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Abstract

Let G = (V, E) be a simple undirected graph with a set V of vertices and a set E
of edges. Each vertex v ∈ V has an integer valued demand d(v) ≥ 0. The source
location problem with vertex-connectivity requirements in a given graph G asks to
find a set S of vertices with the minimum cardinality such that there are at least
d(v) vertex disjoint paths between S and each vertex v ∈ V − S. In this paper, we
show that the problem with d(v) ≤ 3, v ∈ V can be solved in linear time. Moreover,
we show that in the case where d(v) ≥ 4 for some vertex v ∈ V , the problem is
NP-hard.

Key words: undirected graph, source location problem, local vertex-connectivity,
deficient set.

1 Introduction

Problems of selecting the best location of facilities in a given network to satisfy
a certain property are called location problems [13]. Recently, the location
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problems with requirements measured by a network-connectivity were studied
extensively [2,4,9–12,15–17].

Connectivity and/or flow-amount are very important factors in applications
to control and design of multimedia networks. In a multimedia network, some
vertices of the network, such as the so-called mirror servers, may have func-
tions of offering the same services for users. Let us call a vertex that can offer
the service i a source, and let S be a set of sources, where we can locate
more than one source in a network. A user at vertex v can use a service i by
communicating with at least one source s through a path between s and v
(or a set of paths between S and v). The flow-amount (which is the capacity
of paths between S and v) affects the maximum data amount that can be
transmitted from S to a user at a vertex v. Also, the edge-connectivity or
the vertex-connectivity between a source set S and a vertex v measures the
robustness of the service against network failures. Actually, such connectivity
and/or flow-amount between a vertex and a set of specified vertices was de-
fined in some telephone company, considering design of a reliable telephone
network with plural switching apparatuses [8]. Moreover, recently, not only
location problems but also connectivity augmentation problems based on this
connectivity have been studied [6,7,14].

In this paper, we consider the problem of finding the best location of a source
set S under connectivity and/or flow-amount requirements from each vertex to
a source set S. We introduce the source location problem which is formulated
as follows.

Problem 1 (Source location problem)
Input : A graph G = (V, E) with a set V of vertices and a set E of edges
capacitated by nonnegative reals, a cost function w : V → R+ (where R+

denotes the set of nonnegative reals), and a demand function d : V → R+.
Output : A vertex set S ⊆ V such that ψ(S, v) ≥ d(v) for every vertex
v ∈ V −S and

∑{w(v) | v ∈ S} is minimum, where ψ(S, v) is a measurement
based on the edge-connectivity, the vertex-connectivity or the flow-amount
between S and a vertex v in a graph G.

For such measurements ψ(S, v), one may consider the minimum capacity
λ(S, v) of an edge cut C ⊆ E that separates v from S, the minimum size
κ(S, v) of a vertex cut C ⊆ V −S−v that separates S and v, or the maximum
number κ̂(S, v) of vertex-disjoint paths between S and v such that no two
paths meet at the same vertex in S.

Source location problems with ψ(S, v) = λ(S, v) in undirected graphs were
treated by Tamura et al. [16,17], Ito et al. [11,12] and Arata et al. [2]. They
gave polynomial time algorithms for uniform costs w(v) = 1, v ∈ V , while the
problem with general costs w(v), v ∈ V is shown to be weakly NP-hard [2].
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Ito et al. [10] considered the source location problem with uniform capacities,
uniform costs, and demand d(v) = k in digraphs, and showed that the problem
can be solved in polynomial time if k is fixed.

Ito et al. treated the source location problem for undirected graphs with unit
capacities, a measurement “κ(S, v) ≥ k and λ(S, v) ≥ l for all v ∈ V − S”,
and uniform costs w(v) = 1, v ∈ V [9]. They presented an O(m + n2 +
n min{m, ln}min{l, n}) time algorithm for k ≤ 2 and showed the NP-hardness
of the problem for k ≥ 3 even if l = 0, where n = |V |, m = |{{u, v} | (u, v) ∈
E}|.

Thus, the problems with ψ(S, v) = κ(S, v) are intractable, but Nagamochi et
al. [15] showed that for a given integer k, the problem with ψ(S, v) = κ̂(S, v)
and d(v) = k can be solved in polynomial time. For this problem, they gave
an O(min{k,

√
n}nm) time algorithm for digraphs and an O(min{k,

√
n}kn2)

time algorithm for undirected graphs (notice that if ψ() = κ() or ψ() = κ̂()
then edge capacities are assumed to be unit without affecting the problem).
Furthermore, they showed that the source location problem for a measurement
“κ̂+(S, v) ≥ l and κ̂−(S, v) ≥ k” in digraphs can be solved in polynomial time,
where κ̂+(S, v) (resp. κ̂−(S, v)) is the maximum number of vertex-disjoint
directed paths from S to v (resp. from v to S) such that no two paths meet
at the same vertex in S. However, for the problems with general demands, it
is not known whether it can be solved in polynomial time or not.

In this paper, we consider the source location problem with ψ(S, v) = κ̂(S, v),
uniform costs, demand d(v) ∈ {0, 1, . . . , k} in undirected graphs (we call this
problem with local k-vertex-connectivity requirements kLSLP). By establish-
ing a min-max formula for the 3LSLP, we give a linear time algorithm for
solving 3LSLP. Moreover, we clear the border between NP-hard and polyno-
mially solvable classes of kLSLP by showing that kLSLP is NP-hard for any
fixed integer k ≥ 4.

The rest of the paper is organized as follows. Some definitions and preliminaries
are described in Section 2. Also in Section 2, we consider lower bounds on the
optimal value to kLSLP and we state our main result that a min-max formula
to 3LSLP is established and that 3LSLP can be solved in linear time. In Section
3, we describe an algorithm, called 3-LVC SLP, for solving 3LSLP and prove
its correctness. In Section 4, we show the NP-hardness of 4LSLP. Finally, we
give some concluding remarks and future researches in Section 5.
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2 Preliminaries

Let G = (V, E) be a simple undirected graph with a set V of vertices and
a set E of edges, where we denote |V | by n and |E| by m. A singleton set
{x} may be simply written as x, and “⊂” implies proper inclusion while “⊆”
means “⊂” or “=”. A vertex set and an edge set of graph G is denoted by
V (G) and E(G), respectively. For a vertex subset V ′ ⊆ V , G[V ′] means the
subgraph induced by V ′. For a vertex set X ⊆ V , NG(X) is defined as a
set of all vertices in V − X which are adjacent to some of vertices in X. A
partition X = {X1, . . . , Xp} of the vertex set V means a family of nonempty
mutually disjoint subsets of V whose union is V , and a subpartition of V means
a partition of a subset V ′ of V .

By Menger’s theorem, the following lemma holds (see Section 1 for the defi-
nition of κ̂(X, v)).

Lemma 2 For a vertex v ∈ V and a vertex set X ⊆ V − {v}, κ̂(X, v) ≥ k if
and only if |NG(W )| ≥ k for every vertex set W ⊆ V −X with v ∈ W . 2

In this paper, each vertex v ∈ V has a demand d(v) of nonnegative integer. A
vertex set S ⊆ V is called a source set if it satisfies

κ̂(S, v) ≥ d(v) for all vertices v ∈ V − S, (1)

and we call each vertex v ∈ S a source.

Problem 3 (kLSLP)
Input : An undirected graph G = (V,E) and a demand function d : V →
{0, 1, . . . , k}.
Output : A source set S ⊆ V with the minimum cardinality.

For a vertex set X ⊆ V , d(X) denotes the maximum demand among all
vertices in X, i.e., d(X) = max

v∈X
d(v). A vertex subset W ⊆ V with d(W ) >

|NG(W )| is called a deficient set. In what follows, we show some properties to
derive a lower bound on the optimal value to kLSLP.

Lemma 4 A vertex set S ⊆ V satisfies W ∩ S 6= ∅ for every deficient set W
if and only if S is a source set.

PROOF. Assume that a vertex set S ⊆ V satisfies W ∩ S 6= ∅ for every
deficient set W . This implies that if Y ⊆ V − S, then Y is not deficient, and
hence |NG(Y )| ≥ d(Y ). By Lemma 2, we then have that S satisfies (1).
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Assume that S ⊆ V is a source set and there is a deficient set W with W ⊆ V −
S. Let v∗ ∈ W be a vertex with d(v∗) = d(W ). As κ̂(S, v∗) ≤ |NG(W )| < d(v∗)
by Lemma 2, it follows that κ̂(S, v∗) < d(v∗). This contradicts the assumption
that S is a source set. 2

For a vertex v ∈ V , a deficient set W ⊆ V with v ∈ W is called a minimal
deficient set with respect to v ∈ V , if no vertex set W ′ ⊂ W with v ∈ W ′ is a
deficient set. A minimal deficient set has the following property.

Lemma 5 (i) For a vertex v ∈ V , every minimal deficient set W with respect
to v ∈ W satisfying d(v) = d(W ) induces a connected graph. (ii) Let Wi (resp.
Wj) be a minimal deficient set with respect to a vertex vi with d(vi) = d(Wi)
(resp. a vertex vj with d(vj) = d(Wj)). Then if Wi ∩Wj 6= ∅ and Wi −Wj 6=
∅ 6= Wj −Wi, then Wi ∩NG(Wj) 6= ∅ 6= Wj ∩NG(Wi).

PROOF. (i) Assume that there exists a partition {W ′,W ′′} of W such that
|NG[W ](W

′)| = 0. Without loss of generality, let v ∈ W ′ and d(W ) = d(W ′).
We have d(W ′) = d(W ) > |NG(W )| ≥ |NG(W ′)|. Hence W ′ is also a deficient
set, which contradicts the minimality of W . (ii) Assume that Wi∩NG(Wj) = ∅
and Wi ∩Wj 6= ∅. Then |NG[Wi](Wi ∩Wj)| = 0, i.e, G[Wi] is not connected,
which contradicts (i). 2

Moreover, we characterize a vertex set X ⊆ V that must include at least two
sources.

