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Asymptotic cumulants of some information criteria

Asymptotic cumulants of the Akaike and Takeuchi information criteria are given under
possible model misspecification up to the fourth order with the higher-order asymptotic
variances, where two versions of the latter information criterion are defined using observed
and estimated expected information matrices. The asymptotic cumulants are provided
before and after studentization using the parameter estimates by the weighted score method,
which include the maximum likelihood and Bayes modal estimators as special cases.
Higher-order bias corrections of the criteria are derived using log-likelihood derivatives,
which yields simple results for cases under canonical parametrization in the exponential

family. The results are illustrated by three examples.

Keywords: Akaike information criterion; Takeuchi information criterion; Kullback-Leibler

distance; canonical parameters; higher-order bias correction.



1. Introduction

Typical information criteria are given by Akaike (1973) and Takeuchi (1976), which
are called the Akaike information criterion (AIC) and Takeuchi information criterion (TIC),
respectively. The criteria are used to assess the goodness of statistical models based on the
Kullback-Leibler (1951) distance using the maximum likelihood estimators (MLES) of
associated parameters. In the AIC, it is assumed that a posited model holds or that a true
model is a special case of the model employed. On the other hand in the TIC, possible
model misspecification is considered. Stone (1977) derived the TIC in the context of cross
validation. Linhart and Zucchini (1986, Proposition 2, Appendix A.2.1) also derived the
TIC. For properties of the TIC, see Shibata (1989).

After the AIC and TIC were coined, information criteria with similar purposes have
been introduced by e.g., Schwarz (1978; the Bayesian information criterion, BIC); Kishino
and Hasegawa (1989), Ishiguro, Sakamoto and Kitagawa (1997; the extended information
criterion, EIC), Shimodaira and Hasegawa (1999) for the methods using the bootstrap;
Shibata (1989; the regularization information criterion, RIC) and, Konishi and Kitagawa
(1996; the generalized information criterion, GIC; see also Konishi & Kitagawa, 2003; 2008,
Chapters 5 to 8). In the RIC and GIC, the exclusive usage of the MLEs by the AIC and TIC
was relaxed to cover e.g., robust and ridge-type estimators. For other information criteria,
see Konishi and Kitagawa (2008) and Burnham and Anderson (2010).

The above information criteria are seen as point estimators of a corresponding
population quantity with bias correction under correct model specification for the AIC and
under possible model misspecification for the TIC, RIC and GIC. The population quantity is
the so-called mean expected log-likelihood (Sakamoto, Ishiguro & Kitagawa, 1986,
Equation (4.9)) associated with the Kullback-Leibler distance, where independent two-fold
expectation is used one for data in the future for prediction and the other for current data for
estimation with the same sample size denoted by n. When n increases, the population value

increases proportionately in an asymptotic sense. On the other hand, the terms of bias
correction are of order O(1) for the AIC and O, (1) for the TIC, RIC and GIC. For
tractability, divide the information criteria by n yielding quantities per observation as

n"AIC and n 'TIC. Then, the population value mentioned above is written symbolically



as O()+0O(n™) depending on n. The situation is somewnhat different from that of typical
parameter estimators as MLESs, where the population parameters usually do not depend on n.

When n becomes infinitely large, the population value O(1)+0O(n™) fore.g., nAIC

becomes O(1), which is the expected log-likelihood averaged over observations, where the

parameters are evaluated by their population values followed by expectation. The last

population value of order O(1) is also of interest as well as that of O(1) + o(n™).

The bias correction of the TIC was extended to the higher-order version by Konishi
and Kitagawa (2003), which gives a refined point estimator of the population counterpart.
On the other hand, statistical testing of the difference of the information criteria for different
models have been developed by Steiger, Shapiro and Browne (1985) and Shimodaira (1997)
under local alternatives and by Linhart (1988), and Kishino and Hasegawa (1989) under
fixed alternatives. Interval estimation of the corresponding population quantities can also be
done in similar manners. While the above methods of testing and estimation is for general
models, the results for special models are available for the higher-order bias correction by
Sugiura (1978) and Yanagihara, Sekiguchi and Fujikoshi (2003) and the asymptotic
cumulants for standardized estimators by Yanagihara and Ohmoto (2005).

One of the purposes of this study is to derive general expressions of the higher-order

bias corrections of NAIC and n'TIC based on the parameter estimators by the
weighted score method under possible model misspecification, where the expression is
different from that of Konishi and Kitagawa (2003). The expression is given by the
log-likelihood derivatives, which yields some transparent results for e.g., the cases of the
natural exponential family. Note that Konishi and Kitagawa (2003) used the von Mises
calculus (von Mises, 1947; Withers, 1983).

The second purpose is to give general formulas for the asymptotic cumulants of

n"AIC and n'TIC up to the fourth order and the higher-order asymptotic variances
before and after studentization for testing and interval estimation of the population
quantities of interest. Three examples using basic distributions in statistics are shown. The
first two examples of the exponential and normal distributions use MLEs under model
misspecification, while the third example of the Bernoulli distribution uses the parameter

estimators by the weighted score under correct model specification.
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2. The higher-order asymptotic biases
Let O bea gx1 vector of parameters in a statistical model witha px1 vector X

of observable variables. Then, the log-likelihood of @ based on n i.i.d. observations is

denoted by
IEI(0|X*)EZIjEZI0gf(x’; 10)=f(X'|0), (2.1)
j=1 j=1

where X' isa Nnxp matrix whose rows (x;', j=1..n) are independent copies of x"

or their realizations for simplicity of notation, and f (x;]0) is the probability density/mass
function for a posited statistical model. The log-likelihood averaged over observations is

denoted by 1 =n"l. Define

ILML = I_(éML | X*) = I_{OML (X*) | X*}, (2.2)

~ A~

where 0,, isthe MLE of the corresponding population quantity 0,.Let 0,, be the
vector of the parameter estimators by the weighted score method (WSES) or the solution of
0 satisfying

a@xX) .
SR 0 =0
o q =0, (2.3)

where q =q (0), afunction of 0,isa qx1 weight vector, which becomes the log-prior

derivatives in the case of Bayesian estimation but can be other general weights. Define

T =T®y | X) =T{0, (X)X}, (2.4)

~

whose special case is 0,, in(2.2)when q =0.Let Z" be an independent copy of X',

where Z is interpreted as an independent data set in the future with the same sample size

as n from the viewpoint of prediction. Define
I =E{1(8,12)}=] , T(8,12)9(Z]¢,)dZ, (2.5)

where g(Z|&,) is the true density of Z~ determined by the parameter vector ¢, of an

appropriate size, and is possibly different from f(Z|0,). Equation (2.5) is to be



interpreted as the corresponding summation when g(Z|&,) is a probability mass.
Similarly, define
I =T(0,1X)=0,@0) with E;(}p)=1, (2.6)
and by =[, TOL12)9ZI)dZ=] T{8,(X)|Z}(Z|)dZ=0,0).  (27)
It is assumed that
—2E,(l, —Iy)=n"b,+n?b, +O(n®) (2.8)
holds, where n™'b, and Nn°b, are defined as the asymptotic biases up to order O(n?)

of —2l,, whose population counterpart is —2E (I,)=0(@) for the AIC and TIC with

n’zb2 being the higher-order added asymptotic bias.
In the following, we obtain an expression of b, different from that of Konishi and
Kitagawa (2003) with b, being well known. For the expression, we use the formula of the

expansion of éw =0,,(X’) given by Ogasawara (2013, Equation (2.1) (see also 2015 for
correction); 2014, Equation (2.4)):

-~ * 3 i i -~ A * *
6, — 0, =AM+ YAV —n (LG, — AQ)), e +O, (17)

=1

s * .
=-n"'A7qy + D APV 40 {AlMAlqo —A™ —;;1 - AP

j=1 0
~ATE,(UP){(A ) @ ATHP } o,(n?) &9

3 . .
= _n—lA—lqO n ZA(J)I(()J) + n—l(lgW))

j=1

where A=E (0% /0000, , )=E (0% /08,00, =0(), q,=q"(8,),

+0,(n7?),

0, (n"?)

