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Abstract Given an undirected multigraph G = (V, E) and a requirement function r) :
(‘2/) — Z7T (where (‘2/) is the set of all pairs of vertices and ZT is the set of nonnegative
integers), we consider the problem of augmenting G by the smallest number of new edges so
that the local edge-connectivity and vertex-connectivity between every pair z,y € V become
at least 7)(z,y) and two, respectively. In this paper, we show that the problem can be
solved in O(n®*(m + n)log(n?/(m + n))) time, where n and m are the numbers of vertices
and pairs of adjacent vertices in G, respectively. This time complexity can be improved
to O((nm + n?logn)logn), in the case of the uniform requirement ry(z,y) = £ for all
z,y € V. Furthermore, for the general r), we show that the augmentation problem that

preserves the simplicity of the resulting graph can be solved in polynomial time for any fixed

0 = max{r\(z,y) | z,y € V}.
Keywords: undirected multigraph, edge-connectivity, vertex-connectivity, graph augmenta-
tion, polynomial deterministic algorithm.
1 Introduction

Let G = (V, E) stand for an undirected multigraph with a set V' of wertices and a set E of edges,
where we denote |V| by n (or by n(G)) and the number of pairs of vertices which are adjacent

in G by m (or by m(G)). An edge with end vertices v and v is denoted by (u,v). Throughout

“An extended abstract of this paper was presented at 8th International Symp. on Algorithms and Compu-
tation (ISAAC’97), Singapore, December 1997, under the title “Augmenting Edge and Vertex Connectivities

Simultaneously”.



the paper, an undirected multigraph is called a graph unless a confusion arises. The local edge-
connectivity Ag(z,y) (resp., the local vertexz-connectivity kg(x,y)) for two vertices z,y € V is
defined to be the maximum number of edge-disjoint paths (resp., vertex-disjoint paths) between
‘2/) — Z1), where (‘2/) denotes the set of pairs
of vertices and ZT denotes the set of nonnegative integers, we say that G = (V, E) is ry-edge-

r and y. For a function ry : (‘2/) — Z7T (resp., my ¢ (

connected (resp., r-vertez-connected) if Ag(x,y) > ra(z,y) (resp., kg(z,y) > re(z,y)) holds for
every z,y € V. In particular, for a nonnegative integer ¢ (resp., k), G is called £-edge-connected
(resp., k-vertex-connected), if Ag(z,y) > £ (resp., kg(z,y) > k) holds for every z,y € V. Then
the ry-edge-connectivity augmentation problem (resp., the r-vertez-connectivity augmentation
problem) asks to augment G by a smallest number of new edges so that the resulting multigraph
G’ becomes 7)-edge-connected (resp., 7,-vertex-connected).

Multigraph augmentation problems to meet edge-connectivity or vertex-connectivity require-
ment have been extensively studied as important subjects in the network design problem, the
data security problem [25] and the graph drawing problem [23, 24] and others.

Watanabe and Nakamura [31] first proved that the f-edge-connectivity augmentation prob-
lem can be solved in polynomial time for any given integer £. Their algorithm increases the
edge-connectivity one by one on the basis of the structural information of G in order to an
(-edge-connected graph. Currently, an O(e + ¢*nlogn) time algorithm due to Gabow [6], where
e = |E|, is the fastest among existing algorithms of this type. Different from the approach by
Watanabe and Nakamura, Cai and Sun [2] first pointed out that the f-edge-connectivity aug-
mentation problem can be directly solved by applying the edge-splitting theorem. Based on
this, Frank [4] gave a refined O(n%) time augmentation algorithm by using Lovész edge-splitting
theorem. Recently, an O(n(m + nlogn)logn) time augmentation algorithm is proposed by
Nagamochi and Ibaraki [28]. For a general requirement function ry, Frank [4] showed that the
edge-connectivity augmentation problem can be solved in polynomial time by using Mader’s
edge-splitting theorem [27]. The time complexity for this problem was recently improved by
Gabow [7] to O(n®*mlog (n?/m)).

