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Abstract This paper deals with the collapsing knapsack problem. In the literature, to solve the problem,
a method incorporating a reduction from the problem to the 0-1 knapsack problem has been proposed. In
this paper we show an alternative reduction which produces coefficients smaller than those by the previous.
The improvement makes it possible to solve the resulting 0-1 knapsack problem faster than the previous.
On our estimation in a case, the efficiency attains up to 150 times. We also show that the coefficients
produced will be the smallest possible.

1. Introduction
In the classical 0-1 knapsack problem (KP), where items and a knapsack of a certain

capacity are given, we pack the items into the knapsack so that the total profit of the packed
items is maximized without exceeding the capacity. In the KP, the capacity of the knapsack
is constant, while Posner and Guignard [4] introduced a more complicated problem with a
nonconstant capacity, named Collapsing 0-1 Knapsack Problem (CKP). In the CKP, the
knapsack will collapse according to the number of packed items. For instance, each item is
an antique, ~nd should be covered with something strong respectively when packed. Then
the larger the number of packed items, the smaller the capacity of the knapsack, due to the
strong covering each item. For more applications, see [4]. The CKP is formally stated as
follows:

(CKP) maximize L CiXi

iEN

subject to L aiXi ~ b ( LXi)
iEN iEN

Xi E {O, I}, i E N,

(1.1 )

where N := {I, 2, ... , n} and each i E N indicates an item. The 0-1 variable Xi corresponds
to the selection of item i, that is, Xi = 1(select) / Xi = 0(no select). The numbers Ci and
ai associated with each item i will be called the profit and weight of item i, respectively.
Throughout this paper we assume that both the profit Ci and weight ai of any item i are
given positive integers. Also, b(·) represents a capacity of the knapsack, and is a given
monotone nonincreasing function on the discrete domain N as b(l) ~ b(2) ~ .. - ~ b(n). In
the case where b(·) is constant, the CKP is reduced to KP. The CKP thus includes KP as
a special case, and is NP-hard.

In the literature several algorithms for CKP have been proposed, e.g. Fayard and
Plateau [1], and Pferschy et al [3]. In particular, Pferschy et al [3] proposed two simple
but efficient algorithms, in which our interest is in the first one. It incorporates a reduction
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which produces a KP equivalent to given CKP l and solves the resulting instance with an
algorithm for KP. On the other hand, the second algorithm is tailored for CKP.

In fact the first algorithm is outperformed by the second, one reason for which is that
very large coefficients appear by the reduction, which makes the resulting instance hard to
solve. Still the reduction scheme seems attractive, because the KP is NP-hard whereas not
only it is solvable in pseudopolynomial time with dynamic programming but also there exist
several efficient approaches to solve KP, e.g. a tight upper bound obtained by LP-relaxation
or others, fixing 0-1 variables, and introducing core, etc. For a comprehensive overview of
recent studies on KP, see Martello et al [2].

In the next section we show another reduction which produces coefficients smaller than
those in [3]. We also show that the coefficients produced will be the smallest possible.

2. Another Reduction
Based on the CKP (1.1), the reduction proposed in [3] constructs KP with 2n items of

weights O'}, ... ,0'2n and profits "YI, ... ,"Y2n. The coefficients are defined as follows:

1
ai + A for i = 1, ... , n

O'i = (4n-i)A-b(i-n),.~or i=n+l, ... ,2n
C2 + C for ~ - 1, ... , n

"Yi = (3n + 1 - i)C, for i = n + 1, ... l2n,

where A = LiEN ai and C = LiEN Ci. Then the resultant KP, which is called SKP, is stated
as follows:

(SKP) maXImIze

subject to

2n

L "YiXi
i=l
2n

~O'·x· < BL t 1_

i=l
Xi E {O, I}, i = 1, ... , 2n,

where the capacity is defined as B = 3nA. Following the terminology in [3] we hereafter
call an item with index in N small item, and with index in {n + 1, ... , 2n} large item. The
following validates the equivalency between CKP and SKP:

Theorem (Pferschy et aI, 1997). The instance of CKP has a feasible solution with ob
jective value V if and only if the instance of SKP has a feasible solution with objective
value V + (2n + I)C.