- - - . - o1 o1
AD=00),1 =0 (n""*) (j=1, 2, 3),L,, = A
@, 1, (7)) (] ), Ly aeae'|9=‘*w 5. o0



90,00, P 00, 20 b-s,.

=q (OW) i -0 (nfllz) 5q* :Gq*(ﬂ)

jo__ o1
0 n<2>
2, (28, )

, X =X®--®x (k times of x), ® denotes the Kronecker

-1/2

product, and (')Op(n-ﬂz) indicates that () is of order O,(n™"*) with other similar

expressions.

3
() . . .
The term ZA J loJ in (2.9) (Ogasawara, 2010, Equation (2.4)) is given from the
j=1

following expansion:

0, —0,= ZA(J)IE)J) +Op(n_2), (2.10)
j=1
A(l)l(l) — _Afl ﬂ
° 00,
— \<2>
AP = ATMA™ — ol A 1) Aol
° 00, 2= 9° 00,
(3)1(3) 1 1 1 0 I 1 -1 -1 ) -1 0 I_ -
ANY = ATMA'MA —+ZA™MATE, (JP)| AT =—
00, 2 ’ 00,
or ol )| 1 ol \*~
+ATE, (I A™MAT— Q| AT— [} —=A IO —E_ (I} AT —
o (Jo") 0, 00, )| 2 o —E, (00 00,
1 (T oT ™~
—=ATE ()| AT = |®IATE ()| AT —
2 00, 00,
— \<3>
+1A-1E9(Jg4>) At
6 00,



el w_ 0l

(4) _ _

°00,(00,)° " ° 06,

— — \<2>
ol ol
1(2) — Vl M ® ’ = 1(2—1) I’l(2—2)l |=O n—l ,
0 (M) 56, 20, I, 715 7)'=0,(n7)

_ <2> — \<2>
19 = [v'(M)<2> ® ol v'(M)® (i] vec I —E, (JF)}® (%J
0

00," 00,
— N\ <3>
ol
00,’

= (183—1) l’ l(()3—2) I’ 183—3) l’ 183—4) I) 1 — Op (n—3/2)’

where 1877 =0(1) (j=12) and 1" =0() (j=1...,4) are defined implicitly by

2 . . 4 . .
A(Z)léz) — ZA(Z—J)léZ—J) and A(3)lg3) — ZA(3—J)183—J); VI(M)<2> _ [{V(M)}|]<2>; V()

j=1 j=1
Is the vectorizing operator taking the non-duplicated elements of a symmetric matrix in

parentheses; and VecC(:) is the vectorizing operator stacking the columns of a matrix
sequentially.

Expand —2l, and -2l, as
T T Sl o'l 0 <j> -5/2
_2|W:_2(Io)op(1)—2zF @ {0 —00)"}, (r, +O,(177)  (2.11)
=2 0 0, (1)

. — 21 ajl_ N <j> -
and _2|w :_2(Io )0(1) _22-_ Eg A nN<i> {(OW _90) j }o (n112) +Op (n 5/2) )
00 L0 )], p

respectively. Then, recalling E, (I_O) = I_O*, we have



—2E,(ly, - 1y)

=2E ii{i—E {LH 0,,—0,) |[+0(n?)
g j=1j! (800-)<J> g (690|)<J> Op(n,yz) w 0

A~

8|_ ' A <2> (212)
=-2E, 0,,-9,) —E {vec’(M)(0, —0,)"} 2
—0(n?)

00,

+0(n”),

o(n?)

1 . A <3>
~SE{vec ) —E, ()30, —0,) 3,

where the term of j=4 in Z; () of (2.11), when the expectation is taken, is absorbed in

the remainder term of order O(n™°); and E, ()o@, indicates that the expectation is

n?)

taken up to order O(n™?).

_ ol ol _ _
Let I'=nE,| ———|. When the model istrue, T=—A =1, where I, isthe
20, 00,

population Fisher information matrix per observation. Under possible model

misspecification, the last three expectations in (2.12) are given as

ol A
_2Eg {89 ,(Ow _90)}

0

_ ; -
:—ZEg {ail '(_n1Alqz+ZA(J)léJ)+nllgW))}

0 =t

={2Eg( ‘l IA‘li } —{ZEQ l,A(Z)lg”j}
0, 0, ), . o0, o)

—{ZEg [—al 'A(3)l§,3’ } —{ZEg nfl—al Ilgw)j} +0(n?)
9, o(n?) o9, o(n?)




ab
a>bc,d=1 a900 8900'

(A)

Sy a- : N ol ol
=2n"'tr(A"'T) —2n { DY (AYY) g o NE, (m j

d ol
+ > (A%¥?) .,n°E A
Z ( )(c.a,b) (aeoa 800b 600(:) ZZ Z ( )(f :ab, cd e) (213)

a,b,c=1 a>bc>de, f=1

x{ncov (m_,m_, )y +2ncov (m ol jncov (m o J}
g ab?" cd ef g ab? g cd !
00,, 00y,

q - 3 ol q g
+Z Z (A(3 2))(e:ab,c,d) Z nCOVg [mﬁb’ 00 \Jyde + Z (A(3 3))(f:atbc,d,ti)
Oc

a>b c,d,e=1 (c,d.e) a,b,cd,e, f=1

3

q
X Z ncov {(J(3))(ab0)’ae }7/‘# Z (A(3_4))(d:a,b,c)(7/ab7/cd +Vacod T YaaToe)
0d a,

(d.e,f) b,c,d=1

& 4 - al oq | i,
+ AP (Aq) ncov | — m . |+tr| —/ATA?
/ ( qO)C g[aeoa bcj [a 1 j

a,b,c=1 0

—tr[E, (J5"){(A'qp) ©® (A" TA™)}] } o(n™)
(A)

=n"'b+n?c,+0(n?°) (b =2tr(A™'T), ¢, =-2[-1]),
(A) (A)

where (A(Z_l))(d;abyc) indicates the element of the d-th row and the column corresponding
to (M),, =m, (the (a, b)th element of M) and ol /8(8,), =dl /06,, of A®? with

(). being the c-th element of a vector with other expressions defined similarly;

D)= Za‘,zq:('), Zq: ()= izq:('); cov, (-) is the covariance using the distribution

a>b b=1 a=1 e, f=1 e=1 f=1

g(X 1C); Z () is the sum of three symmetric terms with respect to ¢, d and e; and
(c,d.e)

[ - 1 is for ease of finding correspondence;
(A) (A)



~E{vec (M)(®,, —6,)*"}

_ — \<2>
. ol ol
=—E |vec'M){2(-n*Aq)®| — A — [+] AT—
g[ ( ){( qO) { 800] ( 800]

- 2(—&1 %) ® (A<2>132>)}

0

=-—n?| 2 i (A_l ) qbe ol \ ac qbd .2 i ol
- qp),A™Ncov, Moy = |+ > A*A¥n’Eg | m

a,b,c=1 0c a,b,c,d=1
(A)

3 X - ac 2 8I_ 6|_
—23 S (A A {chovg mab,89 jncovg[mde,ﬁ]
0 Oc of

a,b,c=ld>e f=1

+Nn COVg (mab ! mde)j/cf }

(2.14)
: (2-2) ac & al— -3
=2 2, (A"P)e0A™ 2, neov, Mays = |7ee +0(n™)
a,b,c,d,e=1 (c,d,e) Oc
(A)
=n-’c, +O(n>),
1 ' 0 <o>
_5 Eg[Vec {JE)S) - Eg (Jé3))}(ew —90) ’ ]
1 al_ <3>
=—=E | vec'{JP —E (I} -A"——| [+O(n7)
3 00,
_ (2.15)
q
_ n72 Z Aad ﬂ,be/id n COVg {(Jé3))(a by i} Vet + O(nfs)
a,b,c,de, f=1 - aHOd

=n~c,+0(n),
where A% =(A™),.. Then, from (2.13) to (2.15),

Theorem 1. Under (2.8) with regularity conditions for (2.9) and (2.10), the asymptotic

A~

biases n'b, and n?b, of —ZR; up to order O(n?), based on the WSE 0,, derived
by the estimation equation of (2.3), are given by
—2E, (ly — )

(2.16)
=n"2tr(A7'T)+n?(c, +¢, +¢,)+0O(n*) =n"'b, +n~?h, +O(n®),

10



where C;, C, and C, are obtained by (2.13) to (2.15), respectively.

