ISSN 0918-7553
Research Report

On solving the max-min 0-1 knapsack problem
Hiroshi Iida

June 2, 1997
IS-RR-97-0025F

]AI ST

School of Information Science

— I

Japan Advanced Institute of Science and Technology, Hokuriku




On solving the max-min 0—-1 knapsack problem

Hiroshi Iida
June 2, 1997
IS-RR-97-0025F

School of Information Science
JAIST, Hokuriku
1-1 Asahidai, Tatsunokuchi,
Ishikawa 923-12, Japan
z-i11da@jaist.ac.jp

ISSN 0918-7553

Copyright (©1997 Hiroshi lida. All rights reserved.



Abstract

The max-min 0-1 knapsack problem was recently introduced by Gang Yu in the journal
of Operations Research. The problem is an extension of the classical 0-1 knapsack problem.
This report includes several suggestions on the paper in which upper and lower bounds for the
max-min 0-1 knapsack problem have been proposed. In this report we also propose new upper
and lower bounds and a new algorithm which exploits our proposed bounds. Computation
experiments are also included.

Keywords: knapsack problem; greedy heuristic; surrogate relaxation; Lagrangian relaxation;
branch-and-bound method



1 Introduction

The max-min 0-1 knapsack problem has been introduced by Yu [5], which is formulated as
follows:

n n
ZMNK = mgxmin{vaxi Zaiwi <b z; €{0,1}, i = 1,...,n},
i=1 i=1

SES
where S is a set of scenarios and each item ¢ has value vj under scenario s € S. Namely, any
scenario consists of n values for each item. Also any item i has weight a; independent of the
scenarios, which satisfies 0 < a; < band >, a; > b. The max-min 0-1 knapsack (MNK) problem
aims to select items so that minimal total value gained by the selected items under all scenarios
is maximal under the constraint that total weight of the selected items does not exceed given
capacity b. The MNK problem is also formulated more simply without 0-1 variables {z;}1<i<n
as follows:

— : s .
ZMNK = rlncaglcgrgg{ ;vi iezlaz < b},
where N := {1,2,...,n}. Throughout this report, we will denote a subset of N consisting of
item ¢ fixed to z; = 0 (always ignored) by Np, and a subset of N consisting of item 7 fixed to
z; = 1 (always taken) by Ni. Also Ny := N\ (Ng U Ny).

We often call a subset of N solution. In particular a solution I is said to be feasible, if it
satisfies ) ;cra; < b. Sometimes we identify n-vector of 0-1 variables z = (x;) with solution
I C N as z; =1« i€ I naturally.

Example. We present a small-sized example. Consider an instance of MNK with five items.
The number of scenarios is two and capacity is 126. On each item ¢, weight a; and value
v; under scenario s are given by

1|1 2 3 4 5

ai | 3 37 84 30 99
v} |16 22 12 73 106
v2 39 101 4 34 94
b | 126

For instance, solution {1, 3,4} is feasible, because a; + a3z + a4 = 117 < 126 = b. Also the
value of the solution is 77, because v +v3 +v} = 101 > 77 = v? + v3 +v7. In this example
an optimal solution is {1,5} with optimal value 122.

In the case where the number of scenarios (We denote it by |S|) is one, MNK reduces to
the classical 0-1 Knapsack Problem (KP). The MNK problem thus includes KP as special case
and is NP-hard. In addition when the number of scenarios is unbounded, MNK is strongly
N'P-hard, which is also proved in [5]. The MNK problem has been solved by branch-and-bound
with best-first search in [5], where the extreme tightness of the proposed bounds has expedited
the branch-and-bound.

The remainder of this report is organized as follows: In Section 2 we discuss greedy heuristics
to obtain lower bound of the MNK problem. We also discuss relaxation of MNK for upper bound
in Section 3. In Section 4 we develop an algorithm to solve MNK, which exploits our proposed
bounds. The last section is devoted to conclusion.



2 Greedy heuristics — for lower bound —

The lower bound proposed in [5] has been compared with greedy heuristic which is also in-
troduced in [5] in order to demonstrate its efficiency. Although the greedy heuristic has been
introduced as natural extension of the one for KP, to the best of our knowledge, it is not so. In
this section we discuss four greedy heuristics which are really natural extension of the one for
KP respectively.

2.1 Density-ordered
The greedy heuristic introduced in [5] takes k-th item i at STEP 2 as follows:
min{ 4w }

1) = IMa, 1
¢ = max p , (1)

where fF 1 = v? +vf +--- + v;,_,» which is the total value of already taken k — 1 items under
scenario s. Also weight of item 4; should be suitable to residual capacity i.e. a;, <b— Z?;ll ai;,
or a given solution is not feasible.

Then, in the case where |S| =1 the formula (1) is reduced to

. fki1 + v;
i = max ——.
1€EN2 a;

This is however corresponding to none of four greedy heuristics for Integer Knapsack Problem
(IKP) discussed in Kohli & Krishnamurti [4]; weight-ordered, value-ordered, density-ordered
and total-value greedy heuristics. Since IKP is an extension of KP (It is allowed to take an
item more than one), any greedy heuristic for IKP is applicable to KP without modification.
Therefore, at least to be the natural extension of typical density-ordered greedy heuristic for
KP, the formula (1) should be replaced with

. sE
i, = ma; . 2
k= max = - (2)
In fact the greedy heuristic exploiting the formula (2) improves rather than the one exploiting
the formula (1), which will be confirmed by computation experiments afterwards.
We present an example to see the difference of behavior between the greedy heuristics ex-
ploiting the formula (1) and the one exploiting (2), where n =5, |S| = 2 and b = 150:

i 1 2 3 4 5
ai 95 11 98 37 59
v} 5 71 92 71 33
v? 11 77 7% 71 34
minges {f2+v{} /a; | 1.65 — 228 — 296
minge 5 v /a; 0.11 6.45 0.77 191 0.55
b 150

Repeating that our aim is to find a subset I C {1,2,3,4,5} which maximizes minse (1,9} > ;-
In this example, the former (1) finds {2,4,5} with value 175, while the latter (2) finds {2,3,4}
with optimal value 224. Each takes {2,4} severally, however, next one is different because of



the inner estimation of each. The fifth row of the table presents the estimation by the former
after taking {2, 4}, where f2 = v§ + vj.

Before making a comparison between the two experimentally, we will illustrate data instances
provided for the comparison. It has been taken from a part of Table III in [5] (§ = 0.9), where

a; : uniformly distributed in (0, 100)

:  base value for v}, uniformly distributed in (0, 100)
uniformly distributed in (9;(1 — 6),9;(1 + d)) for all s € S
Yie1 ai/m.

Also we provide all these data as (unsigned long) integer type in C. Throughout this report, all
data instances provided for computation experiment conform to this style. It should be noted
that data instance of MNK becomes hard as ¢ becomes large, which is mentioned in [5].

Computation experiments are in Table 1. Each line expresses the average lower bound of
100 data instances, so two heuristics are always applied to same data instances. As we can see
in Table 1, the greedy heuristic exploiting the formula (2) always produces sharp lower bound
rather than the one exploiting the formula (1).

>

<
ST ST

S

Table 1: Extension of greedy heuristics for IKP

0 n |S| m formula (1) formula (2)

09 60 10 2 1808.98 2009.71
3 1469.06 1592.88

4 1252.60 1369.28

20 2 1758.71 1943.25

3 1402.87 1549.25

4 1199.79 1313.27

30 2 1745.37 1940.16

3 1337.38 1486.21

4 1172.32 1293.68

2.2 Total-value and others

As mentioned previously, there exist four greedy heuristics for IKP [4]. In this subsection we
will mention the extension of another one of them called total-value greedy heuristic and other
two greedy heuristics.