Lemma 6 Let S be a source set in G. If a vertex set X ⊆ V satisfies one of
the following conditions (a)-(c), then we have |S ∩X| ≥ 2. If X satisfies one
of the conditions (d)-(f), then we have |S ∩X| ≥ 3.
(a) |NG(X)| = 1 and |{v ∈ X | d(v) ≥ 3}| ≥ 2.
(b) |NG(X)| = 1 and there exists a vertex set X ′ ⊂ Xwith |NG(X ′)| = 1,
d(X ′) ≥ 2, and d(X −X ′) ≥ 3.
(c) X = V and |{v ∈ X | d(v) ≥ 2}| ≥ 2.
(d) X = V and |{v ∈ X | d(v) ≥ 3}| ≥ 3.
(e) X = V and there exist two vertices v1, v2 ∈ X with v1 6= v2, d(v1) ≥ 3,
and d(v2) ≥ 3, and a deficient set W with W ∩ {v1, v2} = ∅.
(f) X = V and there exist a vertex v1 ∈ X with d(v1) ≥ 3 and two deficient
sets W1,W2 with W1 ∩W2 = ∅ and v1 /∈ W1 ∪W2.

PROOF. (a) From |NG(X)| = 1 and d(X) ≥ 3, X is a deficient set and by
Lemma 4, S contains a vertex u ∈ X. Now we have |NG(X − u)| ≤ 2 and
d(X − u) ≥ 3 by |{v ∈ X | d(v) ≥ 3}| ≥ 2. Hence X − u is deficient and thus
S also contains a source in X − u.
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(b) This can be proved along a similar way as in the proof of (a), so we here
omit its proof.

(c) Assume that |S| ≤ 1. Then there exists a vertex u ∈ V −S with d(u) ≥ 2,
by which we have d(V − S) ≥ 2. As |NG(V − S)| ≤ |S| ≤ 1, we have V − S
is deficient. As (V − S)∩ S = ∅, by Lemma 4 it follows that S is not a source
set, a contradiction.

(d) This can be proved along a similar way as in the proof of (c), so we here
omit its proof.

(e) Assume that |S| ≤ 2. If v1 /∈ S or v2 /∈ S, then d(V − S) ≥ 3 and we
have |NG(V − S)| ≤ |S| ≤ 2 < d(V − S). This contradicts the fact that S is a
source set. So S = {v1, v2}, and hence by our assumption, W ∩ S = ∅. As W
is deficient, we have a contradiction.

(f) Assume that |S| ≤ 2. If v1 /∈ S, then d(V − S) ≥ 3 and we have |NG(V −
S)| ≤ |S| ≤ 2 < d(V − S). This contradicts the fact that S is a source set.
So v1 ∈ S. From W1 ∩ W2 = ∅ and v1 /∈ W1 ∪ W2, we have S ∩ W1 = ∅ or
S ∩W2 = ∅, a contradiction. 2

Hence, the following lemma holds.

Lemma 7 Let W = {W1, . . . , Wp,Wp+1, . . . , Wp+a, Wp+a+1, . . . ,Wp+a+b} be a
subpartition of V such that each Wi is a deficient set. Suppose that each Wi,
i = p + 1, p + 2, . . . , p + a (resp. i = p + a + 1, p + a + 2, . . . , p + a + b) satisfies
Lemma 6(a) (resp. Lemma 6(b)). Let f(W) = p + 2a + 2b. Then every source
set S satisfies |S| ≥ f(W). 2

Let f(G) = max{f(W) | W is a family of deficient sets and a subpartition
of V }, where f(W) is a function on W which is a subpartition of V and a
family of deficient sets, as defined in Lemma 7. Let g(G) = 2 if G satisfies (c)
and none of (d) – (f) in Lemma 6, g(G) = 3 if G satisfies (d), (e), or (f) in
Lemma 6, and g(G) = 0 otherwise.

In this paper, we prove the following min-max theorem and we show in con-
sequence that 3LSLP can be solved in linear time.

Theorem 8 (i) For 3LSLP and a source set S ⊆ V , we have min |S| =
max{f(G), g(G)}.
(ii) For 3LSLP, a source set S∗ with the minimum cardinality can be found
in linear time, and in the case of |S∗| ≥ 4, so can a family W of deficient sets
with f(W) = f(G). 2
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3 Linear Time Algorithm for 3LSLP

In this section, we give an algorithm, called 3-LVC SLP, for 3LSLP. If a given
graph is disconnected, then we can consider the problem separately for each
connected component. Hence we suppose that G is a connected graph. Also
assume that there exists a vertex v ∈ V with d(v) ≥ 2 since the problem
with d : V → {0, 1} is trivial. Algorithm 3-LVC SLP consists of two steps. We
first describe the procedure of Step I in Section 3.1, analyze the properties of
feasible solutions obtained in Step I in Section 3.2, and finally describe the
procedure of Step II in Section 3.3.

3.1 Step I

Step I of algorithm 3-LVC SLP starts from a source set S := V and updates
S greedily as follows.

Algorithm 3-LVC SLP
Input: An undirected connected graph G = (V,E) and a demand function
d : V → {0, 1, 2, 3}.
Output: A source set S ⊆ V with the minimum cardinality which satisfies
(1).

Step I
(I-0) Number vertices of V such as d(v1) ≤ · · · ≤ d(vn).
(I-1) Initialize j := 1, S := V , and W := ∅.
(I-2) If S − {vj} satisfies (1) then let S := S − {vj}. Otherwise select a
minimal deficient set W ′ ⊆ V − (S − {vj}) with respect to vj, and let
W := W ∪ {W ′}.
(I-3) If j 6= n, then j := j + 1 and go to Step (I-2).
(I-4) If W is a subpartition of V then output S and halt; otherwise go to
Step II.

We first claim that in the case where S−{vj} does not satisfy (1) in Step I-2,
there exists a minimal deficient set W ′ ⊆ V − (S − {vj}) with respect to vj.
Before deleting vj from S, S is feasible and hence by Lemma 4, every deficient
set contains a source in S. On the other hand, S−{vj} is infeasible. Again by
Lemma 4, there is a deficient set W ′ with W ′ ∩ (S − {vj}) = ∅. Therefore it
follows that W ′ ∩ S = {vj} and thus W ′ ⊆ V − (S − {vj}).

Let S = {s1, . . . , sp} be the source set finally obtained after vn is checked.
Then we have a family of minimal deficient sets W1, . . . , Wp such that Wi is a
minimal deficient set with respect to source si ∈ S for i = 1, . . . , p.
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If {W1, . . . , Wp} is a subpartition of V , then S is optimal. This follows because
every source set consists of at least p vertices by Lemma 7, and we have |S| = p.

Otherwise we go to Step II, in which we update S while preserving (1). For
example, for two sources si and sj with Wi∩Wj 6= ∅, let S := S−{si, sj}∪{s′}
for some vertex s′ ∈ Wi ∩Wj and W := W − {Wi}. Repeat such operations
until the current source set turns out to be optimal by using Lemmas 6 and
7.

3.2 Properties of a source set obtained by Step I

Assume that algorithm 3-LVC SLP does not halt in Step I. Let S0 = {s1, . . . ,
sp} be a source set obtained by Step I and W0 = {W1, . . . , Wp} be a family
of the corresponding minimal deficient sets. Since W0 is not a subpartition of
V , we have |S0| ≥ 2.

Definition 1 (i) For a source set S, we say that a deficient set W satisfies
property (P1) with respect to S, if there is s ∈ S such that W ∩ S = {s},
d(W ) = d(s) and W is minimal with respect to s.
(ii) We say that a source set S = {s1, . . . , sp} and a family W = {W1, . . . ,
Wp} of deficient sets Wi ⊆ V satisfy property (P2), if for each Wi ∈ W, there
is si ∈ S such that Wi ∩ S = {si}, d(Wi) = d(si) and Wi is minimal with
respect to si. 2

Note that if a source set S and a family W of deficient sets satisfy property
(P2), then each W ∈ W satisfies property (P1) with respect to S. We see that
S0 and W0 satisfy property (P2) by the following lemma.

Lemma 9 The source set S0 and the family W0 obtained by Step I satisfy
property (P2).

PROOF. At Step I-2, assume that vj cannot be deleted. As S is a source set
and W ′ is deficient, by Lemma 4 it follows that W ′∩S = {vj}. Then all vertices
in W ′ − {vj} have been already deleted, and d(vj) = max{d(v) | v ∈ W ′}
holds by the sorting in Step I-0. Hence Wi ∩ S0 = {si} and d(Wi) = d(si) for
i = 1, . . . , p. 2

Lemma 10 Let S be a source set and Wi be a minimal deficient set which sat-
isfies property (P1) with respect to S. If |S| ≥ 2, then we have 1 ≤ |NG(Wi)| ≤
2.
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PROOF. |NG(Wi)| > 0 clearly holds, since |NG(Wi)| = 0 implies V = Wi,
contradicting |S| ≥ 2 and |S ∩Wi| = 1. As d(Wi) ≤ 3, we have |NG(Wi)| ≤
2. 2

Lemma 11 Let a source set S and a family W of minimal deficient sets
satisfy property (P2). If Wi,Wj ∈ W, i 6= j satisfy Wi ∩Wj 6= ∅ and d(Wi) =
d(Wj) = 2, then V = Wi ∪Wj.

PROOF. By Lemma 10 and d(Wi) = d(Wj) = 2, we have |NG(Wi)| =
|NG(Wj)| = 1. By Lemma 5, we obtain |NG(Wi ∪ Wj)| = 0 and hence
Wi ∪Wj = V . 2

By the following lemma, we see that if a source set S0 obtained by Step I
satisfies |S0| ≤ 3, then S0 is optimal.

Lemma 12 If |S0| ≤ 3, then S0 is an optimal solution.