From (2.13) to (2.15), we find that b, and ¢, do not depend on q, and are

A~ A~

common to the results by the MLE 0,, and the WSE 0,, while ¢, and C, depend on

q, . A considerably simplified result is obtained in the following case.

Corollary 1. When the vector of canonical parameters in the exponential family of

distributions is used under possible model misspecification,
—2E,(l, —ly)=n"b, +n?%c,+O(n°) with b,=¢, and ¢,=¢,=0, (2.17)

where C; issimplified as

0

) d . ol ol ol
—2n 2 Z (A(2 2))(c:a,b)ang
00, 06,, 00,

a,b,c=1

—2E, {a?al (0, - 90)} =2n"%r(A'T)

(A)

q
+ a’bazl(A(s_Ll))(d:a,b,c) (7/ab7/cd + yacj/bd + J/adj/bc) (218)

0

4 tr(aa:* A‘lFA‘lj —tr[E, (I )(Aq)) ® (A*TA )} } on?)
(A)

=n"'b, +n’c, +0O(n®).

Proof. Under canonical parametrization in the exponential family, it is known that

il =E all (1=2,3,...), which gives ¢, of (2.18) from (2.13) with M = O
(800)<j> g (890)<j> »9.-.) , which gives €, of (2.18) from (2.13) with M =

and J© —E (J5))=0. The results of ¢, =¢, =0 are derived similarly from (2.14) and
(2.15)withM=0and J§ —E (J¥) =0, respectively. Q.E.D.
In the case of the MLE, the two terms associated with qz in (2.18) vanish and

recalling (2.10) for A®? and A®™® in ¢ of (2.18), we have

11



q L
01:—2{ > (A(Z_Z))@:a,b)”zEg(a(z 8(2 56; j
a,b,c=1 o o "

a
+ 2 (AT ane FanVea  VacToa + Vg m)}

a,b,c,d=1

g 1 o ol ol al
:_2{2 {“AlJéB)(A 1)2} ang(ae 00, 00 J
a,b,c=1 (c:a,b) 0a Ob Oc

q

=N

(AN I [(A), ®AIPLA ™, ®(A™) ]

a,b,c,d=1 2

X(yabycd +7/ac7/bd +}/ad7bc)
q

1 - -1y<2>
+ Z _{A 1J(()4) (A 1) ’ }(d:a,b,c)37ab7cd:|

a,b,c,d=1

<3>
=—vec'(J§) ®n’E, {[—Al %j }+ vec' (A 'TA)IF A" I vec(A 'TA™)

0
+2veC' (TAT ® (A TA ™) Jvec(I¥) —vec' (V) @ vec{(A'TA ™)}, (2.19)
where ()4, is the d-th row of a matrix and ()., is the a-th column of a matrix.
Under correct model specification and canonical parametrization, since
ol 108, =x —E,(x') and —A=T =1, (2.19) becomes

. ol
C =K (X )K [Ial 5)—%0 (1,)35 135 vec(I)

0
—2vec' (J5)(I;") ™ vee(I") +x, (x )vec{(I,") 3}

(2.20)

o ..ol i . .
=K, '(I,"x )Kf{lo”z j)—xfg (I,"2x )Xy ®{vec(I g, )Vec' (I ) )}k, (I,"*x)
0

=215 (X e 5 (1V2X) + '(151/2X*)Vec{(l(q) )*}
=K 5 (X )k 5(X) w5 (X)L ) ®{vec(T ) )vec' (I, )} 5 (X)

—2k (XK (X)) +K,, '(i*)vec(I(qz))
= —K 3 (X)), (X)) =k 5 (X)L gy @{vec(L , )vec' (T ) ) i 5 (X)) +x4, '(i*)vec(l(qz)),
where x isthe x1 vector of observable variables associated with the minimum

sufficient statistics (p = q); X =I,"°Xx"; () isthe g’x1 vector of the j-th

12



multivariate cumulants of a x1 random vector in parentheses using the distribution
f(x|6,) for x";for I;(j=1..,n) see(2.1); I;* isanon-negative definite symmetric
matrix-square-root of I, with I‘”2 = (I”Z) under the assumption of its existence; and
I, isthe gxQ identity matrix.

Under correct model specification, since cov, (x ) =1, due to canonical

parametrization, X" is the vector of standardized variables with

ol 8|
cov, (X') =cov {1‘1’2 801 J—COV ( o J Iy, where cov,(-) is the exact covariance
0

matrix using f (x| 0,). Then, Kf3()~(*) and Kf3(8l~j 100,)(= Kfs(i*)) are seen as

q°x1 vectors of the multivariate skewnesses of X~ and 8fj / 00, respectively. Similarly,

K., (X) isseenasa Q'x1 vector of the multivariate kurtoses of X". In the univariate

case, (2.20) becomes the sum of —2 times the squared skewness and the excess kurtosis.

Similarly, under correct model specification, b, in the asymptotic bias of order

O(n™) in (2.18) is also written as

« ol
b, = 2tr(A"'T) = —2q = —2vec'(I,)vec(I,') = -2k, '(X )k, [Igl jj
0

o (a - (2.21)
=-2K;, (X )Kfz£a_e()]:_2'(fz (X )k, (X)

The above results give
Corollary 2. Under correct model specification and canonical parametrization in the

exponential family, when the multivariate skewnesses and kurtoses of the associated

observable variables are zero, the MLE gives

A~

—2E, (I, —1,,)=-n"2q+0(n®) (b,=-2q,b,=c¢,=¢,=c,=0) (2.22)
where E,(-) is defined using f(x |0,) similarly to E, ().

This can happen, for example, when the covariance matrix in the multivariate normal

distribution is known, where the vector of canonical parameters is the mean vector. Since

13



= - = i - — 2, 3’ o - . .
° T 00,(00,) 00,(00,)<1 ™ }(J ) under canonical parametrization,

the asymptotic expansion using the MLE corresponding to (2.12) higher than (2.12) is given

ol

(8, —0,) ¢ , which is also given only by
20,

only by the first term —2E {

ol Lol
—2E, | —A™"—— |} and —2E AN, 8,0}, where h() is the sum of
26, 20,

multiplicative functions of the powers of the arguments. Then, we have
Corollary 3. When the covariance matrix X of the g-variate normal distribution is
known, the MLE (the usual sample mean vector X) of the population mean vector p,

under possible model misspecification gives

~

2B, (I, —h ) =-n"2g (2.23)

- ol
Proof. In the only non-vanishing term —2E o

(O — o)} for the expansion of
0

o [ ol L4 (ol ol
the left-hand side of (2.23), —2Eg{89 ( A J}:‘Z"{ LE (59 00, j}
0

=-n"'2tr(E"X)=-n"'2q under arbitrary distributions as longas £ and X' exist. The

remaining terms —2E_{h(J§?,J%",...)} vanish when we use the normal distribution even

under non-normality since J{” =0 (j=3,4,...) in this case. Q.E.D.
Note that there is no remainder term in (2.23). An alternative direct proof of Corollary

3 is given as follows. Let z;(j=1...,n) be independent copies of x* and E,.() denote

an expectation over the distribution of Z~ or z;(j=1..,n). Then, by definition,

~

2l =—2E, —%i(zj—i)'z1(zj—i)—%|og{(27z)‘4|2|}

=tr(Z7E) + (n, —X) "= (n, —X) +log{(27)" | = [} (2.24)
=q+(n, —X)'Z7(n, —X) +log{(27)" | £},

14



which gives —2E (I, ) = L+n™)q+1og{(27)" | = [}. On the other hand,

28, () =26, | -3 (6, 05, ~0) - Llog{(20)* |21
= (1-n)tr(Z7E) +log{(27)" | 2 [} (2.25)

=(@-n")q+log{(27)* | Z}.