Focusing on the case where |S| = 1, the extension of the total-value greedy heuristic for IKP
should be prescribed as replacing the formula (1) with

i, = maxminv; {EJ . (3)
1€ENy SES a;
Indeed when |S| = 1, this formula reduces to i = max;en, v;|b/a; |, which is corresponding to
the definition of total-value greedy heuristic for IKP.
We present an example to see the difference of behavior between the greedy heuristics ex-
ploiting the formula (2) and the one exploiting the formula (3):



1 1 2 3 4 5

a; 8 91 35 90 64
v} 50 69 38 42 58
v2 7T 14 27 36 42

mingegs v /a; | 0.58 0.15 0.77 0.40 0.65
minges v; |b/a;| | 100 28 135 72 84
b 182

In this example the former (2) finds {3,5} with value 69, while the latter (3) finds {1, 3} with
value 88. First each takes item 3 severally, however, next one is different because of the inner
estimation of each, which is presented in the last two rows of the table. In passing an optimum
is {1,5} with value 108, so item 3 should not be taken in this example.

In addition we can discuss another extension of greedy heuristics for IKP, that is, taking item
i according to a nonincreasing order of . ¢v7. This is an extension of the value-ordered greedy
heuristic. While this heuristic can find an optimal solution {1,5} in the previous example, it is
not promising in general (see Table 2 presented subsequently).

Here we should mention the last of the four, weight-ordered. The greedy heuristic will take
an item according to a nondecreasing order of weight. Namely we first take item ¢, provided a;
is minimal. Clearly this heuristic is applicable to MNK without modification, however, it does
not seem promising. For instance, on the example in the preceding subsection, it has found
{2,4,5}. In addition, it has also found {3,5} in the previous example.

Now we present a comparison among the four greedy heuristics in Table 2. Each line expresses
the average lower bound of 100 data instances. As in Table 2, the extension of total-value is
a little better than density-ordered. It is however an comparison of average, so sometimes the
extension of density-ordered has produced better one than total-value under our observation.
Since it is not so expensive to apply each heuristic to MNK respectively, we hereafter adopt the
maximum between the two, density-ordered and total-value, as our enhanced greedy heuristic
for the MNK problem. It is denoted by the symbol zgg.

Table 2: Extension of greedy heuristics of those for IKP

d n |S| m density-ordered® total-value™ | value-ordered weight-ordered
09 60 10 2 2024.79 2026.81 1990.65 1808.06
3 1599.40 1600.38 1496.85 1429.38
4 1347.82 1355.45 1205.72 1192.39
20 2 1975.65 1978.31 1919.69 1727.25
3 1542.27 1543.28 1371.14 1374.22
4 1296.16 1302.38 1102.83 1167.04
30 2 1947.12 1947.86 1864.12 1701.64
3 1517.34 1513.05 1346.45 1329.93
4 1289.85 1292.49 1089.78 1109.66

x: exploiting the formula (2)
xx:  exploiting the formula (3)

3 Relaxation — for upper bound —

In this section we discuss relaxation of the MNK problem to obtain upper bound. Note that it
is not a requirement for the solution which gives upper bound to be feasible on maximization

4



problem. Also it is extremely preferable that the gap between upper bound and optimal value
is as small as possible in order to exploit branch-and-bound effectively.

Although we have exploited double precision of floating-point accumulation to obtain upper
bound and round it to integer type, there exists a little opportunity that it leads to incorrect
result. To cope with it, we use Unix'™ arithmetic library function ceil(3M) when rounding final
result of double precision to unsigned long integer. This operation might have to be reconsidered
whether there exists more accurate operation or not.

3.1 Lagrangian relaxation

In this subsection we discuss Lagrangian relaxation for MNK. While the relaxation used in [5] is
based on surrogate relazation proposed by Glover [3], we will show that the relaxation is indeed
equivalent to Lagrangian relaxation.

As mentioned in [5], MNK can be written as the following 0-1 Integer Linear Program:

maximize y

n
subject to y < vaa:i, for all s € S
n i=1
Zaixi <b, z; € {0,1}, i =1,2,...,n.
i=1

Using Lagrangian multipliers s > 0 (s € S) with a special restriction of Y~ g s =1 also used
in [5] for aggregating the |S| constraints as to value, we have Lagrangian relaxation as follows
(The notation of Zp follows Fisher [2]):

n
Zp(p) = max y+ > ps (va%—y)

seS i=1

n
= max (1—Zus> y+z,u32vf:1:i

SES SES =1

n
= max ;vi(u)mi, where v;(u) = Zsusvf (1 <i<n).
1= s€

The last formula is thus identical with the surrogate relaxation zy(x) mentioned in [5].

By this result, it is meaningless to apply Lagrangian relaxation to the |S| constraints as
to value in order to obtain sharp upper bound rather than the one produced by surrogate
relaxation. In addition the upper bound proposed in [5] outperforms the one produced by LP
(Linear Programming) relaxation in overwhelming cases. Hence we need something else in place
of these three relaxations.

3.2 Extension of LP relaxation for KP

To have another upper bound, we will here consider the extension of the LP relaxation applied
to KP: well-known Dantzig upper bound [1].

Under the assumptions of first two formulae in the following, the formula (4) might seem to
be promising;:

mingeg v3 S mingeg v5 S S minges v

ai az A,



k—1 k
Z a; <b< z a;
i=1 i=1
k—1 k—1 v
gg;l{ZUf-l—(b—Zai)—J. (4)

i=1 i=1

However the formula (4) does not give upper bound. We present a counterexample of which the
formula (4) does not give upper bound as follows:

) 1 2 3 4
a; 1111
v} 76 5 3
v? 6 5 4 5
mingesv;/a; |6 5 4 3
b 3

Then the formula (4) finds {1,2,3} with value 15, however, we can obtain an optimal value of
zmNk = 16 which is given by {1,2,4}. Needless to say, upper bound always has to be greater
than or equal to optimal value.

3.3 Relaxation mixture

In this subsection we are concerned with the surrogate (or Lagrangian) relaxation. Note that
the surrogate relaxation of MNK is a mere KP. We will here denote it once again:

n
VA = max vi(p)xs, vi(p) = v;, where us > 0(s € S =1
D(M) s ; Z(lj’) (3] Z(M) gus R Ms = ( ), ;Ms (5)
n
subject to Zaixi <b, z; €{0,1}, i=1,2,...,n.
i=1
In [5], subgradient method is for use in obtaining bounds. In the method, the KP (5) with a
fixed multiplier vector is solved exactly and the result is used to improve the multiplier vector
in every iteration, however, the processing is no doubt expensive. Therefore we will apply LP
relaxation technique to the KP (5), and exploit an obtained result as upper bound. We will
denote the upper bound by zgt,.
Before appling LP relaxation to the KP (5), we should fix a multiplier vector (us)scs. We
will try to determine it as follows:

1

n S

.:1 U

Hs = : 11 : (6)
Yies s
i=10f

In fact, as we have confirmed it by computation experiments, the formula (6) is better than

both uniform one 1/|S| and proportional one Y 1 vf/ > ,cq Sy vt

Remark. Since we would like to obtain rather small upper approximation of the optimal value
of KP (5), it is preferable that the optimal value of KP (5) own is as small as possible.
In other words, we would like to determine a multiplier vector so that the KP (5) has an
optimal value as small as possible. In fact among the three types of multiplier vectors, the
proportional one is worst. This implies that, on each scenario s, the larger Y ;" ; v{ is, the
smaller u, should be.



As it will be cleared afterwards, upper bound zgy, is terrible (see also Table 3 presented
subsequently). In the next subsection we attempt to exploit an iterative processing to find an
appropriate multiplier vector like subgradient method does [2].

