parallelism by iterative search is that it strongly limits the movement
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possibilities between different subproblems and thus generally induces a loss
of quality of the global solution. We overcome this difficulty by attractive
searching based on tabu search, the extension of séarching by super node
move, and diversification of producing subproblems by generator agents.
Particularly, the agent on computers contributes to producing better solution.
He has simple ability, producing subproblem, moving from processors to
another, and learning strategy and state of each solution assigned on processors.
The parallel algorithm based on these ideaé is called parallel agent passing

tabu search algorithm.

Intensification Strategy

First, We would like to consider the parallel attractive searching thread
using tabu search. The type of parallelism Wé consider consists in performing
several moves concurrently. This can be done by partitioning the problem
itself into several independent subproblems. Each of the processes can then
apply moves to its assigned subproblem, independently of those made in
other subproblems. The strategy used here is to divide the current solution
in P independent partial solutions, x;=(V},V,,), which are constructed by two
mutually prime block where V;UV,,=V;, Vi Vm= ¢, such that V; UV,,U
LUV, =V, V5;NVs=¢. The partition between these two prime block is
then optimized independently one each sub problem. We apply the tabu
search to this optimized process to intensify optimizing subproblem, which
converge rapidly as the characteristic of tabu search. It is obvious that the
cost thus optimized can only be less than that of the original solution. If the
structure of this initial solution is not too bad then it is likely that the solution
obtained will be a very good one.

Finally, the entire procedure is clearly suited for parallel computing, as

optimizations are done completely independently on each procedure, and can
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thus be done concurrently. The global solution is then obtained by combining
the subsolutions. This method needs no communication or synchronization
except for its initialization and for grouping the subsolutions at the end of

thread.

Super Node Move

Furthermore, we introduce the extension of searching by super node
move, adding this strategy in the end of steps of thread. Super node move
correspond to the displacement‘of a complete portion of the block from one
point to another. This choice is motivated by noting that different good
solutions of a same instance generally contain a great proportion of identical.
We consider enlarging the search, which can not move by only swapping of
two nodes, using this super node move. To explain this super node move in
détail, we consider two blocks (V, V), such that, node i,j€V, and [,meV,.
Let 0(:,! |V, V,) be the difference in cost when node ¢ and [ is exchanged.
The difference in cost when super node (z,j) and (/,m) is exchanged is

represented as 0(z, 7;/,m| Vs, V,). If following condition is satisfied,

3j€Vie>2-max( 20 ey 20 en). . (4)

ueV,u*l ueV,u#i

Then 6,/ |V;, V)>0. Therefore, there is little probability of the adapting
this neighbour move. However, if we use super node move in the case of

following conditions;

Z €in + Z eju < Z €y + Z ej,u, (5)
ueV, ustj ueV, u#i ueV, ustl ueV, urm,l

Z et Z emu< Z eyt Z Cmus (6)
ueV, utm ueV, utl ueV, uti ueV, utij
eim =e; =0, (7)

Then, we have (i, 7;l,m|Vs, V;)>0, and can take advantageous neighbour
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move.

Generator Agent
However, it can not show the real ability only using above-mentioned
strategies, because it strongly limits the movement possibilities between
different subproblems. Therefore, we introduce the agent who manages
producing subproblem to diversify. The subproblems is generated by simple
agent, called generator, with following simple characteristics:
@1t makes the rounds of all processors and learns the information of the
partial solution in each processor. (This agent has some memory).
@1t produces independent partial solution mutually considering the partial
problem of another processors, which can combine without contradiction.
@®It can have various strategy in generating partial problem and
movement between each processors.
This agent with simple ability manages producing sub problems passing
through processors. We let the agent have the strategy which produce ‘
various partial problem randomly, to give the system great diversity. That is,
we have a number of combinations of partial solution, ar_ld can take opportunity,
which overcome to limits the movement possibilities between different
subproblems. Moreover, by this agent, we can construct parallel computing
system environment, which not depend on each of computer ability (CPU
speed). It can implement non synchronize parallel computing algorithm

easily, which is most flexible parallel algorithm.