Consequently, (2.24) and (2.25) yield —2E,(l,, —l, ) =-n"2q.

3. Bias correction for the AIC and TIC

Define
n"AIC,, =-2l,, +n"2q,
N L (3.1)
n“TICY =-2I, +n'tr(-L,T",)
and n'TICY =21, +n @GV with IV =AGY),
where

~ 1 ~ nool. ad, - 2l
LW :Aa—l,\l, FW = nil A—J ~ J ! I&A) :{Eg( 0 I ,\]} and
00,00, = 00,, 00, 0800’ )}, ;

w

. al. ol
I(V?:{Eg(a—(;a—(;,} - (3.2)
0=0

w

When the MLE is used, the subscript W in (3.1) becomes ML with AICy,_ = AIC (the usual
AIC), TICY =TICY(j=1,2). The original definition of the Takeuchi information
criterion (Takeuchi, 1976, Equation (15)) denoted by TICy,. = TIC seems to be

TIC® =TIC® in (3.1), while the definition of the TIC by Linhart and Zucchini (1986,
p.245), Konishi and Kitagawa (2008, p.60) and Burnham and Anderson (2010, Subsection

7.3.1)is TIC® =TIC® in (3.1). The two matrices —L,, and T, are observed

A~

information matrices given by 0,, and X, which are estimators of —A and T,

respectively, and become the estimators of I, under correct model specification. The two

matrices If,\‘,A) and If,? are also estimatorsof —A and I, respectively, and are the

15



A~

expected information matrices followed by estimation using 0,, without X except in
0,,(X"). Since it is often difficult to derive the expectation E,() in(3.2) when
9(x"|&,) isunknown, nTICY is of practical use though n~"TIC{Y is more
complicated than N*TIC? . The remaining combinations n‘tr(-LI%) and
n‘ltr(ii,\‘,A)‘ll:W) for the correction term are not dealt with in this paper.

The higher order bias correction of n‘lAICW is meaningless under model
misspecification since the term n'2q for bias correction is incorrect and should be
replaced by that of n"TIC\) which stands generically for TICY (j =1,2). Consequently,

this reduces to the higher-order bias correction of n™TIC!) and will be dealt with later.

Theorem 2. Assume that a statistical model holds. Then, under regularity conditions,

define

A~

nAIC =n"'AIC,, —n?h, =21, +n'2q-n?(E +¢, +C,). (3.3)

W—0(n2)

Then, E;(nAIC +21,)=0(n"°), where &, ¢, and €, are consistent

W—0(n2)
estimators of C;, C, and C;, respectively.

In some special cases, NAIC,, (=nAIC) gives the same result as that of Theorem

2ie., E,(nAIC+2l, )=0(n"). When the multivariate skewnesses and kurtoses of the

associated observable variables are zero, from Corollary 2 we have this result. Similarly,
when the covariance matrix of the multivariate normal distribution is known, Corollary 3
using the MLE of the mean vector gives the exact result Eg (nAIC + 2Ii,\,TL) =0 even
under non-normality.

For nTICY) under possible model misspecification, define stochastic tr{” and

tr&” in the expansions of n‘lTICS\}(jzl,Z) as follows.

Definition 1.

16



~

nTIC® =21, + n'2tr(-LA T, )
(3.4)

rAA

= 2L, +n 7 2tr (A7) + 2(n ™) oy 2N “triY), oty T 0 (n~°?)
and

nTIC® =21, +n~t2tr (I, V1)

(3.5)

= 2, 02 (AT + 200 () L+ 2007 P) L 40, (n72).

0,(n*?) 0,(n?)
2

00,00,

For (3.4), let Lo:( j , then define stochastic —Ay" and —A,"" as
0,()

follows:

A q oL .
-1 -1 -1 -1
Ly =-Li+ ;L" 8(000) -Ly (0, —0,),

q 2
Z —1 aIJO Lz)l +£LE)1 a LO L—Ol
s 5(90) " 0(8y), 2" 0(8,);0(8,),
><(ew_ o)j(ﬂw_eo)k +Op(n_3/2)
= AT+ ATMAT-ATMATMA™

E { oLy ]+{ Lo g (—aLO JH(Al—AlMAl)
’ a(Oo)j a(Oo)j ’ a(eo)j

{—Al ol -n"Aq, + A<2>1(2)}
00,

q
+HAT-ATMAT)Y.

i1

+Zq:{ AE L Oy JAlEg (—aLO jA1+1A1Eg( L, ]Al}
jok=1 a(Go) a(eo)k 2 a(Oo)j@(ﬂo)k

a0 (a1 Lo,0
o8, ).\ 08, ),

17



=—A"+ {AlMAl ~AE,(J) {Al ® [Al in
09,
Op (n71/Z)

J{ ~A"MA'MAT + ATMATE, (JF) {Al ® (A‘l %j}
0

(A)

-1 (3) -1 -1 -1 i CAlry® (3) -1 -1 i
+ATE, (IS ){(A MA )®[A 600]} AIP —E, (I )}{A ®[A aeoj}

_ 2
E,JP)A® AL
o0,
— \<2>
v IaE I)IAT® Aol +0_(n"?)
2° 9 00, P

(Ao, (™)

+ (_A;;(AA) )op(n-l) + Op (n—3/2 )

+ATE,(IP) AT @ (-0 A gy + APIP) - A

=—A"+(-A,"Y)

Op(h_UZ)
(3.6)
Similarly, define stochastic Ty and T';" as follows:
Lalal, .
G=G(0)=G(0,X)=|n Z , G,=G(0,)=G(8,,X),
= 50 FY )
&)
Go =T+ (Mq), 1) Ey(Go) =T, Ggfjy =0G, /0(8);,
ng)j k) — 82(;O /8(90)18(00)1 (J’k :1""1q)’
=G(0,,,X") =(Go)o, + (T ~Go)y 2y
(3.7)
=I'+ M, +ZG§3()J) —0,);, += ;1(;82 9 -0,), (9 —-0,), +Op(n*3’2)
J
ST M6 (A AT | 3 36 (A, (A0,
=1 k=1 =

+Op(n‘3’2)

18



q Lol
:F+{MG—ZE9(G§E)D)[A 1_59 j
o)

i1

i) o, (2
GO _ AL 5' E L A@@
Z{ 0(j) G§))Y A 89 '+Z (GE(n™ o)
(A)
ol ol
+— E (G(4) ( _l j (A‘l_J } +0 (n—3/2)
Jzk;l o 00, j a9, ), P
(Ao, (n)
=T+ (0)g ey + (TN ) + 0, (077).

From (3.6) and (3.7), we have
Lemma 1. The stochastic correction term in (3.4) of n'TIC{) in Definition 1 is

expanded as

n2tr(-L,I",,)

a1 -1 —14..(T1) ~14.,.(T1) -5/2
=n"2tr(-A"T)+2(n"tr, )o(,3,2)+2(n tr, )O(,z)+0p(n )
=n"2tr(-ATT) + 2{ntr( - AgT = A7TY)} (3.8)

(n 3/2

+ 2{n—1tr(_A;ll(A)l"(A) AC 1(AA)F A 1F(AA) )} 0,0 - +Op(n75/2)’

where the stochastic quantities are given by (3.6) and (3.7).

For (3.5) of N TIC®  define stochastic —A;"", =AY, T and T py

omitting terms with M, J§) —E_(J$”), M and G —E_(G}),) in(3.6) and (3.7) as

ATE,(IP)AT® A—li
ae0 ~1/2
Op(n™°)
a7l
E (JOWNAT®| AT—
0 >{ ( aeJH
ol

— N\ <2>
+%A1E9(JE,“)){A1®(A1£j } +0,(n?)

0

follows:

ISA—/A)—l — _A—l _

J{ ATE,(IP) AT @ (-nA gy + APIP) - A

(A)

(Ao, (n™)

_ 1 “1(A) ~1(AA) -3/2
=-A" +(-A, )Op(n,m) + (A )op(n*l) +0,(n™7),

19



(3.9)

- Lol s
i - {ZE (foa)[ 1@9]} {ZE (G A g+ ACID)
0/] 0, ("2

(A)

13 Lol Lol }
+= Eg(Gg‘E)j’k))[Al—j [Al—J } +0,(n 2y
2 & 09, ). 08, ),

(Ao, (n)

=T +('Y) +(T) ., +0, ().