3.4 Surrogation multiplier and iteration

In this subsection, inspired by the result in the preceding subsection, we discuss another multi-
plier vector which is obtained by exploiting an iterative processing.

First we have to assign initial value to each u; (s € S) which is supplied to scenario s in the
KP (5). Here we will denote the value of the result of LP relaxation applied to MNK assumed
that there exists only one scenario s, which can be regarded as KP, by Zp(us). By way of trial
we will determine an initial ps as the inverse of Zp(u,) for each s € S. This is because, as
mentioned in the preceding remark, to hold the optimal value of the KP (5) as small as possible,
it would be natural to think that the larger Zp(us) is, the smaller p; should be. Thus we have
new upper bound by the following procedure:

foreach s € S {us :== 1/Zp(us)};
Normalize (us)ses;
UB := result of LP relaxation applied to the KP (5) with (us)ses;
for (;5) {
foreach s € S {us := (us)?} /* bias x/
Normalize (ps)ses;
tmpUB := result of LP relaxation applied to the KP (5) with (us)ses;
if (tmpUB < UB)
UB := tmpUB;
else
break; /* exit infinite loop */

}
Output UB;

After obtaining the UB, each multiplier is multiplied by itself. This operation gives a bias to
each multiplier so that the difference between any pair of multipliers will be widen gradually.
After that the set of multipliers is normalized to satisfy the constraint of the KP (5), that is,
> ses s = 1. The processing continues until UB does not improve.

Here we present computation experiments in Table 3. Each line including zrg, zsr, and zsir,
expresses the average lower or upper bound of 100 data instances. Columns for (zy — z1)/2u
express the gap between zy upper and zz, lower bounds proposed in [5] as is for reference. In
Table 3, upper bound zs;1, gained by the iterative processing is a little better than zg;,. However
it is quite far from the result in [5], and there exists large gap between zpg and zg;r,.

By additional computation experiments, we have confirmed that the gap of our proposed
bounds is still large even if n becomes large. When n is even large, it is empirically well-known
that LP relaxation gives sharp upper bound for KP. Furthermore the tightness of surrogate
relaxation technique for MNK is theoretically and experimentally warrantied in [5]. Therefore
this gap should be owing to not LP relaxation technique but the determination method for
multiplier vector.

3.5 Lower bound again

The upper and lower bounds proposed in [5] are simultaneously produced by the procedure
named SurrogateBounds. In the procedure, lower bound is obtained by using the solution which



Table 3:

¢ n |S| m  zmg ZSL g, SIL_EEG | ZUZAL
09 60 10 2 2004.94 2414.58 2206.73 0.0914 0.0113
3 1616.64 1992.15 1854.25 0.1281 0.0186

4 136749 1732.70 1601.82 0.1462 0.0167

20 2 1965.95 2398.54 2139.40 0.0810 0.0105

3 1579.89 1997.19 1790.90 0.1178 0.0192

4 1304.37 1702.63 1522.37 0.1431 0.0266

30 2 194233 2403.52 2110.53 0.0796 0.0184

3 1541.55 1982.09 1739.68 0.1138 0.0167

4 1310.72 1728.20 1516.81 0.1358 0.0207

zra: enhanced greedy (lower bound)

zgr,:  surrogate & LP relaxation (upper bound)

zsir,:  surrogate & iterative LP relaxation (upper bound)
(2u — z1,)/2zu: asisin [5]

gives an optimal value of the KP (5) in every iteration. Similar to this idea, we will attempt to
rewrite the procedure in the preceding subsection as follows:

Bounds(Out: LB, UB)

foreach s € S {us := 1/Zp(pus)}

Normalize (ps)ses;

Apply LP relaxation to the KP (5) with (us)ses,
and obtain UB and solution z* which gives UB;

LB := mingegs Y ;e y Vi T}

for (;3) {
foreach s € S {u, := (us)?} /* bias */
Normalize (us)ses;
Apply LP relaxation to the KP (5) with (us)ses,

and obtain tmpUB and solution z* which gives tmpUB;

tmpLB := minseg ) ;e viT];
if (tmpUB < UB)

UB := tmpUB;
if (tmpLB > LB)
LB := tmpLB;

if (neither UB nor LB improves)
break; /* exit infinite loop and return */

}

It would be convenient that we will provide a subroutine which receives a multiplier vector
supplied to the KP (5) and applies LP relaxation to it, which returns caller UB and solution
z* which gives UB. Note that the last taken item %, may not be included in z* if it is used
partially, that is, b — Z?;ll a;; < a;,. This is to ensure the feasibility of the solution z* which
also gives LB.

In addition we attempt to use other two initial multiplier vectors in place of (1/Zp(us))ses:
one is the formula (6) in Subsection 3.3, the other is the one which is inversely proportional to



efficiency sum as follows:

1
.n_ ,U§ Qi
o = — LU 7

Then, the procedure Bounds should be modified so that it can receive an initial multiplier vector.
Hereafter, we assume that the modification has been done. By computation experiments, the
usual initial multiplier vector of (1/Zp(us))ses is best as to not only upper but also lower bound
among the three in overwhelming cases, however, it is not always so. Therefore we adopt all of
these three types of initial multiplier vectors. Moreover we also adopt another candidate, which
is minimal Zp(us) gained under all s € S.

Remark. The multiplier vector (ps)ses that ps = 1 and other |S| — 1 multipliers are zero
satisfies the restriction of the problem (5), that is, us > 0 for all s € S and Y g pus = 1.
Thus obtained Zp(u;) indeed gives an alternative upper bound. In a word for each s € S,
MNK assumed that there exists only one scenario s is a relaxation. We will denote it by
Zp(us), which is formulated as follows:

Zp(ps) = mg,x{zgvfxi Zai:vi <b z; €{0,1}, i = 1,...,n} (8)
1=

i1=1

Consequently we use four candidates to obtain upper bound. By our computation experiments,
minimal Zp(p,) gained under all s € S is not so tight, however, it sometimes produces good one
rather than the procedure Bounds called with any of three types of initial multiplier vectors.
Moreover this candidate is incidentally obtained in the processing of computing (1/Zp(us))ses-
Hence it is a pity to discard the candidate.

On the other hand on lower bound, we have already proposed zgg which is maximal of two
greedy heuristics introduced in Subsection 2.2. As mentioned just previously, the procedure
Bounds called with (1/Zp(us))ses gives almost best among the five, however, it is not always
so. Thus we will exploit all of the five candidates for lower bound.

Here we present computation experiments for the tightness of our proposed bounds in Table 4.
Each line including zxr, and zxy expresses the average lower or upper bound of 100 data instances
respectively. Columns for (zyy — z1)/zy are as is in Table 3 for reference, which will be denoted
by the symbol Ay. As we can see in Table 4, the gap between our proposed bounds denoted by
the symbol A; is roughly two or three times worse than As.

An additional remark is that the reference [2] includes suggestive words: “Two properties are
important in evaluating a relaxation: the sharpness of the bounds produced and the amount of
computation required to obtain these bounds. Usually selecting a relaxation involves a tradeoff
between these two properties; sharper bounds require more time to compute.” The bounds
proposed in [5] are to be sure very tight, whereas it would seem that it takes too many costs
to obtain them, because the procedure which computes the bounds exactly solves KP in every
iteration. On the other hand our proposed bounds can be obtained immediately, whereas they
are two or three times loose than those in [5]. It would be thus interesting to see which is better
to solve MNK.

