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A Supplementary Note on the Paper :

“Oblique Factors and Components with Independent Clusters”
Haruhiko Ogasawara

This note is to supplement Ogasawara (2003). The equation
numbers without the prefix ‘B’ in this article are those of Ogasawara
(2003).

1. Equivalence of the unweighted least squares estimator and the
Wishart maximum likelihood estimator

For the derivation of the equivalence of the unweighted least
squares (ULS) estimator and the maximum Wishart likelihood (WML)
estimator assuming multivariate normality for the direct-product
model of (28a), we give the following Lemma Al.

Lemma Al. Let 2= 2(9) be a ¢gxg population
covariance matrix for observed variables with 0=(8...,8,)’
being a #x1 parameter vector, Furs=(1/2)tr{(Z _S)z} , and
Fww = tr(Z_IS)—_I-]n |Z|, where S is a gxg sample covariance
matrix. Then, a necessary condition for the equivalence of a ULS
estimator (éULs) and a WML estimator (éwm) is that we have

N

the same 0 which satisfies

OF uis _ 0X |
= @9 =0, (=Losd)
and
aFVW]\/[L i 82
_é?|9 a=—1r 0,- 0|9 8° (Z ~9t). (B2)

- (58]
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Proof. The necessary condition of (B1) for éULS is well-known.

The corresponding condition for OWML is also well-known and is
usually written as

r{Z(Z-8)="05/89,} = 0] o> ((=1t)
(see e.g., Joreskog, 1978) which is equivalent to (B2) from
o010 91':—2_1 (62_1/ 0 9:‘)2_1. The necessary condition of

- the equivalence of the two estimators follows immediately. Q.E.D.
Now, we have the main result.

Proposition Al. For the direct-product covariance structure
model of (28a) with associated assumptions, the WML and ULS
estimators are the same.

Proof. For ease of derivation, we reparameterize the model into
the following linear model with a new set of parameters {a, 8,¥} :

X =g, A’®E,'+vI,
=E,TE,*v1,

‘ , (B3)
= alqlq +ﬂ(Ir ®1p1p )+W1q9
where »
Eq = Ir ® lp R and r =2«2® = alrlr '+ ﬂIr (B4)
with @=A¢ and P=1*01-9¢) . Using  the

reparameterization of (B3) and Lemma Al, the ULS estimators of
a,f and ¥ are obtained as the solution of the following equations:

, r{(E-S)1,1, ")
—Fus )iz -8)1, 81,1, | =0.
o@py) | =) (B5)

For the WML estimators of @,f and ¥, we first obtain X"
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by using the formula for the inverse of the sum of two matrices:

_ 1 1 , 1 nele
Z lzalq_FEq(Eq _V;Eq"'r ]) 1Eq

11 PR B6
:_Iq__Eq(pIr-'-l//r 1) lEq . ( )
14 14

Since the matrix I'™" in (B5) is obtained as

1 a
I =—(,-
ﬂ(l ,B+ra11 )’ (B7)

we have

“1y-1 _ vi,__ ay ' )
(pL+wI) —{(p+ﬂ)1r ———'B(ﬂ+ra)1r1r}

ay
1 P(f+ra)

= I+ 11, |®
v v ray

P2l P T BB+ra)

and consequently

= g1, '+ gz(Ir ® 1,1, )+ g1,  ®9)

with
—-a __ﬂ
g = gy ="
(PB+y)pB+y+pra)y: =" y(pf+y):
1
g3=; . | (B10)

Using Lemma Al, (B9) and (B10), the WML estimator of the
parameters are obtained as the solution of the following equations:
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O Fwwm 0g,
_OFwe _ _gfm -8y, 28
@ py THESLLY TS
0
—tr{(z—st@lplp')}—a—@—%—ﬁ
0g; (B11)
—tr{(x-8)} ——==—
Ryt

=0.
From (B5) and (B11), we find that the ULS estimators satisfy (B11)
and consequently that the ULS estimators are also the WML
estimators. Since the reparameterized model has identification, the
ULS and WML estimators are the same. Q.E.D.

The derivation when r=1, which reduces to the case of the
one-factor model for parallel tests, was given by Ogasawara (1990) by
explicitly deriving the WML and ULS estimators.