0, (n""?) 0, (n™)

(3.10)
From (3.9) and (3.10), we have
Lemma 2. The stochastic correction term in (3.5) of n~"TIC® in Definition 1 is
expanded as
n~t2tr (1Y)
=N 2tr(-A7T) + 2(n"'tr{™) ) +2(n7r3?), o +Op(n‘5’2)
=n"2tr(-A ) + 2{n tr( - AT - AT} - (3.11)

-1 ~1(A)g~(A) ~1(AA) —19-(AA) -5/2
+2{ntr(- AT AT - AT )}( +0,(n™7),

2y
where the stochastic quantities are given by (3.9) and (3.10).
For the bias correction of n‘lTICiAl,) (see (3.4) of Definition 1), we derive the

rﬁb)

expectations of the two stochastic terms  2(tr, and 2(trA(Zl))op(n_1) . where the

op (n—1/2)

former expectation becomes 2E (tr{™) =2E {tr(- Ay T = A™T{)}=0 (see (3.8) of

Lemma 1) since E (—Ay“)=E,(I'y)) =0 by construction. The latter expectation (see

(3.8)) is given as follows:
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(Tl)
E{2(tr,,")}
= 26, {ir(~ AT - AT - AT}

= n‘12Egt{ n|A"MA™ - AT'E, (Jgf)){Al @(A—l i}}
i (3.12)

(A)
ol
© 3| A~
{M ZE (Gos(n( 18_001}

+n { ~A"MAT'MA™ + ATMATE (JF) {Al ® [A‘l %j}
0
(B)

-1 3) -1 -1 -1 i A-lpyr® ©) -1 -1 i
+ A Eg(JO ){(A MA )®(A ﬁﬂoj} A{J; Eg(J0 )}{A ®(A 590j}

3) -1 —1£ 2
ofofos)

+ATE,(IP) AT ® (-0 A g + APIP) - A

— \<2>
+1A—1E9(Jg“>) Atelard r
2 00,

d Lol P
_Z{Gé?j)_Eg(Gés()n [ ' j ZE (GoOy) (N 7"AMq + APLY),

j=1
)

ol (o] ]
3 ' o0, ) " a0, ),

) A

—NA~

M" G

+
N |-

=~
Il

IE

12{ vec'(A™)nE (M ® M)vec(A™)
(

- 3 (A, E, (A, @A) e, {%(Mc)ba}

a,b,c=1

d ac : je al—
> zdeEg(Gg?j))ab/v nE, (mcd WJ
=1 Oe

a,b,c,d,e=1

YA, WA, (A7) JE, ()i 7

a,b,c,d=1
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{ —vec'(A™)nE, (M**)vec(A'TA™)

(B)

£23 (AN, E,(UOH(ATA), 8(A™) InE, (mab %]

a,b,c=1

—it{nEg {{Jﬁf) B (J?’)}%}{(A‘lm*) ® (Al)ﬁ}}

Oa

+tr[E, (I (A TAY) ®a,y,}]

S A, (TOMA T ® (A1) JE, GOHA L ® (A )}

a,b=1

+ % vec'E, (J§"){vec(A 'TA )} }

(B)

g ol
1~ (3) (3) ab
{ _ ZtrnEg {A {Gyy —Eg(Goia))}ae }A
a,b=1 0b
(©)

+ Zq:tr{A_lEg (Gn()?f)j) )(aW1)j}+% Zq: tr{A_lEg (G(()‘E)j,k) )(A_er_l)jk} } }

j=1 jk=1
©) (A
= n—ld (T1)
where Nn'a, =-n"A"q; +E (A®P1P) is the vector of the asymptotic biases of 0,
up to order O(n™) under possible model misspecification.

For nTIC® (see (3.5) of Definition 1), similarly we have

2E, (tr{"?) = 2E {tr(- A;"“T - A™T{")}=0 by construction and
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(TZ)
E,{2(tr,")}
= 2Eg{tr( _ Al—l(A)l"gA) _ Al—l(AA)r _ A_lriAA) )}

ol sl £l gl
(A) -

+ n{ ATE;(I){AT ®(-nA gy + APIP)}
(B) (3.13)

ol
00,

— \<2>
+3A—1EQ(J§;‘>) Ate|ard I |-n"2E {tr(A"'T{*)}
2 00,
(B) (A)

=n-12{ > (A EUPHA ), O (A1) I E, (Gt

b,c,d=1
(A)

+|: tr[E, (J(()S) HATA)®ay,}]
(B)

— i trIFTA™E, (JOHAT O (A™) JE,IIHAT O (A™) y W

a,b=1

1 . - -1\1<2>
+5 Ve E, (J57){vec(A"TA ™)} }

(B)

itr{AlEg(Gé?DXam) P+ Ztr{A By (Gol i HATAT), } }

= j k=1
(©) ©) (A)

=n"d™,

The higher-order bias corrections of n‘lTICSV)(j =1,2) are given as follows:

Theorem 2. Under possible model misspecification and some regularity conditions,
define

nTIcY =n*TICY —n?(b, +d™) (j=12), (3.14)

W—0(n"

where b, and d‘™ are consistent estimators of b,(=c, +¢,+¢;) and d‘™ . Then,
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-1 (N
E,(nTICy

W—0(n™

)+2|_V;)=O(n-3),

4. Asymptotic cumulants

~

In Section 2, the bias of —2l,, was defined as —2E, (I, — 1) (see (2.8)) with the

~ A~

definitions of KN and I_V; by (2.4) and (2.7), respectively. In this section, the asymptotic
cumulants of —21, (= =21 (8,,,X") =—21{0,,(X"),X’}) using the density g(X"|&,)

are given, where the bias is defined as —2{E (1,) =1} with 1,” being the population

A~ A~

counterpart of |, which is the limiting value of |, when n is infinitely large. The value

and the notation of |, are equal to those of (2.5) since
I =E {18, 1X)}=[  T(8,1X)g(X[5,)dX

B B ) (4.1)
=], [0 12)9(Z15,)dZ=E{1 (8, |Z)}.

The asymptotic cumulants of nAIC,, and n'TICY%(j=12) are given before and after

studentization up to the fourth order with the higher-order asymptotic variances. The

studentization is for testing and interval estimation, where the population values of —ZEN

are defined in two ways as —2E (K,;) and —2|_0* . While these two values are of order
O(1), the former depends on n in that the value is generally written as

O(1) +0O(n*)+0O(n?) +---. When n is infinitely large, —2Eg(m) becomes equal to

~21,". So, -2, isalso of interest as well as —2E (l;) . Note that asymptotically
unbiased point estimators of the latter up to order O(n™*) are n‘lAICW under correct

model specification and nTICY (j=1,2) under possible model misspecification.

Under possible model misspecification, assume that the following hold with the
definitions of the asymptotic cumulants whose factors of O(1) are «{) for nAIC,,
and all for n7TICY (j=1,2) (k=1, AL 2, A2, 3, 4):
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Kgl(n_lAICW) = _Z(I_o*)ou) +n7 ey +nag) +0(n7),
kg, (NTAIC,) =n""ayy,) + Ny, +O(n7°),
Kkgs(NTAIC,) =n"ayy) +O(n7),
kg (NAIC,,) =n"ayy,) +O(n™),
Ky (NTICY) = —2(1 Yo + ' +n 72l +O(n™), (4.2)
Kk, (N'TICY) =n"af,” +n?af)) +O(n™®),
Ky (N'TICY) =n"af,” +O(n),
Ky (NTICH) =n"af,) +O(n™*) (j=1 2).
From the asymptotic properties of nAIC,, and n'TIC®(j=1,2) given earlier
we have, &, (n"AIC,, + 21,,)=0(n™") under model misspecification and
k. (NAIC,, +21,,)=0(n") under correct model specification a(y =0 while

K (N lTIC(”+2IW) O(n?) with o’ =0 (j=1 2) under possible model

misspecification. Other asymptotic cumulants for n~"AIC,, + 2IW and n'TICY) + 21

using the notations o'y’ and ol (k=Al1, 2, A2, 3, 4), respectively, are defined

similarly to (4.2).