4 An algorithm for the MNK problem

In this section we develop an algorithm to solve the MNK problem. To solve the combinatorial
optimization problem, branch-and-bound is so popular. In what follows we implement our



Table 4: Our bounds

1) n |S| m ZX1, ZXU ZXUZ)zUZXL ZUZ;] 2L A1/A2
03 60 10 2 2299.78 2315.79 0.0069 0.0042 1.64
3 189386 1915.67 0.0114 0.0026 4.38
4 1608.48 1631.94 0.0144 0.0047 3.06
20 2 2266.83 2282.68 0.0069 0.0035 1.97
3 1853.29 1877.40 0.0128 0.0060 2.13
4 1588.95 1614.07 0.0156 0.0041 3.80
30 2 2270.04 2288.82 0.0082 0.0049 1.67
3 1825.42 1850.17 0.0134 0.0059 2.27
4 1585.21 1608.86 0.0147 0.0086 1.70
06 60 10 2 2252.36 2283.72 0.0137 0.0066 2.07
3 1783.21 1831.59 0.0264 0.0106 2.49
4 1536.77 1583.33 0.0294 0.0044 6.68
20 2 2185.38 2220.64 0.0159 0.0091 1.74
3 1787.21 1842.35 0.0299 0.0095 3.14
4 1487.19 1543.26 0.0363 0.0104 3.49
30 2 2146.95 2183.68 0.0168 0.0044 3.81
3 173764 1797.26 0.0332 0.0141 2.35
4 1480.66 1541.59 0.0395 0.0188 2.10
09 60 10 2 2154.57 2211.20 0.0256 0.0113 2.26
3 1786.83 1865.45 0.0421 0.0186 2.26
4 1502.88 1592.31 0.0562 0.0167 3.36
20 2 2091.57 2163.35 0.0332 0.0105 3.16
3 167270 1769.75 0.0548 0.0192 2.85
4 1428.60 1520.98 0.0607 0.0266 2.28
30 2 2018.60 2095.58 0.0367 0.0184 1.99
3 1602.45 1702.71 0.0589 0.0167 3.52
4 1401.91 1511.84 0.0727 0.0207 3.51
zx1,: lower bound by the maximal of the five candidates
zxy: upper bound by the minimal of the four candidates
Ar: (2xv —2xL)/2xU
Ag: (2v—21)/2u, asis in [5]

10



algorithm based on the branch-and-bound.

To begin with, we obtain initial lower bound among the five candidates: zgg and the pro-
cedure Bounds called with three types of initial multiplier vectors introduced in the preceding
section. The obtained initial lower bound is set to initial incumbent value. Hereafter we will
denote the incumbent value by z*. The incumbent value z* would be replaced with larger value
given by a feasible solution which would be found during exploring search-tree. Also initial
upper bound is computed simultaneously, which is the best one among the four candidates. If
the upper bound is corresponding to z* then program is terminated, because we have obtained
optimal value z*. In passing, on the implementation, the solution which gives z* should be
always memorized.

The search-tree is a binary tree and each node has two children (subproblems) prescribed by
fixing one item whether we take it or not. We will call the item branching variable. On each node,
branching variable is determined dynamically as ¢ € No which gives maximal of Y~ .o piv!/a;
following to [5], where (u})secs indicates multiplier vector obtained by computing upper bound
at each node. More precisely, the procedure computing upper bound should return multiplier
vector which prescribes the KP which gives output of UB to the caller. Rough algorithmic
sketch of this processing is presented subsequently.

As soon as we visit a node the following two processings are performed. If the set Ny becomes
empty consequently or has been already empty, then we do not explore search-tree more deeply.
In other words no subproblem of which parent is the visited node is spawned and the node
own is discarded. Note that the case where Ny is already empty is also included in each case
respectively.

o If we can take all items in No, that is, > ;cn, a; < b — D ;cn, a4, then all items in Ny are
moved to Nj.

e We will sweep out an item j in Ny to Ny, provided a; > b — >, n, a;.

Before discarding the node in each case, minges ) ;e n, v§ is computed, and compared with z*.
The greater is left as new z*.
On each node of search-tree, we should consider a subproblem of given MNK, which is

prescribed by each node as:

!/ : S

Zynk = maxming > vi | Y a; <b . 9)
[Nz s€5 {ieIuM i€IUN;

Thus the triplet of each node of {Ny, N1, No} prescribes the subproblem concerned with the

node. For instance, the triplet of {(),), N} is concerned with top node in which all items have

not yet been fixed. Also the surrogate relaxation of the problem (9) is formulated as follows:

Zp(p) =max< > wi(u) | Y ai <b, vilp) =) psvf g, (10)

ICN
N2 ieom i€TUN s€S

where p; > 0 for any s € S and ), o ps = 1.

On computing upper bound on every node except top node, we also exploit the procedure
Bounds with three types of initial multiplier vectors. The termination condition of the infinite
loop in the procedure is however modified so that it is concerned with the improvement of upper
bound only, so the improvement of lower bound is not concerned as follows:

11



Iter Proc(In: (us)ses, Out: LB, UB, (u})ses)
Normalize received (us)ses; /* three types of (us)ses */
Apply LP relaxation to the KP (10) with (us)ses,
and obtain UB and solution z* which gives UB;
Save (ps)ses as (13)ses;
LB := minges Y ;e y ViT];
for (;;) {
foreach s € S {us := (us)?} /* bias x/
Normalize (ps)ses;
Apply LP relaxation to the KP (10) with (us)ses,
and obtain tmpUB and solution z* which gives tmpUB;
tmpLB := minges > ey viT];
if (tmpLB > LB)
LB := tmpLB;
if (tmpUB < UB) {
UB := tmpUB;
Save (us)ses as (13)ses;
} else
break; /* exit infinite loop and return */

}

Our main purpose of this procedure is to obtain upper bound quickly. In fact by our computa-
tion experiments, it seems that the processing of obtaining lower bound and trying to improve
z* during exploring search-tree is not so effective. Therefore we have concentrated our atten-
tion only upon the improvement of upper bound during exploring search-tree. In other words,
obtaining lower bound in the procedure Iter_Proc is a mere wish, so it might not be necessary.

The output (u})ses of the Iter_Proc is exploited to determine branching variable as men-
tioned previously. Although we should modify the procedure Bounds so that it also returns the
multiplier vector for the branching variable on top node, we here apply the Iter_Proc to the top
node in order to obtain it for a while. In fact this processing will become unnecessary because
of exploiting new branching variable.

A remark is that the initial multiplier vector produced by (1/Zp(us))ses is determined so
that a triplet of node is taken into account. On the other hand the rest of two initial multiplier
vectors, the formulae (6) and (7), are always constant respectively. In addition as we have
mentioned it for the Bounds, the solution z* appeared in the procedure should not include an
item which is used partially.

The remainder of this section is devoted to the improvement of our proposed algorithm. As
things turned out, we would improve our procedure for the bounds in some cases.

4.1 Search strategy

In this subsection we will implement our algorithm based on two search strategies respectively
and compare the performance of them: one is classical depth-first search, the other is best-first
search adopted in [5].

In depth-first search, on each visited node, upper bound of the subproblem which is pre-
scribed by the node is computed after performing the previous two processings as to Na. If
obtained upper bound is less than or equal to incumbent value z*, then the node is discarded;
otherwise we determine branching variable and spawn two subproblems of which parent is cur-

12



rently visited node. On visiting two children, we first try to take branching variable 4, that is,
after exploring sub-tree with z; = 1, we explore sub-tree with z; = 0.

On the other hand, in best-first search, active nodes (subproblems) are stored in a list. The
nodes in the list are sorted according to the upper bound of the subproblem prescribed by each
node in a nonincreasing order. Therefore the upper bound for each node should be computed
before adding the node to the list, because it is prerequisite to determine a position where the
node should be placed in the list. By this, a node which should be expanded next can be always
taken from the head of the list with no condition. After taking a node from the head of the list,
the upper bound of the node is compared with z* immediately. After that, the previous two
processings as to Ny are performed on and two children are spawned if necessary.