PROOF. By Lemma 9, S0 andW0 satisfy property (P2). From (P2), we have
the property that d(Wi) = d(si) for i = 1, . . . , p. If W0 is a subpartition of V ,
then the statement follows by Lemma 7. Assume that W0 is not a subpartition
of V . Hence |S0| ≥ 2. For each Wi ∈ W0, we have 1 ≤ |NG(Wi)| ≤ 2 from
Lemma 10, and d(Wi) > |NG(Wi)| from the definition of a deficient set. Thus,
d(Wi) = d(si) implies that d(si) ≥ 2. Hence if |S0| = 2, then by Lemma 6(c)
it follows that S0 is optimal.

We consider the case where |S0| = 3. Without loss of generality, assume that
d(s1) ≥ d(s2) ≥ d(s3). If d(si) = 2 for all i = 1, 2, 3, then Lemma 11 and
|S0| = 3 imply that W0 is a subpartition of V , a contradiction. If d(s1) =
d(s2) = d(s3) = 3, then S0 is optimal by Lemma 6(d). If d(s1) = d(s2) = 3 and
d(s3) = 2, then we have W3 ∩{s1, s2} = ∅ by the property (P2), and hence by
Lemma 6(e), it follows that S0 is optimal. If d(s1) = 3 and d(s2) = d(s3) = 2,
then we have s1 /∈ W2 ∪ W3 by the property (P2), and W2 ∩ W3 = ∅ by
|S0| = 3 and Lemma 11. Hence in this case, by Lemma 6(f), it follows that S0

is optimal. 2

Furthermore, by Lemmas 11 and 12, in the case of d : V → {0, 1, 2} we can
prove that a solution obtained by Step I is optimal.

Lemma 13 If d : V → {0, 1, 2}, then S0 is an optimal solution.
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PROOF. By Lemma 9, S0 and W0 satisfy property (P2). The lemma follows
if W0 is a subpartition of V . If this is not the case, then by Lemma 11, we
have |S0| = 2, from which S0 is optimal by Lemma 12. 2

Hereafter, suppose that |S0| ≥ 4 and max{d(v) | v ∈ V } = 3.

Definition 2 A family W ′ = {W1, . . . , Wt} ⊆ W (t ≥ 2) of deficient sets is
called a chain if it satisfies the following conditions.
(a) Wi ∩Wi+1 6= ∅ for i = 1, . . . , t− 1.
(b) Wi∩Wh = ∅ for two distinct i, h ∈ {1, 2, . . . , t} with 2 ≤ |i−h| ≤ t−2. 2

Here we decompose S0 to S`
0 ⊆ S0, ` = 1, . . . , q to clarify its structure as

follows. First, we define a new graph H with the vertex set S0. In H, (si, sj)
is an edge for si, sj ∈ S0 if and only if Wi ∩ Wj 6= ∅ for the corresponding
two deficient sets Wi,Wj ∈ W0. Then S`

0 ⊆ S0, ` = 1, . . . , q is defined as a
connected component of the graph H. A family of deficient sets corresponding
to the sources in S`

0 is denoted by W`
0. Now in the following Lemma 14, we

prove that each W`
0 with |W`

0| ≥ 2 is a chain. If W`
0 is a chain, then we can

observe from the definition of chains that W`
0 consists of two subpartitions of

V . Hence, if each W`
0 with |W`

0| ≥ 2 is a chain, then intuitively, the cardinality
of S0 is at most twice the optimal. Actually, in the sequel, for each W`

0, we will
replace some two sources si, sj ∈ S`

0 satisfying Wi ∩Wj 6= ∅ with one vertex
s′ ∈ Wi ∩Wj in order to attain an optimal solution.

Lemma 14 Each W`
0 = {W1, . . . ,Wt} with t ≥ 2 is a chain. Moreover, if t ≥

3, then each Wi ∈ W`
0 with i = 2, . . . , t−1 satisfies NG(Wi) = {si−1, si+1}. 2

Before proving Lemma 14, we give the following lemma.

Lemma 15 Let S be a source set, and Wi and Wj be minimal deficient sets
which satisfy property (P1) with respect to S and satisfy Wi ∩ S = {si} and
Wj∩S = {sj} with si 6= sj. If Wi∩Wj 6= ∅, then the following properties hold.
(i) G[Wi ∪Wj] contains at least two vertex-disjoint paths between si and sj.
(ii) If |Wi ∩NG(Wj)| = 1, then we have Wi ∩NG(Wj) = {si}.

PROOF. (i) Since G[Wi] and G[Wj] are connected by Lemma 5 and Wi ∩
Wj 6= ∅, there exists a path between two sources si and sj in G[Wi ∪ Wj].
Assume that (i) does not hold. Then there exists a partition {Xi, Xj, {z}} of
Wi ∪Wj with NG[Wi∪Wj ](Xi) = NG[Wi∪Wj ](Xj) = {z}, si ∈ Xi, and sj ∈ Xj.
Suppose without loss of generality that z ∈ Wi. Then as NG(Xi) ∩ Xj = ∅,
we have NG(Wi ∩Xi)−{z} ⊆ NG(Wi)−Xj. Now we have Xj −Wi 6= ∅ since
sj ∈ Xj −Wi holds by Wi ∩ S = {si}. Hence NG(Wi) ∩ (Xj −Wi) 6= ∅ holds
since G[Wi∪Wj] is connected. Therefore, we have |NG(Wi∩Xi)| = |NG(Wi)−
Xj|+ |{z}| ≤ |NG(Wi)−Xj|+ |NG(Wi)∩Xj| = |NG(Wi)|. Hence, Wi∩Xi is a
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deficient set by si ∈ Wi∩Xi and d(Wi) = d(si). As z ∈ Wi−Xi, Wi∩Xi ⊂ Wi,
which contradicts the minimality of Wi. (ii) Let Wi ∩NG(Wj) = {z}. Assume
that z 6= si. Then as Wj ∩S = {sj}, we have si ∈ Wi−Wj−NG(Wj), and any
path between si and sj in G[Wi ∪Wj] contains z. This contradicts (i). 2

For proving Lemma 14, it suffices to show the following Lemma 16.

Lemma 16 Let S be a source set with |S| ≥ 4. Let W be a family of minimal
deficient sets Wi satisfying property (P1) with respect to S such that S∩Wi =
{si}. If there exist two distinct Wh,Wj ∈ W − {Wi} with Wi ∩ Wh 6= ∅ 6=
Wi∩Wj, then we have NG(Wi) = {sh, sj} (hence, the number of W ∈ W−{Wi}
with Wi ∩W 6= ∅ is at most two).

PROOF. For each Wi ∈ W , we have |NG(Wi)| ∈ {1, 2} by Lemma 10. Denote
NG(Wi) by {xi, yi} (possibly xi = yi). Assume that there exist two distinct
Wh, Wj ∈ W − {Wi} with Wi ∩Wh 6= ∅ 6= Wi ∩Wj. By Lemma 5, we have
Wj ∩NG(Wi) 6= ∅ 6= Wh ∩NG(Wi).

Without loss of generality, assume that Wj ∩{xi, yi} = {xi}. Then by Lemma
15(ii), we have xi = sj. Since sj /∈ Wh holds by the property (P1), we have Wh∩
{xi, yi} = {yi}, from which we have yi = sh. If another Wk ∈ W−{Wi,Wj,Wh}
satisfies Wk ∩ Wi 6= ∅, then the property (P1) implies sk ∈ Wk − Wi and
NG(Wi) ∩ Wk = {sh, sj} ∩ Wk = ∅, from which G[Wk] is not connected,
contradicting Lemma 5.

Assume that {xi, yi} ⊆ Wj and {xi, yi} ⊆ Wh. By Lemma 5, we have Wj ∩
Wh 6= ∅ and NG(Wj) ∩Wi 6= ∅ 6= NG(Wh) ∩Wi. If V = Wi ∪Wj ∪Wh, then
we have |S| = 3 by the property (P1), which contradicts |S| ≥ 4. Otherwise
NG(Wi∪Wj∪Wh) 6= ∅. Denote NG(Wj) by {xj, yj} (possibly xj = yj). Without
loss of generality, we can assume yj ∈ NG(Wi∪Wj∪Wh) by NG(Wi) ⊆ Wj∪Wh.
By Lemma 5, we have xj ∈ NG(Wj) ∩ Wi. Then by Lemma 15(ii), we have
si = xj. Hence since the property (P1) implies that si = xj /∈ Wh, we have
Wh ∩NG(Wj) = ∅. This contradicts Lemma 5. 2

Next, we give the following lemma about updating a source set.

Lemma 17 Let S be a source set, and Wi and Wj minimal deficient sets
which satisfy property (P1) with respect to S and satisfy Wi ∩ S = {si} and
Wj ∩S = {sj} with si 6= sj. Suppose that V −Wi−Wj 6= ∅ and Wi ∩Wj 6= ∅.
If there is no vertex set X ⊂ V with

Wi ∪Wj ⊆ X, X ∩ S = {si, sj}, |NG(X)| = 1, (2)
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then we have |S| ≥ 3, and S ′ = (S − {si, sj}) ∪ {sij} is a source set for any
vertex sij ∈ Wi ∩Wj.

PROOF. Assume that no vertex set X ⊆ V satisfies (2). From V −Wi−Wj 6=
∅ and the connectedness of G, |NG(Wi ∪ Wj)| ≥ 1 holds. Hence, if |S| = 2,
then we have S = {si, sj} and for a vertex x ∈ V −Wi −Wj, X = V − {x}
would satisfy (2), a contradiction. Therefore we have |S| ≥ 3. Moreover, we
can assume that |NG(Wi ∪Wj)| = 2, since if |NG(Wi ∪Wj)| = 1, then X =
Wi ∪Wj would satisfy (2). By Lemma 5, Wi ∩ NG(Wj) 6= ∅ 6= Wj ∩ NG(Wi)
holds, from which we have |NG(Wi)| = |NG(Wj)| = 2 by Lemma 10. Without
loss of generality, we can assume NG(Wi) = {xi, yi}, NG(Wj) = {xj, yj},
{xi, xj} ⊆ V −Wi −Wj, yi ∈ Wj and yj ∈ Wi. By Lemma 15(ii), yj = si and
yi = sj hold. Then by {si} = NG(Wj) ∩ Wi, {sj} = NG(Wi) ∩ Wj, and the
connectedness of G[Wi] and G[Wj], we see that NG(Wi ∩Wj) = {si, sj} holds
and all of G[(Wi∩Wj)∪{si}], G[(Wi∩Wj)∪{sj}], and G[(Wi∩Wj)∪{si, sj}]
are connected. Let sij be an arbitrary vertex in Wi ∩Wj.