Recall that nAIC,, =-2I,, +n*2q (see (3.1)) with the corresponding symbolic
expressions of the asymptotic expansions of n"'TICY(j=1,2) given by (3.4) and (3.5).
Then, for the asymptotic cumulants of (4.2), we expand the main term —2IW common to

n*AIC,, and n'TICY(j=12):

S . 1 aJ| :
21, =-2(1, 0,,—0,) +0, ("

— L1 ol AL ()7 (k) (W) ”
= —2(I0)op(1) - ZZF—(% |)<j> { A q0 + ZA I;" +n° (l )O () (4.3)
(00, -
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_ ol P i
==2(k)o, ) ~ 2(5) {—n AT + Y AN +n 1(lg""))op(nm)}
0 Jo (n??) k=1

82|_ . 3 i <2>
_{(ae ')<2>} {‘” Ay + 2 AT 4 1(18W))op(nw>}
0 0, (1)

k=1

_l{ o°l } [_nlAlq* N ZZ:A(k)l(k)j<3>
n<3> 0 0
3 (800 ) : Op(l) k=1

_iE a4|_ (A(l)l(l))<4> +0 (n75/2)
12 9 (aeo :)<4> 0 p

The five terms up to order O, (n™) in the last expression of (4.3) are further
expanded one by one as follows:
(i)
~2(l))o, o = —2E (I) —2{1, —E (1)}
=2 Yoy~ 26~ 1

(i)

1 3
22 (—n‘lA‘lq; + AW n‘llg"")j
29, k=1

:Z(n‘liA‘quj +2[ of A‘lij —2(—8'_ A(Z)lgz)j
0, o,y \08' 88y ) . (00, 0wy (44

_2[ al— A(3)l(()3)j _z(n—l al— l(()W)j ’
0, 0, B Jo oy
(iii)

ZI_ N 3 <2>
fraye, [z )
0 0,(1)

k=1

3 <2>
=-vec'{A + (M), (nuz)}(_n_lA_lqo +ZA(k)lék) + n—l(léW))j
’ k=1
- 1 -1 __*\<2> — 1 -1 * _ 8|_
=—{n"vec'(A)(A"q) ™}, 2, 2[n 'vec (A){(A 1q0)®[A 1£JH
0 0, (n"32)

26



<2l vec (AX(A™q) ® AP, _{Vec'(A)(Al ij }
0,(n™)

+2| vec'(A) Ao ® (A1)
800 o, (n 3/2)

+2| vec'(A) A‘1ﬂ ® (A1)
00, o (1)

_{Vecl(A)(A(Z)léZ))<2>}o ) + 2{n1VGC'(A){(A1 %j ® léW) }:|
0,(n?)

-2 {nlvec (M) {(Alqz) ® (A_l s_(;ojHo (%)
) | B i <2> . a i 2)1(2)
{vec (M)(A aﬂoj }o - +2{V€C (M){[A 800j®(A Iy )HO (n_z),

(iv)
_li[_n—lA—lq* N ZZ:A(k)l(k)J<3>
3 (aeo |)<3> 0 = 0

1 I ) . 2 <3>
=—5Vvec [E,(3)+{IP -E, I )}Op(n_m)][—n 'Alq, + ZA("’lg")j

- [nlvec {E,(J 83))}{(A1q3) ® [Al %) H
0,(n?%)
1 | o 71@ <3>
Ssfod]]
_ ' (3) 71i - (2)3(2)
[vec {E, (I )}{[A aeoj ® (AP )H

— \<3>
1 ol
+={vec'{J® —E (JO)VH AT — :
3{ { 0 g( 0 )} aeo

0,(n?)

0,(n?)
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(v)

— — N\ <4>
1 o'l 1 ol
~—E 4 — o (APIP)* =——| vec'{E, (J\H A =—
12 9{(@90')“”}( o) 12{ &5} 00,

0,(n?%)
o ol L "
At—=vec'(A imi '
Using o0, 800 ( )[ aeoj and similar results in (4.4), (4.3)
becomes
S — S — al ol
2l =2 Yo 20 =) | AT
" % )O(l) (o=h )Op(n : (590' 00, ]o (n™)
+| 2n? or A‘lq*—Z—al A1 —2n"vec'(A)< (Aqp) ® A‘1ﬂ
29, 29, 09,
(A)
ol a ">
+2vec'(A) [A ! )@(A(Z)l(z)) —VeC (M)[A ! j
8, a8 (4.5)

— \<3>
1 ol
+=vec{E (JO) AT —
et w2

(A)op (n¥2)

—{nvec (A)NA ™ q) ¥ Yy s,

J{ —2111\‘3)153)— 2n! a%l 11" + 2n"'vec'(A){(A'qy) @ (AP17)}

00
(B) (1) __________ 0 ______________________ (2) _________________ 0 _______________ ( 3) ............................................................................................
+ 2vec (A){( AT 0l j@(A“)l“))} vec'(A)(AP1P)*
0 L S
T
_1 al_ (W) _1 1 _1 * _1 al
+ 2n"vec'(A) ®1 -2n—vec'(M){(A7q,) ®| A o
0 0
B YN ) Y
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+2vec'(M) {[Al %) ® (AP )} +nvec'{E (I )}{(Alqg) ®

0

VR
>
AR
QD
@‘2|
o
N—
&
v
;_\,—J

— S ol ol
==2(1, Yo —2(L, - 1, )Op — +£ A 1_]

00, 30, )y s
5|_ <2> 1 al— <3>
+|—vec'M)| AT— | +=vec{E (JO)Y AT —
[ ( )[ OOJ 3 {E,(Js")} 20,
0, (n"32)

_(n_zq; I A_lq; )O(n*Z)

— \<3>
+[vec'(A)(A(2)1§,2))<2> + %vec'{J P —E,(J g3>)}[A1 %J
0

— \<4>
1 ol
——vec{E, (I} A — +0,(n™?
12 { g( 0 )}( ﬁﬂoj :l p( )

0, (n?)
4
= _Z(E*)O(l) + le(l_wﬁﬂ))op(n—uz) - (nizq; IAilqz)o(n—z) +0, (n™?)
i
AP =10, j=1,...4),
where the underline with a number in parentheses indicates a quantity and the negative
number e.g., —ax(4)... indicates —a times the quantity with (4)... when summed.

The last parenthetical results L =187 (j=1,...,4) indicate that —2l,, is equal to

~2l,,. uptoorder O,(n?). The remaining two terms of order O(n"?) and O, (n?)

are relevantonly to ), and ')} (j=12) in (4.2). In the last result of (4.5), the first

term for L\¥ can also be written as
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vec'(A)(APIP)*

=vec'(M) {Al ij ® (A‘lMA‘l i)}
00, 00,
PP G I RN R |
vec'{E, (J; )}{(A 690] ®(A MA aﬂoj}

— \<2> — \<2>
A e ATE (I Ao
00, 0,

A~

Noting that n—AIC,, =-2l,, +n'2q, (4.5) gives

1 .
+ Ve {E,(J5")}

(recall (2.10)).

Theorem 4. Under possible model misspecification and regularity conditions for (4.2),
the asymptotic cumulants of NAIC,, up to the fourth order with the higher-order

asymptotic bias and variance are given as follows:

Kk, (NAIC,)
==2(ly Yo + N HNE, (Ii7") + 20}y + 7 {N°E, (I + 1) — 45" A a3o
+0(n?)

=21+ n (A7) + 2g} + n{n’E, (1LY + 1) — g5 ' A g} + O(n %) (4.6)

=21, +n"a, +n?al) +0(n?)