Computation experiments are shown in Table 5. Each column expresses the average of 100
data instances, so each strategy is not applied to same 100 instances. Columns for BBN indicate
the average total number of visited nodes during exploring search-tree. The BBN includes the
number of nodes which are not expanded. Also a conspicuous anomalous instance in each column
is presented in the brackets on the column for BBN as ‘(worst).’

Unfortunately we can not conclude that which search strategy is better as far as exploiting
our bounds. Under our observation, it seems that BBN as for each algorithm is highly dependent
on the instance of MNK respectively. For instance, each has solved some instances with BBN
under 1,000, whereas solved some instances with BBN over 10,000. In fact this computation
result is due to the branching variable. We will introduce new branching variable in the next
subsection, which really improves our algorithm.

Table 5: Two search strategies

5 ono || m depth-first best-first
BBN(worst) BBN(worst)
09 60 10 2 1445.5(11,807) 1368.8(12,349)
3 2655.5(26,977) 2428.8(16,861)
4 2171.4(14,493) 2238.0(21,099)
20 2 2109.5(13,459) 2542.9(44,195)
3 4510.3(33,913) 4712.3(50,073)
4 3602.0(23,809) 5053.2(48,671)
30 2 4066.8(35,287) 3656.7(59,545)
3 6818.2(85,545) 6126.6(51,427)
4 4906.5(33,945) 5508.9(49,343)

4.2 Branching variable

It is important to take an appropriate branching variable in order to reduce BBN. It is however
difficult to find the most valuable item on MNK, because there exists no general measure for
the efficiency of an item. The discussion in Section 2 also implies this fact. If there exists such
a general measure like as classical KP, it should be useful to determine branching variable. In
this subsection we exploit another branching variable, which not only improves our proposed
algorithm but also has a merit on the point of view of computation time.

While it is not mentioned why item i € Ny which gives maximal of )~ g pivf/a; is adopted
as branching variable in [5], it would be appropriate from the point of view of common sense on
KP, assuming that the KP (5) is an approximation of given MNK. However we here exploit the
alternative which gives maximal of ) . v;. Namely, our suggestion is that the larger ) . ¢ v/
is, the larger the probability that item ¢ would be included in an optimal solution is.

13



Computation experiments of exploiting this decision are presented in Table 6. Each column
expresses the average of 100 data instances, so each strategy is not applied to same 100 instances.
As we can see in Table 6, our algorithms have been quite improved. The reason would be that
the KP (5) which is the approximation of given MNK is not precise. Hence it has caused weird
choice of branching variable.

Also in Table 6, best-first is better than depth-first. This is suitable to our intuition very well.
In a word best-first search is better than depth-first search on reducing BBN. In addition BBN
in the worst case presented in Table 6 is well-bounded and conspicuous anomalous instances have
not found. Therefore we hereafter adopt best-first search with the new decision of branching
variable. Moreover, by this, it is no more necessary for the Iter_Proc to return (u})scs which
prescribes the KP giving output of UB to caller.

Table 6: New decision of branching variable

5 no|S| m depth-first best-first
BBN(worst) BBN(worst)
09 60 10 2 1417.2(20,609) 888.7( 3,711)
3 1830.2(13,633) 976.8( 4,759)
4 1700.7( 8,035)  915.4( 4,043)
20 2 1745.6(10,291)  876.1( 4,149)
3 2529.8(11,251) 1245.8( 6,219)
4 2789.2(19,893) 1200.0(10,175)
30 2 2215.6(28,297) 1251.0(15,837)
3 3072.6(16,557) 1885.6( 8,963)
4 3075.0(13,997) 1571.7(18,957)

Furthermore, the new decision of branching variable has one merit as we have mentioned it
at the beginning of this subsection. Namely, we can determine the order of an item which should
be taken as branching variable before exploring search-tree. On implementation, all items are
sorted in a nonincreasing order of ), gv{ and are stored in a list as Ny. Then, branching
variable can be always taken from the head of the list with no condition.

On the other hand the decision of branching variable can be regarded as an analogy of the
value-ordered greedy heuristic. Since there exist other three greedy heuristics for MNK, we
can discuss at least more three decisions as the analogy of each greedy heuristic respectively.
Then, we have performed computation experiments with sorting all items beforehand according
to the three analogies respectively: Weight-ordered decision is taking item 7 which minimizes a;.
Density-ordered one is taking which maximizes ) g v;/a;. Total-value one is which maximizes
Y ses Vi b/a;]. Consequently usual value-ordered is most effective among the four.

4.3 Temporary implementation

In this subsection we present extensive computation experiments of our proposed algorithm so
far with several types of data instances. Repeating that it exploits best-first search and to the
top node we apply the procedure Bounds and to the rest of all nodes we apply the procedure
Iter_Proc. Tt also includes the processing of sorting of all items before exploring search-tree for
the branching variable.

Computation experiments are in Table 7. In the table, each column expresses the average of
100 data instances. Computation time is expressed in seconds, which is shown in the columns
for CPU. Also time to sort all given items is included in CPU. Reference machine, throughout

14



this report, is SPARCstation-20f. The algorithm has been implemented in C and program
is complied by gcc with —O3 option. On the other hand the columns for Yu are as is in [5]
for reference, where the reference machine is IBM3090 and the algorithm was implemented in
PASCAL. Needless to say, exact comparison of computation time (CPU) is not so meaningful.

Table 7 implies that our algorithm is good at the case where § is small, which could be easily
guessed from the result in Table 4. Also our algorithm shows bad performance as |S| becomes
large. Since it seems that our proposed bounds are not so sensitive to |S| by the result in Table 4,
the defect would be owing to the increase of computation time as |S| has grown (For instance,
the initial multiplier vector (1/Zp(us))ses which is supplied to Iter_Proc). Consequently when
|S| is large, our processing for the bounds is not so light. The difference between two algorithms
as to BBN in Table 7 apparently exhibits how stable and tight the bounds proposed in [5] are.

A remark is that BBN tends to be best in the case where m = 2 under any set of §, n and
|S| on our algorithm. It is a strange behavior because in the case where m = 2, total number of
feasible solutions is greatest among the three m in general. Therefore BBN (also CPU) should
be smallest in the case where m = 4. The algorithm in [5] shows such a behavior, whereas ours
shows the best behavior in the case where m = 2.

An additional remark is that under our observation, when § = 0.3, our initial lower bound
is frequently corresponding to an optimal value, however, our algorithm solves such an instance
with BBN over 100. It exhibits that our task which we should address is no doubt how we
obtain sharp upper bound by some means or other. To cope with it, the substantial issue is how
we determine appropriate multiplier vector which prescribes KP (5) as the relaxation of given
MNK and its subproblems, in other words, how we find a precise approximation of MNK.

4.4 Step size

In order to improve the precision of the approximation of MNK, we will exploit new step size
ps = (1s)™ (1 < n < 2) in two iterative procedures: Bounds and Iter_Proc. Since the new step
size is shorter than the old, the difference between any pair of multipliers will be widen with
more short step.

Computation experiments for this trial are in Table 8. Each line expresses the average of
100 data instances. The meaning of columns for zxi, and zxy are same as those in Table 4.
As we can see in Table 8 the smaller the step is, the larger the computation time, which is not
preferable. In addition it seems that the small step contributes nothing to the improvement of
BBN. Therefore we should not adopt new step size at least for the Iter_Proc.

On the other hand, us := ps /s is most efficient for the improvement of the A; in Table 8,
however, it is not always so. For instance in the case where |S| = 10 and m = 3, p, 1= ps\/lis
gives best among all step sizes. Also in the case where (|.S|,m) = (20,4) or (30, 3), ps := ps I pis
gives best.