Assume by contradiction that S ′ = (S − {si, sj}) ∪ {sij} is not a source set.
Then there is a deficient set W ′ with S ′ ∩ W ′ = ∅, i.e., sij 6∈ W ′ and S ∩
W ′ = {si, sj} ∩ W ′ 6= ∅. Hence, we have NG(W ′) ∩ (Wi ∩ Wj) 6= ∅ since
G[(Wi ∩Wj)∪{si, sj}] is connected. Let NG(W ′) = {x′, y′} (possibly x′ = y′),
where x′ ∈ Wi ∩Wj.

We consider the case where {si, sj} ⊆ W ′. If NG(W ′) ⊆ Wi ∩ Wj, then we
have V − (Wi ∩Wj) ⊆ W ′ and S = {si, sj}, contradicting |S| ≥ 3 (note that
{si, sj} ⊆ W ′, NG(W ′)− (Wi ∩Wj) = ∅, and the connectedness of G, G[Wi],
and G[Wj] imply V − (Wi ∩Wj) ⊆ W ′). Hence NG(W ′)− (Wi ∩Wj) 6= ∅. Let
y′ ∈ NG(W ′)−(Wi∩Wj). If y′ ∈ V −Wi−Wj, then X = W ′∪Wi∪Wj satisfies
(2), a contradiction (note that {si, sj} ⊆ W ′, NG(W ′)− (Wi∪Wj) = {y′}, and
the connectedness of G, G[Wi], and G[Wj] imply (Wi−Wj)∪ (Wj−Wi) ⊆ W ′

and NG(W ′∪Wi∪Wj) = {y′}). Without loss of generality, assume y′ ∈ Wi−Wj.
We also assume that xi /∈ W ′, since xi ∈ W ′ would contradict |S| ≥ 3 along
a similar way as in the case where NG(W ′) ⊆ Wi ∩Wj. Then {si, sj} ⊆ W ′,
NG(W ′) ⊆ Wi, xi /∈ W ′, and the connectedness of G and G[Wj] imply Wj −
Wi ⊆ W ′ and NG(W ′∪ (Wi∩Wj)) = {y′}. Hence Wi

′ = (Wi∩W ′)∪ (Wi∩Wj)
satisfies Wi

′ ⊂ Wi, NG(Wi
′) = {sj, y

′} and si ∈ Wi ∩ W ′, which contradicts
the minimality of Wi.

We consider the case where {si, sj} ∩ W ′ = {si} without loss of generality.
We have {sj, sij} ∩W ′ = ∅. We claim that |NG(W ′) ∩ ((Wi ∩Wj) ∪ {sj})| ≥
2. Assume by contradiction that |NG(W ′) ∩ ((Wi ∩ Wj) ∪ {sj})| = 1 (note
|NG(W ′) ∩ (Wi ∩ Wj)| > 0 as seen above). Since there exist at least two
vertex-disjoint paths between si and sj in G[(Wi ∩Wj) ∪ {si, sj}] by Lemma
15(i), we have {sj} = NG(W ′)∩ ((Wi∩Wj)∪{sj}). sij ∈ Wi∩Wj−W ′ means
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that there exists a vertex set Y ⊆ Wi ∩Wj with sij ∈ Y and NG(Y ) = {sj},
which contradicts the fact that G[(Wi ∩ Wj) ∪ {si}] is connected. Thus, we
have |NG(W ′) ∩ ((Wi ∩Wj) ∪ {sj})| ≥ 2. As |NG(W ′)| ≤ 2, NG(W ′) ⊆ (Wi ∩
Wj) ∪ {sj} holds. This implies Wi −Wj ⊆ W ′, NG(W ′ ∪ (Wi ∩Wj)) = {sj},
and NG(Wi ∪Wj ∪W ′) = {xj}. Therefore X = Wi ∪Wj ∪W ′ satisfies (2), a
contradiction. 2

Next, for each chainW`
0 with |W`

0| ≥ 3, we consider sufficient conditions which
allow us to update a source set by using Lemma 17. Intuitively, we will show
that the number of sources in each chain W`

0 can be reduced to almost the
half by pairing up all minimal deficient sets in W`

0 and applying Lemma 17 to
each pair. We define the following three types of chain.

Definition 3 Let a source set S and a family W of minimal deficient sets
satisfy property (P2). A chain W` = {W1, . . . , Wt} ⊆ W (t ≥ 3) is said to
be of type (A) if it satisfies the following conditions (i) and (ii), of type (B)
if it satisfies neither (i) nor (ii), and of type (C) otherwise. (In the case of
type (C), assume that W` satisfies (i) and does not satisfies (ii) without loss
of generality.) Then
(i) There exists Z1 ⊆ V with W1 ∪W2 ⊆ Z1, NG(Z1) = {s3}, and Z1 ∩ S =
{s1, s2}.
(ii) There exists Zt ⊆ V with Wt−1 ∪ Wt ⊆ Zt, NG(Zt) = {st−2}, and
Zt ∩ S = {st−1, st}.
(Note that if t ≥ 3, then we have NG(W2) = {s1, s3} and NG(Wt−1) =
{st−2, st} by Lemma 14.)

Lemma 18 Let a source set S and a family W of minimal deficient sets
satisfy property (P2) and |S| ≥ 4. Let W` = {W1, . . . , Wt} ⊆ W (t ≥ 3) be a
chain of type (A). Then, S ⊆ ⋃

W∈W` W . Moreover, for any set {s′r ∈ W2r ∩
W2r+1 | r = 1, . . . , bt/2c−1} of vertices, S ′ = (S−{s2, s3, . . . , s2bt/2c−1})∪{s′r ∈
W2r ∩W2r+1 | r = 1, . . . , bt/2c − 1} is a source set.

PROOF. First, by Lemma 16, NG(Wi) = {si−1, si+1} holds for each Wi with
i = 2, . . . , t−1. By the property of type (A), we have V = Z1∪Zt∪(

⋃
W∈W` W ),

and hence S ⊆ ⋃
W∈W` W . We have t ≥ 4 from |S| ≥ 4. We prove the lemma

as follows. Let S ′0 = S. We show that for each r = 1, . . . , bt/2c − 1, there is
no vertex set X which satisfies (2) of Lemma 17 for the source set S ′r−1 and
{W2r,W2r+1}, and S ′r := (S ′r−1 − {s2r, s2r+1}) ∪ {sr

′} is also a source set for
an arbitrary vertex s′r ∈ W2r ∩W2r+1.

As 1 ≤ r ≤ bt/2c − 1, we have {W2r,W2r+1} ∩ {W1,Wt} = ∅ for each {W2r,
W2r+1}. To show that there is no vertex set X satisfying (2) for {W2r,W2r+1}
and S ′r−1, it suffices to prove that in the graph Gr obtained from G by
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contracting W2r ∪ W2r+1 to a vertex wr, there exist two mutually vertex-
disjoint paths from wr to two distinct vertices in S ′r−1 − W2r − W2r+1 in
Gr. Now we have NGr(wr) = {s2r−1, s2r+2}. By the construction of S ′r−1,
s2r+2 ∈ S ′r−1. Moreover, there exists a path P ′ from s2r−1 to a vertex s′r−1

in W2r−1 (let s0
′ = s1 in the case of r = 1). Thus, we obtain two paths

{(wr, s2r+2)} and {(wr, s2r−1)} ∪ P ′. Hence, by Lemma 17, for an arbitrary
vertex s′r ∈ W2r ∩W2r+1, S ′r := (S ′r−1−{s2r, s2r+1})∪{s′r} is a source set. 2

Lemma 19 Let S be a source set with |S| ≥ 4. Let W` = {W1, . . . , Wt} (t ≥
3) be a chain of type (B) such that each Wi satisfies property (P1) with respect
to S and satisfies Wi ∩S = {si}. If t = 4 and S− (

⋃4
i=1 Wi) = ∅, then for any

vertex s′1 ∈ W1 ∩ W2, S ′ = (S − {s1, s2}) ∪ {s′1} is a source set. Otherwise,
for any set {s′r ∈ W2r−1 ∩ W2r | r = 1, . . . , bt/2c} of vertices, S ′ = (S−
{s1, s2, . . . , s2bt/2c})∪ {s′r ∈ W2r−1 ∩W2r | r = 1, . . . , bt/2c} is a source set.

PROOF. First, we consider the case where t 6= 4 or S−(
⋃

W∈W` W ) 6= ∅. Let
W ∗ =

⋃
W∈W` W . Since W` is a chain of type (B), we have NG(W1)−W ∗ 6= ∅.