(@ =y = r(A7'T) + 20),

Kyp(NAIC,, ) =N [NE {(1i))* o +n2[2n°E, (L 10) + 2n°E, (131,
+n?E {(14e)* 3~ (ains —20)*]+0(n )

=n"ofp, +nef, +0(n?®) (nE, (1Y) =y, —2q=tr(A™'T))

(aly =alns =nE L) F=4E {(, - 1,)F=4var, (1), o, = &),

K3 (NAIC,) = n2[ nE {(12)%3+3nE {(1,®)*,?}-3nE, (12)a%), 1+0(n)

=n"ays +0(n7) (o = ah),
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Kk, (NAIC,,) =E [{n'AIC,, —E (n'AIC, )} ]-¥n ey, + n 2y, ¥ +O(n)
=E,{(n"AIC,, +2I,) 1+ n7[4 (o, —20){enis + (e —20) ey
+6(aft; —20) @, 1-307 (aif))’ - 6n*aifain, +O(n™)
=E,{(n"AIC,, +21,)*}-3n ()’
=N {4 (ans —2Q)ans + Bz, + Bany (s —20)°3+0(n™)
=0 0y, (WD), sy + AN E D) T2} +6n°E {1 (1))
+4n°E {(ha)) i} — A(enath — 20)anns — Banyanith, — By (anny —20)* 1+0(n™)
=n e, +On*) (el =it
In the case of the canonical parameters under correct model specification as in
Corollary 1, using (4.5) (see also (2.20)), the asymptotic biases become as follows:
k., (NAIC,,)
=21, +n{tr(A7T) + 2q}+ n*{n’E, (1Y + ") —q5 ' A'qg}+O(n°)

=21 +n"q

+n? |:—%Kf3 '(X)K 5 (X)) _%Kfs '(i*)[l(q) ®{VeC(I(q))Vecl(I(q))}]Kf3(i*) (4.7)

+%Kf4 (X" )vec(I .)) +4qq 'Iolq;} +0(n’®)
=2l +nlal +nalt) +0(n?),
where —1/6 and +1/4 come from (1/3)—(2/4) and (1/12)x 3, respectively (see
(2.20) and the result before Theorem 4).

The results for N~ TICY)(j =1,2) corresponding to Theorem 4 are given from (3.4)
and (3.5) of Definition 1.

Theorem 5. Under possible model misspecification and regularity conditions for (4.2),
the asymptotic cumulants of NTICY(j=1,2) up to the fourth order with the
higher-order asymptotic bias and variance are given as follows:

Kgl(n‘lTIC\%)
=-2(1) Yo + N {ay — 20+ 2tr(—- A7T)}+n o), + 2n’E  (tr{{?)}+O0(n"®)
=200 Yoy + N alf) 1 7 +O(n°)

() =aly) =alt) —2q+2tr(- A7'T) = tr(- A7'T)),

(4.8)

31



o (NTICY) =70, + 17 2al, +4nE, (LT P)}+0(n )

-1 -2 _(T]) (TH (T (A) (A)

(TD -3 _ _ _
Ay TNy, TON7) (o, =y = Ay = Ays),
Kkys(NT'TICY) =&, (NAIC,, ) +O(n )

=N

—na), +0(n”) (adl) = all) = all) = i),
Ky, (N'TICY) =k, (n'AIC,, ) +O(n®)
=Nn"an, +0(n™) (o’ =anu =) =an) (1=12),
where the superscript (T-) indicates a result commonto n~TICY(j=12).

In (4.8), alyy) =al)=all) =al’, stems from the property that the third asymptotic

cumulants of N TICY(j=1,2) aregivenonlyby L (=1P) and 1P (=12) of

—ZKN in (3.4) and (3.5) of Definition 1 (see the last parenthetical result of (4.5)) with the
fixed term tr(A™'T) in (3.4) and (3.5) being irrelevant to the cumulants except that of the

first order. The additional stochastic terms 2n~*(tr{"") for n7TICY(j=1,2) in

Op (n—1/2)

~

(3.4) and 3.5) with 17 (=147) (j=1,2,3) in the expansion of —2l,, common to
n"AIC,, and n"TICY(j=12) contribute to the higher-order added asymptotic

variance n~a;) (j=1,2) in (4.8). However, the contributions by 2n~'tr{™’ (j=1, 2)
are canceled when we derive the (asymptotic) fourth cumulants, giving

(T _ 00 _ (A _ (A
Oy = Oy = Oy = Ay N (4.8).

For interval estimation of the population quantity —21," as well as —ZEQ(H) by

n"AIC,, and n"'TICY (j=1,2), the following studentized estimators are defined:

(A n“?(n*AIC,, +21,7) (T n“?(n~*TICY +21,")

v (V)" LT (ke (=42
) 2, e 2, (4.9)
(A n2{n~"AIC, +2E,(I,)} 1) _ n“{n~*TICY + 2E, (1)} (i-12)
W = (O(A) )1/2 rtw = (O(A) 12 1 &)
W W

where t& and t$”(j=12) are for estimation of —2I," while t{" and
tG " (j=12) arefor —2E,(l,) under possible model misspecification; N0y’ is the
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robust estimator of the asymptotic variance n'a'y, commonto n‘AIC, and

nTICY(j=12):

Uy’ =4(n-1)° Z(IWJ w) =0y (4.10)

A~

with by =1l (i=1..n) and by=n"D Iy (for 1; see(2.1)).
-1

Under correct model specification, in many cases aﬁ,,AL)z may be explicitly obtained as

a function of 0,. However, since this result depends on a model employed, the four
versions of robust studentization in (4.9) are considered in this section. Define the stochastic

quantity using 0, in place of 0 w In(4.10):

Vg =4(n - 1)‘1Z(Ioj Oy (4.11)

_ n
with ly; =1, o, (i =1...,n) and = n_lzlnoj .Then, v{ is an exactly unbiased
j=

robust estimator of oy, with E (V™) =aly’, though v usually includes the

unknown 0, . Generally, the estimator V(" is not an unbiased one but is a consistent

estimator of a(y).

Under possible model misspecification, assume that the following hold with the
asymptotic cumulants, whose factors of order O(1) are aiw (k=1,2, A2,3,4) for

ti

Kgl(t\(NA)) n_llza((:;\)/\/l +O(n‘3’2),
ng(t\(,\’,*)) =1+n 1a((t/;\),\,A2 +0(n?) (05(({)\),\,2 =1),

Kgg(t\(/\/lx)) n 1/20[((3)/\/3 +O(n*3’2), (4.12)

Kg4(t\(/vA)) n 10‘((§\)/\/4 +0(n™®).

(TJ)

Similarly, agu for ty?, afm

(Ti)*
, Oy for

th" and aga for

ti 7" (j=12), (k=1,2,A2,3 4) are defined. These asymptotic cumulants are obtained.
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However, since their derivations and results are relatively involved, they are shown in the
first supplement to this paper (Ogasawara, 2016a).

Insert Tables 1 and 2 about here

5. Examples

Three examples are given in this section. Each of Examples 1 and 2 uses the MLE of a
canonical parameter in the exponential family under model misspecification while Example
3 deals with the WSE of a canonical parameter in the exponential family under correct
model specification. The asymptotic cumulants, obtained in Section 4, for the examples are
shown in Tables 1 and 2, whose expository derivations are given in the supplements to this
paper (Ogasawara, 2016a, 2016b).

Example 1: The MLE of the parameter in the exponential distribution is used when the

gamma distribution with the shape parameter « being unequal to 1 holds. That is, the

density
f(X =x|4,) =4, exp(=4,X) (x> 0) (5.1)
is used with 6, =4, when the true distribution is
g(X =x| A, @) = x4  exp(-4X) I T(a) (x>0, a=1) (5.2)

with §, =(4,a)" and T'(-) being the gamma function. By assumption o =1 is
excluded. However, when a =1 in (5.2), this reduces to (5.1). The MLE of 4, is 1/X,
where X is the sample mean of the observable variable. This gives the population A,
under model misspecification as
L=1E,X)=4/a. (5.3)
Example 2: The MLE of the mean in the univariate normal distribution with known

variance o is used when the true distribution is non-normal with known variance o”.