Since the procedure Bounds is called only once for each initial multiplier vector, it does not
matter that it costs a little. Therefore we will adopt new step size for the Bounds: First we use
ordinary ps := (ps)? and continue so that u, := ps ¢/ii; where n = 2™ (m > 1, integer) for the
direction that m is increasing. If lower or upper bound produced in performing dynamical step
size would improve, then each currently stored bound should be replaced with the improved one
respectively. The processing will continue until the gap between stored upper and lower bounds
does not improve in three times contiguously. This means that we would like to perform the
processing at least for m = 1,2 and 3. The effect of dynamical step size will be shown in the
next subsection by the Bounds which includes this feature.

fwithin SuperSPARCII (75 MHz). The numerical performance is 125.8 SPECint92/121.2 SPECfp92.

15



Table 7: Comparison of two algorithms

by Yu* by Iida™*

o m ISIm gpy CPU L peN(worsty PV
(sec.) (sec.)

0.3 60 10 2 430 2275 2452( 801) 4.1
3 364 200.8 319.8( 1,059) 5.0

4 296 1201 264.8( 1297) 3.9

20 2 424 2179 2404( 715 7.1

3 354 2343  331.6( 1,599) 9.1

4 298 2007 310.0( 1,311) 8.0

30 2 408 2215  247.7( 1,375)  10.9

3 36.0 229.2 348.1( 2,389) 15.0

4 298 190.2 307.4( 1,509) 12.5
06 60 10 2 43.7 231.3 353.5( 1,493) 5.7
3 36.2 270.8 541.9( 5,643) 8.0

4 300 2049 437.9( 3,147) 6.1

20 2 42.2 2455  483.6( 1,989) 13.6

3 350 2433 603.5( 2,933) 15.9

4 33.0 2121 492.0( 2,167) 12.3

30 2 432 2413 436.7( 2,559) 17.8

3 358 2276 598.6( 2,613) 24.1

4 316 1912 500.0( 2,005) 19.4

09 60 10 2 448 334.0 T708.4( 2,247) 10.2
3 38.0 3224 1097.8( 7,677) 14.6

4 31.0 253.2 1005.8( 5,355) 12.7

20 2 442 2624 1069.1( 4,311) 28.4

3 364 2469 1546.7( 9,971) 37.7

4 314 2074 1451.5( 7,845) 34.3

30 2 448 2523 1153.9( 4,945) 45.8

3 38.0 2349 1791.9( 8_815) 73.2

4 300 1891 1318.5( 5,603) 47.7

50 2 0 . 1405.3(27,567) 109.2

R— . 2326.9(21,793) 162.8

— — 1664.2( 8,159) 124.0

70 50 2 — — 2301.1(12,663) 202.4

3 — — 3378.8(20,389) 292.9

4 — — 3558.9(22,037) 298.8

80 50 2 — —  5869.3(79,845) 627.6
 — — 7260.9(54,595) 751.6

4 — — 5786.0(39,269) 606.1

*%:

solved on IBM3090
solved on SPARCstation-20 with gcc —03

16



Table 8: New step size

CPU

Ms 1= 6 n |S| m BBN(worst) (sec.) ZXL ZXU Ay
1./ (us)? 09 60 10 2 | 741.74( 3429) 11.8 | 216457 2222.44 0.0260
3 987.54( 6,055) 14.8 | 1748.43 1832.19 0.0457
4 | 1030.92( 7,147) 14.8 | 1500.91 1588.90 0.0554
20 2 811.68( 6,903) 23.3 | 2058.40 2123.18 0.0305
3 | 1310.20( 7,871) 35.7 | 1664.30 1757.03 0.0528
4 | 1064.60( 7,073) 27.5 | 1423.81 1520.61 0.0637
30 2 | 1236.10( 4,965) 54.2 | 2027.82 2105.39 0.0368
3 | 1893.24(25,851) 78.4 | 1631.82 1735.99 0.0600
4 | 1345.92( 9,375) 53.4 | 1376.22 1479.13 0.0696
Hsy/Ps 09 60 10 2 762.14( 5,455) 14.5 | 2156.43 2213.04 0.0256
3 897.18( 3,391) 17.0 | 1769.29 1840.67 0.0388
4 873.04( 3,299) 17.6 | 1485.05 1575.27 0.0573
20 2 920.58( 5,797) 31.0 | 2085.85 2148.59 0.0292
3 | 1381.56(11,243) 43.3 | 1685.67 1775.80 0.0508
4 983.56( 4,607) 29.8 | 1414.72 1508.85 0.0624
30 2 914.50( 3,743) 459 | 2048.34 2117.40 0.0326
3 | 1879.28(20,451) 87.6 | 1616.50 1718.49 0.0593
4 | 1608.70( 7,759) 72.4 | 1402.36 1508.26 0.0702
Ms s 09 60 10 2 706.44( 6,011) 19.2 | 2175.59 2225.49 0.0224
3 | 1037.98( 4,389) 25.1 | 1744.74 1818.60 0.0406
4 920.78( 6,917) 21.1 | 1536.13 1611.67 0.0469
20 2 834.24( 9,853) 40.6 | 2086.13 2139.30 0.0249
3 | 1001.24( 5,423) 45.6 | 1696.10 1779.58 0.0469
4 | 1174.74( 5,239) 50.3 | 1427.52 1524.14 0.0634
30 2 | 1235.82(11,267) 83.6 | 2036.98 2100.35 0.0302
3 | 1633.88(19,767) 106.5 | 1648.87 1745.42 0.0553
4 | 1559.96( 6,757) 96.4 | 1380.22 1482.62 0.0691
Ms s 09 60 10 2 | 1375.92(12,093) 38.9 | 2168.91 2228.85 0.0269
3 | 1517.56(13,743) 40.9 | 1771.07 1852.52 0.0440
4 | 1695.08(10,243) 34.8 | 1496.43 1598.06 0.0636
20 2 | 1166.26( 6,411) 81.6 | 2051.96 2114.62 0.0296
3 | 1732.54(18,221) 103.4 | 1685.51 1775.75 0.0508
4 | 1196.04( 9,813) 69.6 | 1423.61 1516.34 0.0612
30 2 | 1128.78( 5,879) 115.1 | 2046.03 2110.84 0.0307
3 | 1149.04( 7,871) 112.1 | 1637.05 1719.91 0.0482
4 | 1619.18(10,537) 138.5 | 1390.62 1496.61 0.0708

Ay: (2xu — 2x1)/zxu

17



4.5 Other initial multiplier vectors

In the former half of this subsection, we attempt to exploit other three types of initial multiplier
vectors for the Bounds which is performed on top node. In the latter half we also attempt to
exploit new initial multiplier vectors for the Iter_Proc which is performed on the rest of all nodes
(We call the node intermediate node).

4.5.1 On top node

As we have mentioned previously, 1/Zp(us) is most effective as to initial multiplier vector
supplied to the Bounds. In this subsubsection we discuss other initial multiplier vectors which
are similar to 1/Zp(us) respectively.

New three types of initial multiplier vectors to each scenario s are as follows, which are based
on the greedy heuristics for IKP respectively:

1. The inverse of the result of density-ordered greedy heuristic applied to the KP (8).
2. In the previous clause, using total-value in place of density-ordered.
3. In the first clause, using value-ordered in place of density-ordered.

Then, we will call the Bounds six times with different types of initial multiplier vectors severally.
Consequently we have exploited eight candidates for the initial lower bound and seven candidates
for the initial upper bound respectively.