Let a covariance structure model be identified and linear in

! . .
parameters as Z=§9iKi, where Ki(i=1,....t) are given or

design matrices. Then if =™ is described as
t
-1 _
)2 “‘Elgi(e)Ki’ (B12)

‘where & ,-(e)s (i = 19-"9t ) are scalar functions of 9 , we see that
~ the WML and ULS estimators of the parameters in the covariance
structure model are the same. The model of (B12) is a linear model
of 7 with respect to & ,-(9) ’s (for estimation and testing in this
model, see Anderson, 1969). Other than the model of (28a) or its
special cases (e.g., the parallel test model when 7=1), we have the
model with the form of (B12) when e.g, & = d188(T115-5044)
which represents independent observed variables with unconstrained
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variances, and is used as a baseline model to assess the

goodness-of-fit of covariance structure models (see e.g., Bentler &
-1

Bonett, 1980). For the baseline model, it is easy to have z

the WML and ULS estimators become Oii~ Sii (l :L---:t) ,

where Sii is the sample variance of the i-th observed variable (see
e.g., Weng & Cheng, 1997).

The generalized least squares (GLS) estimators are also used in
structural equation modeling. It is known that the GLS estimators
are obtained as the solutions of the following equations:

; N
tr{S (Z-9)S 3o =0,(i=Lewl) gy
which is equivalent to
oS'zs™ .
tr (Z—S)T =0,(l=1,...,l‘). (B14)

For a linear model with the same WML and ULS estimators, (B13) or
(B14) are not necessarily satisfied except for e.g., the special case

when S is proportional to Iq. That is, the GLS estimators for the
direct-product model of (28a) are generally different from those of the
WML and ULS estimators though they are asymptotically equivalent.
However, it is to be noted that the GLS estimators for a linear model
can be explicitly obtained (the author is indebted to a reviewer for this
point).

2. The derivations of the asymptotic variances and covariances
21 avar(s,y) =avar(¥1,'S, 1,)

l$_]

We deI'IVC avar(ZIPS 1p) as 4avar(21p S lp)

>

Figure A shows a schematic representation of S with p=3 and r=4.
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Figure A. Schematic representation for avar(Ej 1,'S i 1,)

when p=3 and r=4.

The elements denoted by dots are not included in the off-diagonal
blocks S, (r2i>j21) We have six different asymptotic

variances/covariances between the elements of S, > (rzi>jzl),

which are schematically denoted by “1” through “6” in the figure.
We consider an element denoted by “1” with which the asymptotic

covariances of the elements in S, (r2i>j21) are to be
evaluated. The figure shows an example when the element denoted

by “17 is (832)22. The following show the six covariance types

corresponding to the elements denoted by “1” through “6” in the
figure, their values and the numbers of the associated elements for a
particular element denoted by “1” in the figure.

Number of
Type ‘ Value the elements

(1) avar((S )., ), (A2 +y)* + A%
r2i>j>1 ab=1,.,p) N 1
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(2)acov((S,;).55 (S;)a)s
acov((S ij)ab’ (S ij)cb )

(ri>j>1; (A2 +p)A*+ A%
a,b,c=1,...,p; N
b#c,a#c)

(3)acov((S ij)ab’ (Sij)cd)’

' (rzi>j=1 l4+/14¢2
a,b,c,d =1,..., p; N p —2p+l
a#c,b#d)

(4)acov((S ij)ab’ (Sii)aa)s
acov((S ij)abs (Szj)cb')a

(rzi>j2Lr2i>k21 (A2 +y)A%g+ A% 2(r=2)
JEkr2l>j21i#1 N Xp
a,b,c,d =1,..., p)
(5)2coV((S ) )ap> (S t)ea)s
aCOV((Sij)baa (Slj)dc)9 |
(rzi>j2Lr2isk>l;, A'¢+A'¢’  20-2)
JEkr2l>j21i#1 N X(PZ—P)
a,b,c,d =1,...,p;a#c)
(6)acov((S;;)ap> (Skr)ea)s ”(’”2 ) -p’

(rzi>jzLr2k>121; 214¢2 —2r-2)p°
i, j,kand/are different; N

2p-1)