Let NG(W1) = {x1, y1}, x1 6∈ W ∗, and y1 ∈ W2. There exists a path P1 from
x1 to a vertex s∗ in S − (W1 ∪W2 ∪W3) which goes through only vertices in
V − (W1 ∪ W2 ∪ W3) (this is possible by t ≥ 3 and |S| ≥ 4). Similarly, we
have NG(Wt) −W ∗ 6= ∅ where NG(Wt) = {xt, yt}, xt 6∈ W ∗, and yt ∈ Wt−1,
and there exists a path Pt from xt to a vertex s∗∗ in S − (Wt−2 ∪Wt−1 ∪Wt)
which goes through only vertices in V − (Wt−2 ∪Wt−1 ∪Wt). We can choose
s∗∗ such that s∗∗ ∈ S −W ∗ if S −W ∗ 6= ∅ holds, or s∗∗ = s1 if S −W ∗ = ∅
holds (note that this is possible by the definition of type (B)). Along a similar
way as in the proof of Lemma 18, let S ′0 = S, and we show that for each
r = 1, . . . , bt/2c, there is no vertex set X which satisfies (2) of Lemma 17 for
the source set S ′r−1 and {W2r−1,W2r}, and S ′r := (S ′r−1 − {s2r−1, s2r}) ∪ {s′r}
is also a source set for an arbitrary vertex s′r ∈ W2r−1 ∩ W2r. For this, we
prove that there exist two mutually vertex-disjoint paths from wr to distinct
two vertices in S ′r−1 − W2r−1 − W2r in the graph Gr obtained from G by
contracting W2r−1 ∪W2r to a vertex wr. Now, by Lemmas 15(ii) and 16, we
have NG1(w1) = {x1, s3} and NGr(wr) = {s2r−2, s2r+1} for 2 ≤ r ≤ bt/2c − 1.
We consider the case where r ≤ bt/2c − 1. Then, by the construction of S ′r−1,
we obtain s2r+1 ∈ S ′r−1 ∩ NGr(wr). There exists a path P ′ from s2r−2 to a
vertex s′r−1 in W2r−2 if r ≥ 2 holds, and a path P1 from x1 to s∗ if r = 1 holds.
Thus, we obtain two paths {(wr, s2r+1)}, and {(wr, s2r−2)} ∪ P ′ if r ≥ 2, or
{(wr, x1)} ∪ P1 if r = 1. In the case where r = bt/2c holds and t is odd, as
NGbt/2c(wbt/2c) = {s2bt/2c−2, s2bt/2c+1 = st}, we can see this property along a
similar way as in the above case. Assume that r = bt/2c holds and t is even.
Then we have NGt/2

(wt/2) = {st−2, xt}. In the case of S−W ∗ 6= ∅, Pt does not
share a vertex with the path P ′ from st−2 to s′t/2−1, since the path Pt from xt

to s∗∗ does not contain any vertex in Wt−2. Assume S −W ∗ = ∅. As t 6= 4,
we have t ≥ 6, and hence W2 6= Wt−2. Therefore we can replace Pt with a
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path P ′
t from xt to s′1 which contains no vertex in Wt−2 ∪Wt−1 ∪Wt. We see

that P ′ and P ′
t share no vertex except wt/2 in Gt/2. Therefore, by Lemma 17,

S ′ = S ′bt/2c is a source set.

In the case of t = 4 and S − (
⋃4

i=1 Wi) = ∅, we can prove the lemma along a
similar way as in the case of r = 1. 2

Along a similar way as in Lemmas 18 and 19, we can prove the following.

Lemma 20 Let S be a source set with |S| ≥ 4. Let W` = {W1, . . . , Wt} (t ≥
3) be a chain of type (C) such that each Wi satisfies property (P1) with respect
to S and satisfies Wi ∩ S = {si}. Then for any set {s′r ∈ W2r ∩W2r+1 | r =
1, . . . , b(t + 1)/2c − 1} of vertices, S ′ = (S −{s2, s3, . . . , s2b(t+1)/2c−1})∪ {s′r ∈
W2r ∩W2r+1 | r = 1, . . . , b(t + 1)/2c − 1} is a source set. 2

Finally, we give lower bounds on the number of sources contained in each chain
W`

0.

Lemma 21 Let a source set S and a family W of minimal deficient sets
satisfy property (P2) and |S| ≥ 4. Let W` = {W1, . . . , Wt} (t ≥ 3) be a chain,
and W ∗ =

⋃
W∈W` W . For any source set S ′, the following properties hold.

(i) If W` be of type (A), then we have |S ′ ∩W ∗| ≥ dt/2e+ 1.
(ii) If W` be of type (B), and we have t 6= 4 or S − W ∗ 6= ∅, then we have
|S ′ ∩W ∗| ≥ dt/2e.
(iii) If W` be of type (B) and t = 4 and S−W ∗ = ∅, then we have |S ′∩V | ≥ 3.
(iv) If W` be of type (C), then we have |S ′ ∩W ∗| ≥ d(t + 1)/2e.

PROOF. (i) Define W ′ = {Z1,W4} in the case of t = 4, W ′ = {Z1, Zt} in the
case of t = 5 or t = 6, andW ′ = {Z1, Zt}∪{W2r | r = 2, 3, . . . , dt/2e−2} in the
case of t ≥ 7. From the definition of a chain, W ′ is a subpartition of V . Since
Z1 satisfies Lemma 6(b) by d(s1) ≥ 2 and d(s2) = 3, we have |S ′ ∩ Z1| ≥ 2.
Similarly, since d(st) ≥ 2 and d(st−1) = 3 hold, we have |S ′ ∩ Zt| ≥ 2. Hence
|S ′ ∩W ∗| ≥ dt/2e+ 1.

(ii) From the definition of a chain, in the cases where t is even or W1∩Wt = ∅
holds, a set {W2r−1 | r = 1, 2, . . . , dt/2e} is a subpartition of V , so we have
|S ′∩W ∗| ≥ dt/2e. We consider the case where t is odd and W1∩Wt 6= ∅ holds.
By Lemma 16, for any vertex v ∈ W ∗, we have |{Wi ∈ W` | v ∈ Wi}| ≤ 2.
Since we have Wi ∩ S ′ 6= ∅ for each deficient set Wi ∈ W`, |S ′ ∩W ∗| ≥ dt/2e
must hold.

(iii) From the property of type (B), we see |NG(Wi)| = 2 (i = 1, 2, 3, 4). Hence
|{v ∈ V | d(v) = 3}| ≥ 3. By Lemma 6(d), we have |S ′ ∩ V | ≥ 3.
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(iv) Define W ′ = {Z1} in the case of t = 3, and W ′ = {Z1} ∪ {W2r | r =
2, 3, . . . , d(t− 1)/2e} in the case of t ≥ 4. From the definition of a chain, W ′ is
a subpartition of V . Since Z1 satisfies Lemma 6(b) by d(s1) ≥ 2 and d(s2) = 3,
we have |S ′ ∩ Z1| ≥ 2. Hence, we have |S ′ ∩W ∗| ≥ 2 + (d(t − 1)/2e − 1) =
d(t + 1)/2e. 2

3.3 Step II

Now we describe the procedure of Step II of algorithm 3-LVC SLP based on
the properties given in Section 3.2.

Step II
(II-0) Let S := S0. If |S| ≤ 3, then output S as an optimal solution and halt.
(II-1) For each chain W`

0 = {W1, . . . , Wt} (l = 1, . . . , q) which is defined in
Section 3.2, do the following operations.
(II-1-0) In the case of t = 2, if there is no vertex set X which satisfies (2) for
S and {W1, W2}, then let S := (S − {s1, s2}) ∪ {s′} for some vertex
s′ ∈ W1 ∩W2, and W := W − {W2}. If such X exists, then let WX be a
vertex set satisfying (2) which is inclusionwise minimal subject to this
property, and W := (W − {W1,W2}) ∪ {WX}.
(II-1-1) In the case where W`

0 is of type (A), according to Lemma 18, let
S ′1 := {s2, s3, . . . , s2bt/2c−1}, S ′2 := {s′r ∈ W2r ∩W2r+1 | r = 1, . . . , bt/2c − 1}.
Let S := (S − S ′1) ∪ S ′2 and W := (W− {W | W ∈ W`

0}) ∪{(
⋃

W∈W`
0
W )}.

(II-1-2) In the case where W`
0 is of type (B) and we have t = 4 and S−

(
⋃

W∈W`
0
W ) = ∅, then according to Lemma 19, let S := (S − {s1, s2})∪

{s′1 ∈ W1 ∩W2} and W := {V }.
(II-1-3) In the case where W`

0 is of type (B) and we have t 6= 4 or S−
(
⋃

W∈W`
0
W ) 6= ∅, then according to Lemma 19 let S ′1 := {s1, s2, . . . , s2bt/2c}

and let S ′2 := {s′r ∈ W2r−1 ∩W2r | r = 1, . . . , bt/2c}. Let S := (S − S ′1) ∪ S ′2
and W := (W−{W | W ∈ W`

0}) ∪{(
⋃

W∈W`
0
W )}.

(II-1-4) In the case where W`
0 is of type (C), according to Lemma 20, let

S ′1 := {s2, s3, . . . , s2b(t+1)/2c−1} and S ′2 := {s′r ∈ W2r ∩W2r+1 | r = 1, . . . ,
b(t + 1)/2c − 1}. Let S := (S − S ′1) ∪ S ′2 and W := (W − {W | W ∈ W`

0})∪
{(⋃W∈W`

0
W )}.

(III) Output the resulting source set S∗ and halt.

By Lemmas 17, 18, 19, and 20, a set S∗ of sources obtained by this algorithm
is a source set. We prove the correctness of the algorithm by showing that S∗

is optimal. First, the following property holds for a deficient set WX obtained
by Step II-1-0.

Lemma 22 Let WX be a deficient set with W1 ∪W2 ⊆ WX which is obtained
by Step II-1-0, and NG(WX) = {wX}.
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(i) WX satisfies Lemmas 6(a) or 6(b).
(ii) If wX 6∈ NG(W1 ∪W2), then we have |NG(W1 ∪W2)| = 2, and there exists
a simple cycle C which contains s1, s2, x1, x2, and wX in G[WX ∪ {wX}],
where {x1, x2} = NG(W1 ∪W2).

PROOF. (i) If d(s1) = d(s2) = 2, then we have V = W1 ∪W2 by Lemma 11,
contradicting |S0| ≥ 4. Hence let d(s1) = 3. If d(s2) = 3, then WX satisfies
Lemma 6(a). If d(s2) = 2, then we have |NG(W1 ∪ W2)| = 1, and hence
WX = W1 ∪ W2, from which WX satisfies Lemma 6(b) (note that s1 6∈ W2

holds since W2 satisfies property (P1) with respect to S0).