Moreover in the Bounds, we attempt to reuse a solution which will give output of UB. As-
suming that solution z* gives final output of UB in the Bounds, we use the inverse of ),y viz}
as an initial multiplier to each scenario s and perform the iterative processing again. If the upper
bound obtained by the new initial multiplier improves, then the improved one will be returned
to caller. On the other hand as to a solution which gives lower bound LB in the Bounds, we
also perform the same processing except using » ;- y viz; as is, not taking the inverse of it.

Computation experiments are presented in Table 9. In the table each line expresses the
average of 100 data instances, and the best result as to A;/Ay among many trials. Also the
procedure Bounds has adopted dynamical step size illustrated in Subsection 4.4. In Table 9, our
proposed bounds have slightly improved as to A;/Ay compared with Table 4 as we anticipated
it. However it can not yet reach the result in [5].

4.5.2 On intermediate node

So far we have exploited three types of initial multiplier vectors for the procedure Iter_Proc:
1/Zp(us), formulae (6) and (7). In addition minses Zp(us) has been a candidate for upper
bound. In this subsubsection we will introduce other initial multiplier vectors for the Iter_Proc,
and explore several combinations of all candidates involving those induced by the new initial
multiplier vectors respectively. In what follows, at the beginning of each three paragraph, we will
mention what is the difference from the default of four candidates in each trial. In addition in
this subsubsection the procedure Bounds is always as is improved in Subsubsection 4.5.1. Also
all computation experiments in this subsubsection express the average of 100 data instances.
First, we discard usual four candidates and exploit only one new candidate, which is the
output of Iter_Proc called with the first clause (density-ordered) in the previous new three types
of initial multiplier vectors. Computation experiments are in Table 10. In this trial computation
time improves when § = 0.9, because we call Iter_Proc only once on every node. However this

18



Table 9: Eight and seven candidates with dynamical step size

1) n |S| m ZXL, ZXU Al Ag A]_/AQ
0.3 60 10 2 2287.92 2302.08 0.0062 0.0042 1.47
3 1879.27 1898.92 0.0103 0.0026 3.96

4 1633.37 1652.93 0.0118 0.0047 2.51

20 2 227473 2290.29 0.0068 0.0035 1.94

3 1866.55 1885.86 0.0102 0.0060 1.70

4 1590.65 1612.85 0.0138 0.0041 3.36

30 2 2306.61 2322.62 0.0069 0.0049 1.40

3 1846.00 1867.11 0.0113 0.0059 1.91

4 1596.92 1620.79 0.0147 0.0086 1.70

0.6 60 10 2 2262.04 2286.79 0.0108 0.0066 1.63
3 1800.77 1834.82 0.0186 0.0106 1.75

4 1561.05 1599.43 0.0240 0.0044 5.45

20 2 2161.76 2188.79 0.0123 0.0091 1.35

3 1785.16 1826.16 0.0225 0.0095 2.36

4 1516.50 1559.18 0.0274 0.0104 2.63

30 2 2149.50 2175.31 0.0119 0.0044 2.70

3 1786.79 1827.93 0.0225 0.0141 1.59

4 1467.07 1510.59 0.0288 0.0188 1.53

09 60 10 2 2182.74 2222.15 0.0177 0.0113 1.56
3 1770.81 1824.93 0.0297 0.0186 1.59

4 1508.26 1570.54 0.0397 0.0167 2.37

20 2 2087.02 2132.09 0.0211 0.0105 2.00

3 1707.06 1775.26 0.0384 0.0192 2.00

4 1465.38 1537.90 0.0472 0.0266 1.77

30 2 2085.22 2138.21 0.0248 0.0184 1.34

3 1652.41 1728.39 0.0440 0.0167 2.63

=~

1410.48 1487.87 0.0520 0.0207  2.51

zx1,: lower bound by the maximal of the eight candidates
zxu: upper bound by the minimal of the seven candidates
Ar: (2xu — zxL)/#xu

ANy: (2u—2zp)/2u, asis in [5]

Table 10: Density-ordered only

5 n |S| m BBN(worst) CLU
(sec.)

03 60 10 2 2147.14(18823) 102
09 60 10 2  827.50( 4,705) 7.2
3 1040.84( 6,635) 8.0

4 904.10( 4397) 6.4

20 2 1104.62(11,267) 16.0

3 1773.70(12,041) 22.6

4 1453.30( 6109) 17.5

30 2 1085.32( 7.299)  22.3

3 1679.84( 7.337) 311

4 1446.94(10037) 23.8

19



trial spawns a catastrophic anomalous instance when § = 0.3. Therefore we can not adopt this
trial nevertheless computation time improves when § = 0.9.

Second, we discard the formulae (6) and (7), and exploit the first clause (density-ordered)
as same as the previous trial. As we can see in Table 11, no catastrophic anomalous instance
could be spawned in the case where § = 0.3. In addition as to BBN, same performance as the
usual in Table 7 can be shown. However this trial tends to spawn large BBN in the worst case,
paying our attention to the case where (4, n,|S|,m) is (0.9,60,10,2) in particular. Therefore
this combination of the candidates is not preferable too.

Table 11: LP relaxation and density-ordered

5 n |S| m BBN(worst) LU
(sec.)

03 60 10 2 19832 705) 39
09 60 10 2 1008.12(11,423) 16.1
3 O76.68( 5309) 14.3

4 882.84( 2,583)  12.5

20 2 1012.96( 4,993)  30.4

3 1444.44( 8623)  39.7

4 1299.74(10077)  34.3

30 2 1239.20017.319)  59.0

3 1598.98( 6.447) 714

4 1515.90( 7,233) 611

Third, we replace both the formulae (6) and (7) with each which takes Ny into account
respectively. The usual two initial multiplier vectors prescribed by the formulae (6) and (7)
are constant on any node respectively, however, it would not reflect that several items might
be already fixed to zero in the subproblem (9). Therefore we attempt to discard the value or
the efficiency of items in Ny and construct each initial multiplier vector by items in Ny U Ny
respectively in this trial. Computation experiments are in Table 12. In this trial when § = 0.9
and |S| = 10, BBN in the worst case is well-bounded, which is a preferable behavior. In addition,
computation time is better than the previous trial. This implies that the three types of initial
multiplier vectors based on the greedy heuristics for IKP are a little expensive.

Table 12: LP relaxation and two new initial multiplier vectors

6 n |S] m BBN(worst) CPU
(sec.)

03 60 10 2  256.34( 1,3901) 4.3
09 60 10 2  780.08( 4,315 11.6
3 1014.62( 4,885) 132

4 941.66( 4,735) 115

20 2 897.98( 9,889) 20.4

3 1244.20(11,191) 26.6

4 1216.12( 7,329) 23.6

30 2 1159.56(23,493) 35.6

3 1581.02( 6,853) 44.0

4 1595.80( 8,643)  41.2

20



4.6 Uni-procedure

So far we have exploited two iterative procedures: one is Bounds for the top node, the other is
Iter_Proc for the rest of all intermediate nodes. In this subsection we will apply the procedure
Bounds to not only top node but also each intermediate node. In a word, only the Bounds is
exploited in the implementation of our algorithm. In the latter half of this subsection we also
discuss the experiment of exploiting the Iter_Proc only.

Repeating that we have adopted best-first search strategy and branching variable is de-
termined as item ¢ € N which gives maximal of ), gv{. The items in Ny are sorted in a
nonincreasing order of the ) . qv{ beforehand. Then, branching variable is taken from the
head of list Ny with no condition. Also all nodes which are not expanded yet are stored in a
list, and the nodes in the list are sorted in a nonincreasing order of the upper bound obtained
by the subproblem of given MNK which is prescribed by the triplet of each node. Then, a node
which should be expanded next is taken from the head of the list with no condition. In the
initial state, before exploring a search-tree, there exists only one node in the list i.e. top node.