Here, with respect to a solution (0-1 n-vector) X of CKP with L:iEN Xi = jl we define a
solution corresponding to X in SKP as a 0-1 2n-vector the elements of which are x for
small items and the remaining n of (xn+j = 1; 0 otherwise) for large items. The reason for
this definition is that packed items of which the total profit is maximized in SKP without
exceeding the capacity comprise one large item n+i and just i small items, and furthermore
the total profit of the i small items calculated in given CKP results in being maximized, the
essence of which could be summarized as follows:

1. A solution x is feasible in given CKP if and only if a solution corresponding to x in SKP
is feasible.

2. At most one large item can be packed into the knapsack.
3. The total weight of large item n + i and any combination of more than i small items

exceeds the capacity.
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4. The total profit of large item n + i and any combination of less than i small items does
not achieve an optimal value.

5. At least one large item should be packed to achieve an optimal value. In other words,
the total profit of all small items is less than an optimal value.

Namely, if SKP satisfies these five points then a solution of given CKP which is corresponding
to an optimal solution of t.he SKP is also optimal in the CKP. In what follows we re-const.ruct
the coefficients of SKP according to these five points: The first three are concerned with O'i'S
and B, and the remaining two are Ii'S. Since the following reduction does not take advantage
of the monotonicity of b(·) as same as the previous, it is also valid for any capacity function
b(·). Throughout this paper, without loss of generalit.y, we assume b(i) > °for any i;
otherwise we replace the negative b(i) with 0.

First, let weights be as follows:

ai +A
(t-i)A+s-b(i),

for i = 1, , n
for i = I, ,n,

and x be a feasible solution of CKP with LiEN Xi = j.
On the first point above: In order that a solution corresponding to x in SKP is also

feasible, we have O'n+j + LiEN aixi + jA ~ B. Then, B := tA + s. Conversely, a capacity
B - O'n+i - iA = b(i) should remain for i items in CKP, which also inlplies B = tA + s.
In the following we assume that all weights of CKP are sorted in nondescending order such
that al ~ a2 ~ •.. ~ an' In addition we define amin(i) := L;=1 aj.

On the second point above: First, any large item is available since, assuming A ~ 0, we
have

O'n+i = B - iA - b(i) ~ B, for i = 1,2, ... , n.

Second, we assume s > b(i) + b(j) for any 1 ~ i < j ~ n. In the case where A > 0,

Qn+i + Qn+j - (t - i)A + s - b(i) + (t - j)A + s - b(j)
> (2t - i - j)A + s
> (2t - 2n + I)A + s ~ tA + s = B.

By the last inequality we have t := 2n -1 as the smallest possible. Also, s := maxi#j{b(i) +
bU)} + 1; otherwise A = 0, it can be confirmed that, with the s determined, the inequality
of O'n+i + (Xn+j > B is still valid under A = 0. Last, the sand t obtained implies O'n+i > 0
for all large items.

On the third point above, because O'i > 0 for any small item by the assumptions of
ai > 0 for any i and A ~ 0, the following for i = 1, 2, ... , n - 1 validates the point:

O'n+i + amin(i + 1) + (i + I)A

- (t - i)A + s - b(i) + amin(i + 1) + (i + I)A

> tA + s = B.

Then we have A > b(i) - amin(i + 1). Therefore, A is determined as follows:

A := . max {b(i) - amin(i + I)} + l.
t=I, ...•n-l

(2.1)

In the case where this A is negative against the assumption A ~ 0, we replace the value
with O. Incidentally, if the A calculated is negative then it follows that amin(i + 1) > b(i)
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for i = 1,2, ... ,11. - 1, which is the same as the condition (2.1) with A = O. To summarize,

{
ai +A

(ti
(3n - 1 - i)A - b(i - 11.) + maxj#k{b(j) + b(kn + 1,

A - max t=F.~~-1{b(i) - amin(i + In + I,O}
B - (211. - I)A + ~ax{b(j) + b(kn + 1.

J#k

for i = 1, ... ,11.
for i = 11. + 1, ... , 211.

Next, let profits be as follows:

for i = 1, ,11.
for i = 1, 1 n.

- Ci + C
(t-i)C+s,{

'"'Ii
'"'In+i -

Here we assume that all profits of CKP are sorted in nondescending order such that CI ::;
C2 ::; ... ::; Cn' In addition we define cmax(i) := I:j=n-HI Cj' :Moreover we employ a feasible
solution of CKP, say x', and let cmin be a profit given by x', i.e. I:iEN CiX~. Assuming
I:iEN x~ = j we have a profit given by a feasible solution corresponding to x' in SKP as
'"'In+j + cmin + jC = tC + cmin + s.