(ii) If |NG(W1 ∪W2)| = 1, then we have WX = W1 ∪W2, which contradicts
wX 6∈ NG(W1 ∪W2). Hence |NG(W1 ∪W2)| = 2. Since W1 ∩ NG(W2) 6= ∅ 6=
W2 ∩ NG(W1) holds by Lemma 5, we have |NG(W1)| = |NG(W2)| = 2. Let
NG(Wi) = {xi, yi}, where xi ∈ NG(W1 ∪W2) and yi ∈ W1 ∪W2 (i = 1, 2). We
have y1 = s2 and y2 = s1 by Lemma 15(ii). Hence there exists a simple path
P between x1 and x2 which contains s1 and s2 in G[W1 ∪ W2 ∪ {x1, x2}]. If
there exist two mutually vertex-disjoint paths P1 and P2 such that Pi, i = 1, 2
connects xi and wX in G[WX∪{wX}−(W1∪W2)], then P1∪P2∪P is a simple
cycle which satisfies the statement (ii) of this lemma (note that x1 6= x2 holds
by |NG(W1∪W2)| = 2). If there are no such paths P1 and P2, then there exists a
subpartition {Y1, Y2, {z}} of WX∪{wX}−(W1∪W2) with wX ∈ Y1, {x1, x2} ⊆
Y2, and NG′(Y1) = NG′(Y2) = {z} in G′ = G[WX ∪ {wX} − (W1 ∪W2)], from
which we can see that Y2 ∪W1 ∪W2 contradicts the minimality of WX . 2

Lemma 23 A source set S∗ obtained by algorithm 3-LVC SLP is an optimal
solution.

PROOF. The case of |S0| ≤ 3 has been proved in Lemma 12. We consider the
case where |S0| ≥ 4. LetW∗ be a family of deficient sets obtained by algorithm
3-LVC SLP. It suffices to show that W∗ is a subpartition of V , since if W∗ is
a subpartition of V , then |W ∩S∗| is equal to lower bounds shown in Lemmas
7, 21, and 22 for each W ∈ W∗.

Assume by contradiction that W∗ is not a subpartition of V . By the construc-
tion of a chain W`

0 ⊆ W0, a family {⋃W∈W`
0
W | l = 1, . . . , q} is a subpartition

of V . Hence, there is a deficient set WX ⊇ W1 ∪W2 obtained from some two
deficient sets W1, W2 ∈ W0 at Step II-1-0 such that wX 6∈ NG(W1 ∪W2) for
NG(WX) = {wX}, and WX ∩W ′ 6= ∅ for some W ′ ∈ W∗ − {WX}.

We claim that no Wi ∈ W0 − {W1,W2} satisfies Wi ∩ WX = ∅. Assume by
contradiction that there is a minimal deficient set Wi∩WX 6= ∅ for some Wi ∈
W0−{W1, W2}. Note that Wi∩W1 = Wi∩W2 = ∅ holds from the construction
of a chain. Also note that G[WX ] is connected from the minimality of WX .
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Hence NG(Wi) ∩WX 6= ∅. Now Wi −WX 6= ∅ holds, since Wi ⊆ WX would
contradict the construction of WX and the fact that Wi always contains a
source s′ with s1 6= s′ 6= s2. Hence, Lemma 5 implies wX ∈ Wi. If NG(Wi) ⊆
WX , then we see V = WX ∪ Wi, which contradicts |S0| ≥ 4. Hence we can
assume that NG(Wi) = {xi, yi} for xi ∈ V −WX and yi ∈ WX . As Wi ∩ (W1 ∪
W2) = ∅, we can assume without loss of generality that s1 ∈ WX −Wi−{yi}.
Then any path connecting wX and s1 in G[WX ∪ {wX}] contains the vertex
yi, which contradicts Lemma 22(ii).

Hence we see that W ′ = W ′
X is also obtained from some two sets W3, W4 ∈ W0

in Step II-1-0, and moreover, we have w′
X /∈ NG(W3 ∪ W4), where {w′

X} =
NG(W ′

X). Since G[WX ] is connected, we have w′
X ∈ WX . From the construction

of WX , we have {s3, s4} ⊆ W ′
X − WX . Without loss of generality, let s3 ∈

W ′
X −WX − {wX}. Then any path connecting w′

X and s3 in G[W ′
X ∪ {w′

X}]
contains the vertex wX , which contradicts Lemma 22(ii). 2

For an efficient implementation of algorithm 3-LVC SLP, we use 2-vertex-
connected components [18] and 3-vertex-connected components [5], and their
tree structure. The analysis of its time complexity is given in Appendix.

Lemma 24 Algorithm 3-LVC SLP can be implemented to run in linear time.
2

Lemmas 12 and 23 imply that |S∗| = max{f(G), g(G)} holds if |S0| ≤ 3 or
if |S0| = 4 and W0 is a chain of type (B), and |S|∗ = f(G) holds otherwise.
Summarizing the arguments given so far, Theorem 8 is now established.

4 NP-hardness of 4LSLP

In this section, we prove the next result.

Theorem 25 Given an undirected graph G = (V, E) and a demand function
d : V → {0, 3, 4}, the problem of testing whether there is a solution S to the
4LSLP with cardinality ≤ k for a specified value k is NP-hard. 2

A graph is called k-regular if the degree of every vertex is exactly k. For a
graph G = (V, E), a set V ′ ⊆ V of vertices is called a vertex cover if every
edge e = (u, v) ∈ E satisfies {u, v} ∩ V ′ 6= ∅. For a vertex set X ⊂ V in
G = (V, E), we denote by EG(X, V −X) the set of edges e = (u, v) such that
u ∈ X and v ∈ V − X. Let degG(v) denote the degree of a vertex v in G.
Here we define a class of graphs obtained from some 3-regular simple graphs,
as follows.
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Definition 4 We say that a graph G satisfies property (Q) if it is obtained
from a 3-regular simple graph H by replacing each edge e = (vi, vj) ∈ E(H)
with three edges (vi, vi,j), (vi,j, vj,i), and (vj,i, vj) introducing two new ver-
tices vi,j and vj,i. Then we denote VE(H) = ∪(vi,vj)∈E(H){vi,j, vj,i}, F1(H) =
∪(vi,vj)∈E(H){(vi,j, vj,i)}, F2(H) = ∪(vi,vj)∈E(H){(vi, vi,j), (vj,i, vj)}, and G =
(V (H) ∪ VE(H), F1(H) ∪ F2(H)). 2

Note that for any graph G with property (Q), a 3-regular simple graph H
with G = (V (H) ∪ VE(H), F1(H) ∪ F2(H)) is uniquely determined. A graph
with property (Q) satisfies the following properties.

Lemma 26 Let a graph G = (V, E) = (V (H)∪VE(H), F1(H)∪F2(H)) satisfy
property (Q), where H is a 3-regular simple connected graph, and let X be an
arbitrary vertex cover in G.
(i) We have |X| ≥ 6.
(ii) Let Y ⊂ V be a vertex set in G such that G[Y ] contains an edge (u, v) ∈ E
and the edge cut EG(Y, V − Y ) satisfies |EG(Y, V − Y )| ≤ 2. Then we have
|X ∩ Y | ≥ 3, except the case where Y = {u, v} and (u, v) ∈ F1(H).

PROOF. It is not difficult to see that the graph H satisfies the following
properties by the 3-regularity of H.

Claim 1 (i) We have |E(H)| ≥ 6.
(ii) Assume that H has a vertex set Z ⊂ V (H) such that the edge cut
EH(Z, V (H)−Z) satisfies |EH(Z, V (H)−Z)| ≤ 2. Then we have |E(H[Z])| ≥
3 and |E(H[V (H)− Z])| ≥ 3. 2

Now, from the definition of a vertex cover,

{u, v} ∩X 6= ∅ for each edge e = (u, v) ∈ F1(H). (3)

(i) By (3), we have |X| ≥ |E(H)|. This together with Claim 1(i) imply |X| ≥ 6.

(ii) Let Z = Y ∩ V (H). From property (Q) of G, we see that if Z = ∅, then
Y = {a, b} for some edge e′ = (a, b) ∈ F1(H). As (u, v) ∈ E(G[Y ]) it then
follows that Y = {u, v} and (u, v) ∈ F1(H) (note that |EG(Y, V −Y )| ≤ 2 and
|E(G[Y ])| ≥ 1 hold). If V (H) = Z, then V − Y = {a, b} must hold for some
edge e′ = (a, b) ∈ F1(H). From (3) and |E(H[Z])| − 1 = |E(H)| − 1 ≥ 5 (by
Claim 1(i)), we have |X ∩ Y | ≥ 3.

We consider the case where Z 6= ∅ and V (H)−Z 6= ∅. Note that |EH(Z, V (H)
−Z)| ≤ 2 holds also in H. Moreover, the connectedness of G and |EG(Y, V −
Y )| ≤ 2 imply that for each edge (vi, vj) ∈ E(H[Z]), the edge (vi,j, vj,i) ∈
F1(H) is also contained in G[Y ]. From this, Claim 1(ii), and (3), we get |X ∩
Y | ≥ 3. 2

19



In this section, we show the NP-hardness of 4LSLP by reducing from the
following problem which is a special case of the vertex cover problem (we call
this problem VCQ).

Vertex-cover problem in a graph with property (Q) (VCQ)

INSTANCE: (G = (V,E), k) : A graph G = (V,E) satisfying property (Q)
and an integer k.

QUESTION: Is there a vertex cover X with |X| ≤ k in G? 2

Lemma 27 VCQ is NP-hard.

PROOF. We prove this lemma by reducing from the following problem, de-
noted by VC3R, which is known to be NP-complete [1,3].