As to vertex-connectivity augmentation, several algorithms have been developed to add the
minimum number of new edges to make a (k —1)-vertex-connected graph G k-vertex-connected.
Eswaran and Tarjan [3] proved that the vertex-connectivity augmentation problem for k& = 2
can be solved. Watanabe and Nakamura [32] stated the same result for ¥ = 3. For a general
k, Jordan presented an O(n®) time approximation algorithm for this problem [20, 21] such that
the gap between the number of new edges added by his algorithm and the optimal value is at
most (k —2)/2.

It is known that the uniform k-vertex-connectivity augmentation problem for k € {2,3,4}
can be solved in polynomial time ([3, 14] for k£ = 2, [13, 32] for k = 3, and [11] for k = 4), where
an input graph G may not be (k — 1)-vertex-connected. However, whether there is a polynomial
time algorithm for the vertex-connectivity augmentation problem for an arbitrary k is an open
question (even if G is (k — 1)-vertex-connected). For a general requirement function r, the
problem was shown to be NP-hard by Jordan [19].

In a communication network, both the edge-connectivity and vertex-connectivity are funda-



mental measures of reliability against link failures and node failures, respectively. In this paper,
therefore, we consider the problem of augmenting G by the smallest number of new edges to
satisfy both edge-connectivity and vertex-connectivity requirements. This problem has not been
studied much except for the following work by Hsu and Kao [12]. Given a multigraph G = (V| E)
with two specified subsets X and Y of V, they present a linear time algorithm for augmenting
G by the smallest number of edges so that the resulting multigraph G’ satisfies Ag/(z,2") > 2
for all z,2' € X and kg (y,y') > 2 for all y,y' €Y.

Now we define the edge-and-vertez-connectivity augmentation problem, denoted by EVAP(r),
ry), as the problem of augmenting G by the smallest number of new edges so that the result-
ing multigraph G’ becomes 7-edge-connected and rg-vertex-connected (hereafter we call this
(7, 7% )-connected). Without loss of generality, r\(z,y) > r(z,y) is assumed for all z,y € V,
since if a multigraph is r,-vertex-connected then it is r,-edge-connected. Clearly, EVAP(ry,7y)
contains the edge-connectivity augmentation problem and the vertex-connectivity augmentation
problem as its special cases. When the requirement function r, satisfies r,(x,y) = £ € Z* for
all z,y € V, this problem is also denoted as EVAP(r), £). In this paper, we present an algorithm
to solve problem EVAP(r),2). We first derive a lower bound on the number of edges in order
to make a given multigraph G (r), 2)-connected, and then show that this lower bound is always
attainable by an optimal solution. The task of constructing such an optimal set of new edges
can be performed in O(n3(m + n)log (n?/(m + n))) time.

In Section 2, after introducing basic definitions, we present a lower bound on the number of
new edges necessary to make a multigraph G (r),7,)-connected and introduce the concept of
edge-splitting. In Section 3, we outline our algorithm for finding such an edge set. In Sections
4 — 7, we prove the correctness of our algorithm. In Section 8, we consider the problem of a
simple graph while preserving the simplicity of the graph, and show that this can be solved in
polynomial time for any fixed k¥ = max{r)(z,y) | z,y € V}. In Section 9, we state a concluding

remark.

2 Preliminaries

2.1 Definitions

In a graph G = (V, E), its vertex set V and edge set £ may be denoted by V(G) and E(G),
respectively. A singleton set {z} may be simply written as x, and “ C ” implies proper inclusion

“="7_ A subset X ntersects another subset Y if none of subsets

while “ C ” means “ C ” or
XNY, X —-Y and Y — X is empty. We say that a subset X crosses another subset Y if they
intersect each other and in addition V — (X UY") # @ holds. A partition X1,..., X; of the vertex
set V means a family of nonempty disjoint subsets of V' whose union is V, and a subpartition of
V means a partition of a subset V' of V.