_;r2—5r+6 2

a,b,c,d =1,..., p) 5
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Noting that the number of the elements in S, (¥ 2i>j21) js
r(r=1)p* /2, we have
avar(¥1,'S, 1,)

i#J

) %xr—(r:‘z‘l)—pz‘[w +Y) #4194 2p - D{A + A7 + 27}

+(p* =2p+D(A* +2°¢") +2(r = 2) p{(A* +y) A’ + 1747}

+20r-2)(p - A+ A+ p 200

=Z—r(r—]:[l—)f’i[{l+2(p—1)+(p2 —2p+ DI +{2+2(p-1)}A%y
+y +2(r=2)pw At g+ {1+2(p-D)+(p* -2p+1)+2(r-2)p
+2(r =2)(p* = p)+(r* -5r+6)p*}A*4°
+{2r-2)p+2(r-2)(p* - p)} 1'4 |

_ 2
2—’(’—N9p—{p214+2p,12w+y/2+2(r-2)py~12¢

+(r*=3r+ 3)p2/14¢2 +2(r— 2)p2l4¢}.

2.2 acov(s,g,s, —trS)=acov(X1,'S,
i#j

1 £1,'8,1,~1rS)

To derive 200V(X1,'S, 15 21,'8,1,~1S) e

i#j
evaluate three covariance types as follows:
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' Number of
Type : Value the elements

(1 acov((S;;)ue> (S:i)us)s
acov((S;;)ucs (S:)pa)s

aCOV((Sji)caa (Sii)ab)’ (22 +V/)ﬂ«2¢+i4¢ 47'("'“1)

acov((S;).,» (S ix;)ba)’ N sz(p ~1)
(G, j=1..,ri#];
a,b,c=1,..,p; a#b)

(2)acov(S,)oas (S )as)s o
acOV((S) s (51 )an) Zrir=hpdp
Gj=loarizj, 2% —P7APDi
a,b,c,d =1,..., p; N =2r(r-1p*
azb,a#c,b#c) x(p*-3p+2)

(3)2coV((S 1), (S, r(r=Dp*
Gohl=lo,rizk, 224> <O -2)(p*-p)
i#Lhk#Labed N =r(r-1(r-2)
=1,..,p; a#bh) xp’(p-1)

Then, we have
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aCOV(ZL, S 1,,,21,, S 1,-trS)

i j

- 71v~[4r<r ~Dp? (p-DIA2 +p)A% + A'6}

+2r(r— l)p2 (p2 -3p+ 2)(2/’L4¢)
+r(r=1)(r-2)p*(p-1D(22'¢") |

=§,—-r(r—1>p2(p—1){2pz“¢+2wz¢+p<r—2)/1“¢2}.

23 aCOV(Syy,54) =acov(X 1,'S, 1,,,21,, S.1,)

i#j
We use the result in the previous section as follows:

acov(X1,'S, 1, le S . 1,)

i#j

=acov(X1,'S,,1, Zl,, S, 1,—trS)

l#j

+acov(X1,'S, 15 trS).

- dE]
To evaluate the second term in the right-hand side of the above
equation, we consider three covariance types as follows:

Number of
Type Value the elements

(l)aCOV((Sij)ab: (5,)a0)s
acov((sji)ba’ (Sii)aa)9 2(2’2 +l//)/12¢ :
(G, j=1..,ri#]; N 27’(”_1)172
a,b=1,..., p)
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(2)acov((S ;)45 (Si)cc)s
acov((S ;;)pas (8:1)ce)s 2/’L4¢
G, j=1,..,r;i# J; N 2r(r-p*(p-1)
a,b,c=1,...,p;a#c)
(3)acov((S ij)ab’ (Sii)ee)s
G,/ k=1,...,r; 20%9*  r@r=-)p’(r-2)p

i#j, izk, j2tky N =r(r-)(r-2)p’
a,b,c:l,...,p)

From above and the result in the previous section,

acov(Y 1;,’Sij1p, élp's,.ilp)

izj

- %’"(” —Dp*(p-D{2pA'p+2pA’ ¢+ p(r-2)A'¢’}

+ —]%[Zr(r ~1)p? {2(A* +v)A ¢}
+2r(r =D p*(p-DRA'G) +r(r-)(r-2)p’ (2/14¢2)]

_ —]%[-r(r —1)p’ {2pA*g+ 2y %+ p(r —2) 4.
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