Vertex-cover problem in a 3-regular graph (VC3R)

INSTANCE: (G = (V, E), k) : A 3-regular graph G = (V, E) and an integer k.

QUESTION: Is there a vertex cover X with |X| ≤ k in G? 2

Take an instance IV C3R = (G1 = (V1, E1), k) of VC3R, where n1 = |V1| and
m1 = |E1|. First we convert IV C3R to an instance IV CQ = (G2 = (V2, E2) =
(V (G1) ∪ VE(G1), F1(G1) ∪ F2(G1)), k + m1) of VCQ. Clearly, G2 can be con-
structed in polynomial time in n1 and m1. For proving the lemma, it suffices
to show the following claim.

Claim 1 G1 has a vertex cover with cardinality at most k if and only if G2

has a vertex cover with cardinality at most k + m1.

PROOF. Let X1 be a vertex cover in G1 with |X1| ≤ k. Then a vertex set
X2 = X1 ∪ {vi,j ∈ VE(G1) | (vi, vj) ∈ E1, vi /∈ X1} ∪{vi,j ∈ VE(G1) | (vi, vj) ∈
E1, i < j, {vi, vj} ⊆ X1} is a vertex cover in G2. Since X2 contains exactly one
vertex in {vi,j, vj,i} for each edge (vi, vj) ∈ E1, we have |X2| = |X1| + m1 ≤
k + m1.

Let X2 be a vertex cover in G2 with |X2| ≤ k + m1. For each pair {vi,j, vj,i} ⊆
VE(G1) of two vertices corresponding to an edge (vi, vj) ∈ E1 with i < j, if
{vi,j, vj,i} ⊆ X2, then we reconstruct X2 := (X2 − vi,j) ∪ {vi} (note that this
operation preserves the property that X2 is a vertex cover in G2). Let X∗

2 be
the resulting vertex cover in G2. Then X1 = X∗

2∩V1 satisfies |X1| ≤ k since X∗
2

contains vi,j or vj,i corresponding to each edge (vi, vj) ∈ E1. Moreover, X1 is a
vertex cover in G1 since if there is an edge (vh, v`) ∈ E1 with {vh, v`}∩X1 = ∅,
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then vh,` or v`,h (say, vh,`) are not contained in X2 and we have {vh, vh,`}∩X2 =
∅, which contradicts the assumption that X2 is a vertex cover in G2. 2

2

We shall prove the NP-hardness of 4LSLP as follows. Take an instance IV CQ =
(G = (V, E) = (V (H) ∪ VE(H), F1(H) ∪ F2(H)), k) of VCQ, where n = |V |,
m = |E|, and H is a 3-regular simple graph. For simplicity, assume that
G is connected. From the IV CQ, we construct an instance ILSLP = (G′ =
(V ′, E ′), d) of 4LSLP as follows. For each vi ∈ V , we construct a complete
graph (Vi, Ei) whose vertex set is a set of four copies of the vertex vi, where
Vi = {vi

1, v
i
2, v

i
3, v

i
4} and Ei = {(vi

j, v
i
`) | {j, `} ⊂ {1, . . . , 4}}. For each e =

(vi, vj) ∈ E, we construct one vertex vij. Let V 2
E = {vij | (vi, vj) ∈ E, i < j,

{vi, vj} ⊆ VE(H)} and V 3
E = {vij | (vi, vj) ∈ E, vi ∈ VE(H), vj ∈ V −VE(H)}.

Note that every vertex v ∈ VE(H) satisfies degG(v) = 2 and every vertex
v ∈ V − VE(H) satisfies degG(v) = 3. We construct G′ from G by replacing
each vertex vi ∈ V and each edge e = (vj, v`) ∈ E with (Vi, Ei) and the
vertex vj`, respectively, and adding edges connecting vj` and Vj ∪ V` for each
edge e = (vj, v`) ∈ E. Let V ′ = (∪vi∈V Vi) ∪ V 2

E ∪ V 3
E and E ′ = (∪vi∈V Ei)∪

(∪vij∈V 2
E∪V 3

E
{(vij, u)|u ∈ Vi ∪ Vj}). Let d(v) = 3 for each vertex v ∈ V 2

E and

d(v) = 4 for each vertex v ∈ V 3
E and d(v) = 0 otherwise. Clearly, G′ can be

constructed in polynomial time in n and m.

We see that for each edge (vi, vj) ∈ E, Vi ∪ Vj ∪ {vij} is a deficient set in
G′. This follows since if an edge (vi, vj) ∈ E satisfies {vi, vj} ⊆ VE(H) (resp.
vi ∈ VE(H) and vj ∈ V −VE(H)), then we have |NG′(Vi ∪Vj ∪{vij})| = 2 and
d(vij) = 3 (resp. |NG′(Vi ∪ Vj ∪ {vij})| = 3 and d(vij) = 4).

The following lemma completes the proof of Theorem 25.

Lemma 28 G has a vertex cover with cardinality at most k if and only if G′

has a source set with cardinality at most k.

PROOF. Assume that G′ has a source set S with |S| ≤ k. For each vij ∈
(V 2

E∪V 3
E)∩S, we reconstruct S := (S−{vij})∪{v′} for some v′ ∈ Vi∪Vj. For the

resulting set S, we have S ⊆ V ′−(V 2
E∪V 3

E). The set X = {vi ∈ V | Vi∩S 6= ∅}
satisfies |X| ≤ k. Assume by contradiction that X is not a vertex cover in G.
Then there is an edge (vi, vj) ∈ E with {vi, vj}∩X = ∅. From the construction
of G′, we have (Vi ∪ Vj ∪ {vij}) ∩ S = ∅, which contradicts the assumption
that S is a source set (note that Vi ∪ Vj ∪ {vij} is a deficient set). Hence X is
a vertex cover in G.

Assume that G has a vertex cover X ⊆ V with |X| ≤ k. Let S = {vi
1 ∈ V ′ |

vi ∈ X}. From Lemma 26(i), we have the following property.
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Claim 1 |X| = |S| ≥ 6 holds. 2

We claim that S is a source set in G′. Assume by contradiction that S is not
a source set. Then there is a deficient set W ⊆ V ′ with W ∩ S = ∅ which
contains a vertex vab ∈ (V 2

E ∪V 3
E)∩W corresponding to some edge (va, vb) ∈ E

in G. We choose W such that |NG′(W )| is minimum. Note that |NG′(W )| ≤ 3
holds since d(W ) ≤ 4. We first show that every neighbour of W belongs either
to S or to V 2

E ∪ V 3
E .

Claim 2 If NG′(W ) ∩ Vi 6= ∅, then we have W ∩ Vi 6= ∅ and Vi − S ⊆ W
(hence, we have NG′(W ) ⊆ S ∪ V 2

E ∪ V 3
E).

PROOF. If W ∩ Vi = ∅, then |NG′(W )| ≥ 4 holds by NG′(W ) ⊇ Vi and
|Vi| ≥ 4, a contradiction (note that this is why the cardinality of Vi is set to
four).

Assume that W ∩Vi 6= ∅ and Vi−S−W 6= ∅. For each vertex vj
i ∈ Vi−S−W ,

every vertex in {vj
i } ∪NG′(v

j
i ) belongs to W ∪NG′(W ) from the construction

of G′. This implies that NG′(W ∪ (Vi − S)) = NG′(W ) − (Vi − S − W ) ⊂
NG′(W ). Hence W ∪ (Vi − S) contradicts the minimality of |NG′(W )| (note
that W ∪ (Vi − S) does not contain any source). 2

Let SW = S∩NG′(W ). Now X is a vertex cover in G and hence we can assume
without loss of generality that the edge (va, vb) satisfies va ∈ X. By Claim 2
and va

1 ∈ S, we have va
1 ∈ NG′(W ) and Va − {va

1} ⊆ W . Hence |SW | ≥ 1.

Claim 3 NG′(W ∪ SW ) = NG′(W )− SW .

PROOF. Clearly, NG′(W ∪ SW ) ⊇ NG′(W ) − SW . We see that for each
vi

1 ∈ SW , every vertex in NG′(v
i
1) belongs to NG′(W )∪W from the construction

of G′ and Vi − {vi
1} ⊆ W . This implies NG′(W ∪ SW ) ⊆ NG′(W )− SW . 2

We see that |NG′(W ∪SW )| = 0 would imply SW = S (by the connectedness of
G′) and |SW | = |S| ≥ 6 (by Claim 1), which contradicts |SW | ≤ |NG′(W )| ≤ 3.
Hence we have |NG′(W ∪SW )| ≥ 1. By Claim 3, |NG′(W )| ≤ 3, |SW | ≥ 1, and
|NG′(W ∪ SW )| ≥ 1, we have the following two possible cases (I) |NG′(W ∪
SW )| = 1 and |SW | ≤ 2 and (II) |NG′(W ∪ SW )| = 2 and |SW | = 1.

Let {u1, u2} = NG′(W ∪SW ) (possibly, u1 = u2) and ei ∈ E denote the edge in
G corresponding to ui (note that ui ∈ V 2

E ∪V 3
E). Then the following properties

hold.
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Claim 4 V ′− (W ∪SW )− (V 2
E ∪V 3

E) 6= ∅. Moreover, each ui has a neighbour
in V ′ − (W ∪ SW )− (V 2

E ∪ V 3
E).

PROOF. We have |SW | ≤ 2 and |S| ≥ 6 by Claim 1. This implies V ′ −
(W ∪ SW ) − (V 2

E ∪ V 3
E) 6= ∅ since every vertex in S − SW is contained in

V ′ − (W ∪ SW )− (V 2
E ∪ V 3

E).