For a subset V! C V (resp., E' C E) in G, G[V'] denotes the subgraph induced by V'. For
V' C V (resp., E' C FE), we denote subgraph G[V — V'] (resp., (V,E — E')) by G — V' (resp.,
G — E'). For an edge set E' with E'NE = (), we denote the augmented graph G = (V, EUE’) by



Figure 1: Tllustrations of a multigraph which has exactly two minimum disconnecting set S; and Ss. Each
of cuts Ty, Ts, T3, and XU Sy, UT, UT5 is tight, since its neighbor set is the minimum disconnecting set S;.
Similarly with respect to the minimum disconnecting set Ss, each of cuts Ty, T5 and X US; UT; UT, U T3

is tight. In particular, cuts T; for « = 1,...,5 are minimal tight sets since no 7" C T; is tight.

G + E'. For two disjoint subsets of vertices X, Y C V, we denote by Eg(X,Y) the set of edges
e = (z,y) such that z € X and y € Y, and also denote |Eg(X,Y)| by ¢g(X,Y). In particular,
E¢(u,v) is the set of edges with end vertices u and v.

A cut is defined as a subset X of V with ) # X # V, and the size of a cut X is defined by
c(X,V — X), which may also be written as cg(X). A cut with the minimum size is called a
(global) minimum cut, and its size, denoted by A(G), is called the edge-connectivity of G. We
say that a cut X separates two disjoint subsets Y and Y/ of Vif Y C X and Y CV — X (or
Y CV - X and Y/ C X). In particular, a cut X separates vertices z and y if x € X and
y€V —X (orz € V—-X and y € X) hold. The local edge-connectivity Ag(z,y) for two
vertices x,y € V is also defined to be the minimum size of a cut in G that separates x and y
by Menger’s theorem. An edge e whose removal from G increases the number of components is
called a bridge of G.

For a subset X of V, a vertex v € V — X is called a neighbor of X if it is adjacent to some
vertex v € X, and the set of all neighbors of X is denoted by I'¢(X). A maximal connected
subgraph G’ in a graph G is called a component of G (for notational convenience, a component
H may be represented by its vertex set X = V(H)), and denote the number of components in
G by p(G).

A disconnecting set of G is defined as a subset S of V' such that p(G — S) > p(G) holds and
no S’ C S has this property. We say that a set S C V' disconnects two disjoint subsets ¥ and
Y' of V — S if no two vertices z € Y and y € Y’ are connected in G — S. In particular, S
disconnects vertices x and y if x and y are contained in different components of G — S. Also by
Menger’s theorem, kg(z,y) for nonadjacent vertices x and y is equal to the minimum size of a
disconnecting set S that disconnects x and y. Let G denote the simple graph obtained from G
by replacing multiple edges in E¢(u,v) by a single edge (u,v) for all u,v € V. A component



G1 of G with |V(G1)| > 3 always has a disconnecting set unless G, is the complete graph.
If G is connected and contains a disconnecting set, then a disconnecting set of the minimum
size is called a (global) minimum disconnecting set, and its size, denoted by k(G), is called the
vertez-connectivity of G. On the other hand, we define kK(G) = 0 if G is not connected, and
#(G) = n—1if G is a complete graph. A vertex v is called a cut vertez in G = (V, E) if S = {v}
is a minimum disconnecting set in G. A subset X C V' is biconnected if kg(z,y) > 2 holds for
all z,y € X. A cut T C V is called tight if T'¢(T) is a minimum disconnecting set in G (see
Figure 1). Note that every tight set T satisfies V. — T — I'¢(T) # 0. A tight set T is called
minimal if no T' C T is tight (hence, the induced subgraph G[T] is connected). Let ¢(G) be the
maximum number of pairwise disjoint minimal tight sets in G. For a subset S C V, a component
T in G— S is called an S-component if I'¢(T) NS # 0 holds. If S = {x}, then such a component
is called an z-component. Note that v is a cut vertex of GG if and only if there is more than one
v-component. It is not difficult to observe the following lemma about z-components for a vertex

r€eV.