4 .3 Computational Results for Parallel Tabu Search Algorithm
First, we evaluate the performance of the parallel neighbour move
algorithm, using eight partitioning test problem with the number of nodes

ranging from 100 to 1000. Fig.l illustrates the trace of CPU time required
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for two processors and four processors by parallel neighbour move algorithm
and for basic sequential tabu search algorithm. The results show that parallel
neighbour move algorithm reduces computational time lineally as the number
of processors. It should be noted that this type of parallelism for tabu
search, in spite of simple parallel algorithm, allows us to reduce considerably

the CPU time.
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Fig.1 CPU times for parallel neighbour move algorithm

Next, parallel agent passing tabu search algorithm has been tested with
the number of four processors for the eight partitioning test problem ranging
from 100 to 1000 nodes. For each size and configuration, the procedure has
been applied on ten times. In our tests, we always took inner loop=05,
which is step of thred, and febulenth =2, which seem to yield approximately
good solutions. Table 2 shows the average cost, the best cost, and the
worst cost obtained after 10 repetitions of the parallel agent passing tabu
search algorithm and simulated annealing method and the cost for the basic

tabu search method. The computational results show that the parallel
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Table 2 Computational results for parallel agent passing tabu search
in comparison with basic meta-heuristics

Program Size Parallel Agent Passing TS Simulated Annealing Basic TS
mean best worst mean best worst
100 3787.2 3774.0 3801.0 3704.8 3687.0 3734.0 3812.0
200 16270.0 16219.0 ~ 16334.0| 16269.6 16238.0 16342.0| 16335.0
300 37645.0 37583.0 37706.0| 37794.0 37744.0 37879.0| 37710.0
400 68653.6 68520.0 68761.0| 68968.8 68770.0 69104.0| 68843.0
500 107607.6 107427.0 107761.0 | 108425.6 108302.0 108526.0 | 108055.0
600 156887.2 156746.0 156988.0 | 157643.2 157549.0 157880.0 | 157788.0
700 215295.8 215183.0 215356.0|216348.2 216155.0 216730.0 | 216037.0
800 283407.8 283134.0 283778.0 | 284325.4 284153.0 284828.0 | 284427.0
900 361363.8 361204.0 361571.0 | 362609.4 362369.0 363012.0 | 362989.0
1000 446172.0 445922.0 446351.0|447511.0 447367.0 447840.0 | 448997.0
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Fig.2 CPU times for parallel agent passing TS

agent passing tabu search algorithm givens a better solution than the simulated

annealing algorithm and basic tabu search as a matter of course.

In Fig2,

we also found that the computational time required for the parallel agent

passing tabu search algorithm is approximately 1/3 of that required for the
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basic tabu search algorithm. This parallelism is efficient in the improvement

for quality of solutions and computational time required.

5 GCONCLUSION

In this paper, we have proposed an approximation algorithms based on
the parallel framework to solve graph multi-partitioning problem. First
approach of the parallel neighbour move algorithm gained linear speedup in
spite of easy idea, and showed the effectiveness as parallel algorithm.
Another parallel agent passing algorithm, which is multi thread type using
agent, gives better solution than the simulated annealing and basic tabu
search and achieve speedup. This can be optimized attractively by partitionir;g
the problem itself into several independent subproblems. It should be
emphasized that we have used simple agent for diversification in managing
to produce subproblem, which is optimized independently, and it has showed
the importance of the diversification concept of tabu search. We have
further shown the importance of extension of searching by super node
move, which is displacement of a complete portion of the node from one
block to another. We illustrate here how tabu search can be used for guiding
an optimization process at a high level rather than at every basic step of the
search. The results presented for the graph multi-partitioning problem that
this method can efficiently be used for obtaining near optimal solutions for
wide variety of partitioning problem.

In the foreseeable future, parallel computers will certainly grow fast in
power and will become an interesting vehicle in the solving of NP-hard
problems. High-level tabu search séems to offer a good framework for

developing parallel heuristic search procedures.
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