Assume by contradiction that some ui has no neighbour in V ′ − (W ∪ SW )−
(V 2

E ∪ V 3
E). Now note that no two vertices in V 2

E ∪ V 3
E are adjacent to each

other from the construction of G′. Hence, ui satisfies NG′(ui) ⊆ W ∪SW (note
that {u1, u2} ⊆ V 2

E ∪ V 3
E). Then the set W ∪ {ui} satisfies (W ∪ {ui})∩ S = ∅

and |NG′(W ∪ {ui})| = |NG′(W )| − |{ui}| < |NG′(W )|, which contradicts the
minimality of |NG′(W )|. 2

By Claim 4, we see that the edge set {e1, e2} is an edge cut in G. Let W1 ⊆ V
denote the vertex set in G corresponding to W ∪ SW such that EG(W1, V −
W1) = {e1, e2} and (va, vb) ∈ E(G[W1]). Therefore the above two cases (I) and
(II) are equivalent to (I’) EG(W1, V −W1) = {e1} and |W1 ∩X| ≤ 2 and (II’)
EG(W1, V −W1) = {e1, e2} and |W1 ∩X| = 1, respectively, in G.

By Lemma 26(ii), if W1 = {vj, vh} does not hold for any edge (vj, vh) ∈ F1(H),
then we have |W1∩X| ≥ 3, which implies that neither (I’) nor (II’) can occur.
From this and (va, vb) ∈ E(G[W1]), we see that W1 = {va, vb} and (va, vb) ∈
F1(H) hold. Hence, the case (I’) cannot hold and we have |EG(W1, V−W1)| = 2
and |W1∩X| = 1, from which |SW | = 1 and |NG′(W ∪SW )| = 2. Moreover, we
see that vab ∈ V 2

E and d(vab) = 3. From this and |NG′(W )| = |SW |+ |NG′(W ∪
SW )| = 3, W is not a deficient set in G′, a contradiction.

Consequently S is a source set in G′. 2

5 Conclusion

In this paper, we have considered the problem that consists, given an undi-
rected graph G = (V,E) and a demand function d : V → {0, 1, . . . , k}, in
finding a source set S ⊆ V with the minimum cardinality for which there
exist d(v) mutually vertex-disjoint paths between every vertex v ∈ V −S and
S such that no two paths meet at the same vertex in S. We constructed a
linear time algorithm for solving the problem when k ≤ 3 and showed that
the problem is NP-hard for any fixed k ≥ 4.

This paper treated the problems in the case where the cost for locating sources
is uniform. It is left open whether the problem with general costs for locating
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sources can be solved in polynomial time in the case of k ≤ 3. It is also a
future work to design approximation algorithms for the problem.
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A Time Complexity of Algorithm 3-LVC SLP

In this section, we show that algorithm 3-LVC SLP can be implemented to
run in linear time. For this, we first introduce 2-vertex-connected components
[18], 3-vertex-connected components [5], and their structure trees, which are
known to be very useful for treating graphs with small connectivity.

A connected graph with no cycle is called a tree. In a tree T , a vertex u ∈ V (T )
with |NT (u)| = 1 is called a leaf. We denote a set of leaves in a tree T by L(T ).
In a connected graph G = (V, E), a vertex v ∈ V (resp. a vertex pair {v1, v2})
is called a cut vertex (resp. cut pair) if G−v is disconnected (resp. G−{v1, v2}
is disconnected and neither v1 nor v2 is a cut vertex).

A.1 2-vertex-connected components and their tree structure

A vertex set X ⊆ V is called a 2-vertex-connected component or a block, if
G[X] is connected and has no cut vertex and X is maximal subject to this
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property. In a connected graph G, we create a new vertex xi associated with
each block Xi in G, and let VC = {c1, . . . , cr} ⊆ V be a set of cut vertices. A
graph with a set {x1, . . . , xs} ∪ VC of vertices and a set {(cj, xi) | cj ∈ Xi} of
edges is a tree, and we call this tree a block-cut tree. A block-cut tree can be
constructed in linear time [18].

A.2 3-vertex-connected components and their tree structure

A graph G = (V, E) with |V | ≥ 4, no cut vertex, and no cut pair is called a
3-vertex-connected graph.

Let G have no cut vertex. Then, for a cut pair Y = {u, v}, V can be divided
into two vertex sets V1 and V2 with V1∩V2 = Y , V1∪V2 = V , and NG(V1−Y )∩
(V2−Y ) = ∅. For each graph Gi = G[Vi], i = 1, 2, we add a virtual edge (u, v)
to Gi. The resulting graphs G1 and G2 are called divided graphs. We say that
G1 and G2 have the common virtual edge (u, v). A divided graph obtained
by repeating this operation until no such operation can be applied is C3, B3,
or a 3-vertex-connected simple graph, where Ci denotes a simple cycle with
i edges and Bi denotes a graph with i multiple edges between two vertices
(we call Bi a bond graph). Furthermore, by merging Cp and Cq which have the
common virtual edge, we can obtain a larger cycle Cp+q−2. By merging Bp and
Bq which have the common virtual edge, we can obtain a larger bond graph
Bp+q−2. By repeating these merge operations until no merge operation can
be applied, we have a unique decomposition of G which does not depend on
an ordering of dividing and merging operations. The resulting divided graph
is called a 3-vertex-connected component, and such a decomposition can be
found in linear time [5].

We create a new vertex zi associated with each 3-vertex-connected component
Zi. A graph with a set {z1, . . . , zs} of vertices and a set of edges (zi, zj) such
that the corresponding two 3-vertex-connected components Z1 and Z2 has the
common virtual edge is a tree. We call this tree a 3-block-cut tree.

A.3 Time complexity of algorithm 3-LVC SLP

Let Di = {v ∈ V | d(v) = i} for i = 0, 1, 2, 3. It is not difficult to see that
Step II can be implemented to run in linear time, because we have only to
construct chains from the source set obtained in Step I and the family of the
corresponding deficient sets, and update the current source set for each chain
by using the block-cut tree of G (note that every vertex is contained in at
most two minimal deficient sets and chains can be found easily). Hence we
here analyze only the complexity of Step I. In Step I-0, the vertices v1, . . . , vn
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can be numbered in O(n) time by d : V → {0, 1, 2, 3}. In Step I-2, if S − {vi}
is not a source set, we find a minimal deficient set Wi ⊆ V − (S − {vi}) with
Wi∩S = {vi}. In the rest of this section, we show that Step I-2 can be executed
in linear time. Since G is connected and D2 ∪D3 6= ∅ holds, V −D0−D1 is a
source set, and hence we can start from S := V −D0 −D1.

We consider an efficient implementation of Step I-2 for vertices in D2. Con-
struct the block-cut tree T1 from G. Let T ′

1 := T1 and each block in T ′
1

unchecked. We repeat the following operations until each leaf in the current
tree T ′

1 has at least one source in D2 ∪D3. We pick up one leaf `T ∈ L(T ′
1 ) in

T ′
1 which has not been checked. Let LG ⊆ V be a block in G associated with

`T ∈ L(T ′
1 ), and vc ∈ LG be the cut vertex in G corresponding to NT ′1 (`T ).

Remark that T ′
1 may be obtained from contracting some vertices as described

later, and let L∗G ⊆ V be a set of all vertices which has been contracted to
some vertex in LG so far. If d(LG − {vc}) ≤ 1, then contract LG − {vc} to
vc and update the block-cut tree T ′

1 . If d(LG − {vc}) = 3, then delete from S
every vertex v ∈ (LG − {vc})∩D2 and check the leaf `T . If d(LG − {vc}) = 2,
then we delete every vertex v ∈ (LG − {vc}) ∩D2 except one vertex vj ∈ D2

from S, check the leaf `T , and we have Wj := L∗G−{vc} as a minimal deficient
set with respect to vj for the vertex vj ∈ (L∗G − {vc}) ∩ S.

Let S ′1 and T ∗
1 be the resulting source set and the block-cut tree obtained by

executing those operations, respectively. Then we delete from S ′1 every vertex
v ∈ D2 which is not contained in L(T ∗

1 ). We can easily see that the resulting
S ′′1 is a source set, except the case where all vertices v ∈ D2∪D3 are contained
in the same block in G, and we have (I) |D3| = 0 and |D2| ≥ 2, or (II) |D3| = 1
and |D2| ≥ 1. In such cases, we have |S ′′1 | = 1, and S ′′1 is not a source set.
However, for an arbitrary vertex u ∈ D2−S ′′1 , S ′′1 ∪ {u} is a source set and an
optimal solution by Lemma 6(c). These special cases can be easily checked in
linear time.

We next describe an efficient implementation of Step I-2 for vertices in D3.
For this, we construct a 3-block-cut tree for each block X of G. We denote
by T2(X) a 3-block-cut tree for a block X of G. Let T ′

1 := T ∗
1 and S ′2 := S ′′1

(note that each leaf contains a source from the property of T ∗
1 ). We repeat

the following operations until all blocks associated with T ∗
1 are checked. First,

we pick up one leaf `T ∈ L(T ′
1 ) in T ′

1 . Let LG ⊆ V , vc ∈ LG, and L∗G ⊆ V be
defined as above. In the case of d(LG − {vc}) ≤ 2, then contract LG − {vc} to
vc in G and update the block-cut tree T ′

1 . Then, since each leaf in T ′
1 contains

a source by the procedure for D2, (L∗G − {vc}) ∩ S ′2 6= ∅ always holds, and
hence we turn on a flag on vc so that we can find out that the vertex set
in G contracted to vc contains a source. In the case of d(LG − {vc}) = 3, we
construct the 3-block-cut tree T2(LG). If the number of vertices in T ′

1 is at least
two, then we turn on a flag on vc, since (V − L∗G) ∩ S ′2 6= ∅. Along a similar
way as in the operations for D2 in the block-cut tree T1, we start from leaves

27



in T2(LG), check vertices in D3 ∩ LG, and update S ′2 while noticing whether
a flag exists or not. After the procedure for LG, we contract LG − {vc} to vc,
turn on a flag on vc, and update the block-cut tree T ′

1 . These operations for
LG can be done in O(|E(G[LG]|)) time. Consequently, it is not difficult to see
that Step I-2 can be computed in O(|E|) time in total.
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