On each node, the Bounds is called six times with different types of initial multiplier vectors
severally, and each solution giving LB or UB is reused respectively in each calling. Two initial
multiplier vectors, the formulae (6) and (7), are always constant respectively, while the rest of
four is only concerned with items in N1 U Ny respectively. The Bounds also includes the feature
of dynamical step size.

Computation experiments are in Table 13. In the table each line expresses the average of
10 data instances, and shows the best result as to BBN among many trials. As we can see in
Table 13 BBN is well-bounded, however, computation time is so terrible. This result has again
revealed the importance of the “tradeoff” mentioned in [2].

In passing when |S| = 30 and m = 2 in Table 13, although A;/As is almost one accidentally
(It is due to the lack of an anomalous instance), our algorithm costs ten times of BBN compared
with the one in [5]. It would be owing to the difference of the sharpness of upper bound. As we
have mentioned it at the end of Subsection 4.3, our lower bound is pretty good, however, upper
bound is not so tight.

Table 13: Uni-procedure: Bounds

CPU

0 n |S| m BBN(worst) (sec.) ZXL ZXU Ay A1 /A,

09 60 10 2 294.2( 457) 168.3 2152.6 2186.0 0.0153 1.35
3 433.4( 651) 198.8 1846.2 1899.2 0.0279 1.50

4 412.4( 951) 1892 1512.2 15745 0.0396  2.37

20 2 241.0( 445) 2259 2093.0 2123.2 0.0142 1.35

3  545.4( 977) 506.3 1687.3 1749.1 0.0353 1.83

4 410.2( 801) 327.5 1459.2 1518.7 0.0392 1.47

30 2 405.8( 755) 5774 1998.3 2036.8 0.0189 1.02

3 643.4(1,207) 765.7 1671.3 1745.6 0.0426 2.55

4 628.4(1,355) T713.7 1357.3 1424.0 0.0468 2.26

On the other hand applying the procedure Iter_Proc to all nodes can be also discussed. Then,
we will here adopt the third trial in Subsubsection 4.5.2 as the processing which is applied to
every node, including top node. From the point of view of computation time, it would be the
best choice. In the trial, the procedure Iter_Proc is called three times with different types of
initial multiplier vectors severally: 1/Zp(us); formulae (6) and (7) only concerned with items
in N1 U Ny respectively. Also the procedure does not include the feature of dynamical step size.

21



Computation experiments are in Table 14. In the table each line expresses the average of
100 data instances. Compared with Table 7, the computation time indeed improves. Also the
average of BBN is almost same compared with Table 7, however, it seems that it will tend
to spawn a little large BBN in the worst case. It would be owing to the weakness of initial
lower bound because of the lack of the procedure Bounds in the implementation. Except the
defect, it could be concluded that this processing is sufficient to solve the MNK problem. In
other words, nevertheless only three candidates for lower bound and four candidates for upper
bound are exploited, this light processing is sufficient to solve the MNK problem in reasonable
computation time when both n and |S| are moderate.

While it does not mean that this study has finished, we will put a period to this study for
the time being by adopting the computation result presented in Table 14 as the final result in
this report.

Table 14: Uni-procedure: Iter_Proc

CPU

d n |S| m BBN(worst) (sec.) ZXL ZXU Ay A1 /A,
03 60 10 2 190.78( 463) 3.0 2315.68 2334.50 0.0081 1.92
3 276.12( 1,267) 3.6 1888.64 1914.17 0.0133 5.11

4 231.44( 723) 3.0 1607.32 1638.67 0.0191 4.06

20 2 256.62( 923) 6.0 2279.71 2299.90 0.0088 2.51

3 321.24( 1,121) 7.3 1860.04 1887.90 0.0148 2.46

4 295.82( 855) 6.3 1587.44 1617.49 0.0186 4.53

30 2 255.00( 2,187) 8.1 2281.29 2302.36 0.0092 1.87

3 320.94( 1,123) 9.6 1823.97 1851.94 0.0151 2.55

4 274.04( 1,201) 7.9 1550.45 1581.96 0.0199 2.31

06 60 10 2 341.70( 2,071) 4.9 2219.32 2251.32 0.0142 2.15
3 494.18( 3,507) 6.8 1803.75 1850.61 0.0253 2.38

4 442.96( 1,281) 5.7 1531.41 1582.46 0.0323 7.34

20 2 406.60( 3,131) 9.3 2149.33 2186.63 0.0171 1.87

3 626.38( 2,921) 13.2 1742.04 1793.76 0.0288 3.03

4 428.56( 2,037) 8.6 1499.29 1556.35 0.0367 3.52

30 2 465.30( 1,861) 13.8 2163.33 2200.26 0.0168 3.81

3 696.72( 4,495) 20.6 1748.49 1807.73 0.0328 2.32

4 577.28( 2,469) 15.8 1497.23 1558.01 0.0390 2.07

09 60 10 2 726.48( 4,553) 9.1 2122.82 2179.98 0.0262 2.31
3 882.92( 5,889) 10.7 1743.43 1823.58 0.0440 2.36

4 1099.22( 7,743) 124 1514.28 1607.36 0.0579 3.46

20 2 965.00( 4,107) 20.0 2104.26 2179.34 0.0345 3.28

3 1338.56( 6,725) 26.0 1664.19 1764.02 0.0566 2.94

4 1187.24( 9,911) 21.4 1412.45 151045 0.0649 2.43

30 2 1290.10( 8,385) 36.9 2013.84 2091.58 0.0372 2.02

3 1829.58(13,835) 48.0 1652.59 1754.82 0.0583 3.49

4 1557.82(14,263) 38.9 1389.79 1506.62 0.0775 3.74

zxL: lower bound by the maximal of the three candidates
zxy: upper bound by the minimal of the four candidates
Ar: (2xu — #xL)/#xu

Ay: (2u—2z1)/2v, asis in [5]

22



5 Conclusion

In this report we have studied the max-min 0-1 knapsack (MNK) problem. It has been revealed
that the bounds proposed by Yu are no doubt stable especially against an instance of the
MNK problem with large number of scenarios in contrast to ours. On the other hand we have
demonstrated how our proposed algorithm is sufficient to solve the MNK problem in the case
where both the number of items and scenarios are moderate, which is due to the lightness of
the processing for the bounds. In other words in such a case, our proposed bounds are enough
to solve the MNK problem in reasonable computation time nevertheless they are not so tight
compared with those by Yu.

Finally, our proposed algorithm has merely followed the same course as the one by Yu, that
is, constructing surrogate relaxation of given MNK and solving it to obtain the bounds which
are exploited in branch-and-bound method. To explore the alternative is a challenging problem
and has yet been left to us.

Acknowledgments

This study has been done during the period January to May in 1997 under the direction of
Professor Masayuki Kimura as a sub-theme that is one of the requirements for the degree of
doctor of philosophy in School of Information Science, JAIST Hokuriku.

References

[1] Dantzig, G.B., “Discrete variable extremum problems,” Opns. Res. 5, 266-277 (1957).

[2] Fisher, M.L., “The Lagrangian relaxation method for solving integer programming prob-
lems,” Management Science 27(1), 1-18 (1981).

[3] Glover, F., “Surrogate constraint duality in mathematical programming,” Opns. Res. 23(3),
434451 (1975).

[4] Kohli, R. and Krishnamurti, R., “Joint performance of greedy heuristics for the integer
knapsack problem,” Discr. Appl. Math. 56, 37-48 (1995).

[5] Yu, G., “On the max-min 0-1 knapsack problem with robust optimization applications,”
Opns. Res. 44(2), 407-415 (1996).

23



	is-rr-97-0025Fcover.pdf
	IS-RR-97-0025F