That is,

\ , 1 — 1)
f(x =x|g,o )=ﬂaexp{—%} (5.4)

with 6y, = £, =X . In this example,

34



T 1 1
l, = Eg (IOj) =E; (Ioj) :_EIOQ(ZEGZ)—E,

. ~ . R (5.5)
Eg (eML) = Ef (eML) =y, Nvar, (eML) =nvar, (HML) =0’

1 X —H ) ) .
However, Var,(ly;)==1x,, +2¢ under non-normality with x_,(-) #0 is not
4 o g

equal to var; (l,;) =1/2 under normality.

Example 3: The WSE of the logit in the Bernoulli distribution is used under correct
model specification. That is,

1
1+exp(-6,)

Pr(x” = x| ) =75 (1- ”o)l_x (x=0,1), 7, (5.6)

- N X N —_— - - - -
While 9ML=|091—_(X #0,1)  where X isthe usual sample proportion, 6,, in

Example 3 is defined as the solution of & which maximizes

{Hrjl:lﬂ_xj' (1_7z_)l—><,- }{ﬂ.(l_ﬂ.)}alz with 7 = 1

T o 7
1+exp(-6)’ (57)
where a is the sum of equal pseudocounts for two categories. The solution is given when

~ X +n10.5a
=6, =lo
W g1—7+ n*0.5a"

In the footnotes of the tables, general results associated with the tables are given (for

derivation, see also Ogasawara, 20163, b). In Examples 1 and 2, the results do not depend
on scales since | (log-likelihood) is scale-free in these examples. Although o #1 is
assumed in Example 1, a =1 gives the corresponding results under correct model

specification. Note that in the latter case with « =1, all the results in Example 1 are given

by fixed values. Under correct model specification, the bias-corrected n‘lAICML up to

order O(n?), denoted by nAIC is given by as simple as

ML—>O(n72)’

nAIC 2, +n'2+n?2, (5.8)

ML—O(n?) -
Similarly, under normality, the results for Example 2 in the tables are given only by

fixed values, where «;’s (= ng{(x* — 1) o}’s) (J#2) vanish. Note also that
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n*AIC,, (=n"TIC{}, j=12) in Example 2 is exactly unbiased even under

~

non-normality (see (5.5) and Corollary 3). In Example 3, the results when 6, is used, are
givenby a=0.

In Example 3, from Table 1 we have

Corollary 4. Under the assumption that the Bernoulli distribution holds, nAIC,,

~

for estimation of —2E, (m) using 6@, as the weighted score estimator of the logit with

the total number a of equal pseudocounts for two categories gives no asymptotic bias up to

order O(N?) whena=1.

For the derivation of the higher-order asymptotic bias, see Ogasawara (2016b,

~

Subsection S6.1). It is of interest to see that whena =1, 6,, is also unbiased up to order

O(n_l) (see e.g., Ogasawara, 2013, Section 6). On the other hand, for estimation of

—2l," the corresponding bias of nAIC,, uptoorder O(n?) s
nt+n?{@/6)(1-1, ') +(a® /4)(L-27x,)*i, "}, which is minimized when a = 0 and

7y 2112 while ais irrelevant to the asymptotic bias when 7, =1/2.
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Table 1. Asymptotic cumulants of n*AIC

and n*TIC(}),, (j=12) before studentization

Example 1 Example 2 Example 3
Model distribution Exponential normal with knownos®  Bernoulli
True distribution  gamma, a #1 non-normal Bernoulli

Parameter canonical (the reciprocal canonical (mean) canonical (logit)
of the scale)

AIC n"AIC,, n?AIC,, (=n"'TIC{)) nTAIC,(=n"'TIC))

als/IAL)(W)l 2—a™ 1 1

Cyans ~(1/6)a”? 0 @e)a-i"
+@%*14)(1-27,)%1, "

alE/IAL)(’\CN)l 2-2at 0 0

Ay won 20 (a-){(1-27,)°T " +2}

Otz 4o K, +2 4077,

alE/IAL)(V\/)AZ 207 —2(x, +1) 2

A —8g2 K, +12k, + 4K +8 {86°(1-27,)

+240 1,
Ay 32a° Ky + 24K, + 32Kk, {160/ (1-67, +677)

Higher-order
bias correction

(see the case of
n~TIC{) below)

+32x; +144k,
+96x. +48

n"AIC,, (=n"TIC{))

is unbiased

112863 (1 272,)
+1926 H,

nAIC

W-0(n?)
=n"TIC}) .2
=21, +n?2
+n?(l-a)[ (1-2x%)°
x{X(1-X)}"'+2]

(to be continued)



Table 1. (continued)

Example 1 (el ), =%, in this example)

TIC N TIC,

o at

A 1 +0“//"(a)+l//'(05)
6a’® ofay'(a)-1¥

Ot 0

ali 2 ay'(a)ty'(a)
o’ ofay'(a)-1F

Higher-order n*TIC"

ML—O(n?)
bias correction

=—2|_ML+n'1£+n'2 %_qw}a)fw(az)
a a’ afay'(a)-1}
Note. oy, arefor w,,(nAIC,, +21") while o] arefor x, {n"AIC,, +2E (I, )}
(i=1 Al 2, A2, 3, 4) inExamples 1and 2. Similarly, o) and o) are defined in Example 3.

]
w'() and w"(-)are the first and second derivatives of the digamma function (-), respectively.

Generally, a,f,,’?_)j =a,§,|/7_);, ax\j) = a\s\fj)* (i=2, A2, 3, 4), a\s\fj) =0{,§,|/T_)j (i=1 2, A2, 3, 4),

(A) (A) (M) _ (M) _ (A) _ (A) (i
ps # Oeny ANA gy = oy =y = oy (1=2, 3, 4).

In Example 1, «; = ng{(x* — ;) o} and in Example 3 i, = 7,(1-7,) is the population
Fisher information per observation.



Table 2. Asymptotic cumulants of n*AIC

and nTIC{),, (J=12) after studentization

ML(W)
Example 1 Example 2 Example 3
AIC nAIC,, n"AIC,, (=n"'TIC{)) n"AIC,, (=n"'TIC{))
Aoy @ —@12)a™ (kg +2) -1 2)(x, +2) {(3/2)6;*
(ks +12K, + 6K +8) +(1/2)(1—-27,)H, ™
Aoy @ —a? 1/ 2)(x, +2)"? {6, +(112)(1-27,)H, ™
(i +12K, + 6K7 +8)
Ay 1 1 1
Ao (T12)a™ +2 2-2(r, +2) "+ (K, +2) 7 (—K, { 7 (1-27,)" + (_ a9 J
+8K K, + 2K, — 4K, +50x7) 4 4 2
H,+2)*(714) <0 2m) + 207 T
x (kg +12xk, +6K7 +8)° 2
+2
Az (T12)a™ +2 Ay + (i, +2)7 { T -2z + (_ a, 4J
(= sz i x(k; +12K, +6x7 +8) 4 4
Example 1) x Oy (1-27,) + %90-2 }E-l
+2
Ay —a ~2(x, +2)%? {2(1-27,) + 36, ",
x (1, +12x, + 7K. +8)
Aons  8at+6 12-18(x, +2) " +(x, +2) {10(1-27,)?
x(—2x, — 48k, — 64K, Kk, — 10K, +260,*(1-27,)
-294k, — 1441c32 —84) + 266, 2}i_0‘l +10
+(x, +2)7°
x{12(x, +12x, + 6K +8)°
+12(x, +12K, +6K% +8)x2}
TIC nTIC,,
A L/ 2)a™?
058311 0 (not a general result)
agDM)LAZ (712a"+2 (= a((t/;,z,,LAz
in Example 1)
agmaz (112)a™+2 (= oG
in Example 1)
Note. Generally, ai,; =aliu; (i=1 2, 3, 4), alyn, = ol = alw, = afim. =1 and
a((t/;x | = a((t/;,m = a((t/;\av i = a((t'?,z,,L ;(i=3, 4). Generally, ag\”,\),; = agﬂzz = ag\f,z = a(gau =1 and

(Toy*

(T)*

(T0) (D)

(A) (A)

Auywi = %ymej = Yowj = Fomej = Cowi = oML j (J=3 4).
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