For the fourth point above, under an assumption C ;::: 0 to have '"'Ii > 0 for any small
item, it is sufficient to ensure that, for i = 1, 2, ... ,11.,

(t - i) C + s + cmax(i - 1) + (i - 1)C < tC + cmin + s.

Then we have C > cmax(i - 1) - cmin. Thus,

C .- max {maxi=l,... ,n cmax(i - 1) - cmin + 1, O}
max {cmax(n - 1) - cmin + 1, O}.

For the fifth point above, it is sufficient to ensure that

cmax(n) + nC < tC + cmin + s. (2.2)

Here we assume s > CI. In the case where C > 0, we have

cmax(n) + nC < (11. + I)C + cmax(n) - cmax(11. - 1) + cmin - 1
(11. + 1)C + cmin + CI - 1

< (11. + 1)C + cmin + s.

Hence t := 11. + 1 is the smallest possible. Also s := CI; otherwise C = 0, it can be confirmed
that, with the s determined and an inequality of cmax(n - 1) < cmin obtained from the C
defined above, the condition (2.2) is still valid under C = O. Summarizing,

{
Ci + C for i = I, ... , 11.

'"'Ii (211. + 1 - i)C + CI, for i = 11. + 1, ... , 211.

C - max {cmax(11. - 1) - cmin + 1, O}

cmln - L CiX~, x' is a feasible solution of CKP.
iEN

As observed above, the magnitude of fi'S is in inverse proportion to the one of cmin. To
obtain x' by which a fairly large profit is given, ordinary greedy heuristic will be of use.
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(}i -

A -

B -

"Ii -

C -

Example. Consider an instance of CKP with n = 3; items are given as {(ai, Cin =
({2, 2), (2,3), (2, 4)}, and b(l) = 5, b(2) = 4, b(3) = 3. Then A = 2, and we have
C = 1, employing a feasible solution x' = (0,1,1) with cmin = 7. The coefficients of
SKP corresponding to the instance are as follows:

z 1 2 3 4 5 6
ai 2 2 2
Ci 2 3 4
(}i 4 4 4 13 12 11

"Ii 3 4 5 5 4 3
B 20

The optimal value of this SKP is 13 gained by a solution (0,1,1,0,1,0). Extracting a
part for small items from it we have a solution (0,1,1), which is optimal to the given
CKP as expected.

We would like to add that, as observed in Example, large item 2n provided for all items
being packed in CKP is redundant, provided b(n) < LiEN ai' In general, on an instance of
CKP, we would obtain m := max{i IL}=l aj ::; b(i)} less than n, Le. more than m items
cannot be packed. In this case we can customize coefficients of SKP. Concretely,

{
ai + A for i = 1, ... , n
(2m + n - 1 - i)A - b(i - n) + b(l) + b(2) + 1, for i = n + 1, ... , n + m

max {b(l) - al - a2 + 1, O}
(2m - I)A + b(1) + b(2) + 1

{
Ci + C for i = 1, ... , n
(2n + 1 - i)C + Lj::;n+l Cj, for i = n + 1, ... , n + m

max {cmax(m - 1) - cmin + 1, O}.

Applying, to the CKP in Example, the above with the same x' = (0, 1, 1) as the previous
we have the following SKP:

i 1 2 3 4 5
(}i 4 4 4 9 8
"Ii 2 3 4 5 5
B 16

Finally, based on the reduction above, we will roughly estimate how many times the first
algorithm in [3] improves. Here we employ the examined data provided in [3], especially
the last one in Table 4 (large-sized problems), where n = 1000, weights ai'S are randomly
distributed in [1,1000], and b(i)'s are bounded by 50000. In the case where b(i) = 0 set for
i > 100, the average solution time of the first algorithm is 938.18 seconds.

The first algorithm solves SKP by dynamic programming, and its time bound is O(nB),
where B = 3nA in [3]. On the reduction above, first, the coefficient 3 is about one third
smaller than the previous. Next we have m ::; 100 in the data above, then it is ten times
smaller than n or less. Last, the previous A = LiEN ai would be estimated at about 500000
in the data above, while our A is less than 50000; thus it is also ten times smaller. Totally,
the first algorithm with our reduction will be performed in 938.18 x (2/300) = 6.25 seconds.
Considering that the average solution time of the second algorithm is 16.10 seconds in
Table 4, we may conclude that our reduction could make the first algorithm a promising
competitor to the second.
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