Lemma 2.1 [15] Let X C V be an x-component of a vertexr x € V' in a multigraph G = (V, E).
If X contains a cut vertex y in G, then there is a y-component Y C X. O

2.2 Lower Bounds

In this section, we derive two lower bounds, [&(G)/2] and B(G), on the number of new edges

that is necessary to make a given multigraph G (), 2)-connected. Let us first define
ra(X) = max{ry(u,v) |u € X,v € V — X} for each cut X.
To make G r)-edge-connected and 2-vertex-connected, it is necessary to add

(a) at least max{r\(X) — cq(X),0} edges between X and V' — X, for each cut X
(see Figure 2(a)),

(b) at least max{2 — |['¢(X)|,0} edges between X and V — X —I'¢(X) for each cut
X with V — X —T'¢(X) # 0 (see Figure 2(b)).

Therefore, given a subpartition X = {X1,..., X, Xp11,..., X} of V with V- X; —T'(X;) # 0
for i = p+1,...,¢, we can sum up “deficiency” max{ry(X;) — cq(X;),0}, i = 1,...,p, and
max{2 — |I'¢(X;)|,0}, i =p+1,...,q. Since adding one edge to G contributes to the deficiency
of at most two cuts in X', we need at least [&(G)/2]| new edges to make G (7y,ry)-connected,

where

&G) = max {Z(m(xi) —ca(Xa)+ > (2- |FG(Xi)|)}, (2.1)

T all subpartitions X' | =] i=pt1

and the max is taken over all subpartitions X' = {X1,..., X,, Xp41,..., Xg} of V with V — X, —
FG(XZ) 7é 0)7 Z:p+17,q
In a 2-vertex-connected graph, the deletion of any one vertex in V' does not disconnect the

graph. Hence in order to make G 2-vertex-connected, it is necessary to add



Figure 2: Tllustrations of necessary edge augmentations.

c) at least p(G — v) — 1 edges to connect components of G — v for a vertex v (see
p g p
Figure 2(c)).

Let us define
B(G) = max{p(G —v) —1|v € V}. (2.2)
Combining the above two lower bounds from (2.1) and (2.2), we establish the next lemma.

Lemma 2.2 (Lower Bound) To make a given multigraph G (ry,2)-connected, at least

7(G) = max{[&(G)/2], B(G)}

new edges must be added, where &(G) and B(G) are given by (2.1) and (2.2), respectively. O

This says that a set of new edges is an optimal solution to EVAP(r),2) if its size is equal
to v(G) and the resulting multigraph is (r),2)-connected. We will show that this is always the

case by presenting a polynomial time algorithm for constructing such a set of edges.

2.3 Edge-Splitting

In this subsection, we review the operation of edge-splitting. Given a multigraph G = (V| E),
a designated vertex s € V, vertices u,v € T'g(s) (possibly v = v) and a nonnegative integer
6 < min{cg(s,u),cq(s,v)}, we construct multigraph G' = (V, E') by deleting ¢ edges from
both Fg(s,u) and Eg(s,v), and adding new é edges to Eg(u,v); cgi(s,u) = cg(s,u) — 6,
car(s,v) == cg(s,v) = 6, cqr(u,v) = cg(u,v) + 8, and cq(z,y) := cg(x,y) for all other pairs
z,y € V. In the case u = v, we interpret that cqr(s,u) := cg(s,u) — 28, cqr(u,u) := cg(u,u) + 9,

and cqr(z,y) = cg(z,y) for all other pairs z,y € V, where an integer § is chosen so as to



satisfy 0 < § < %Cc;(s, u). We say that G’ is obtained from G by splitting 6 pair of edges (s,u)
and (s,v) (or by splitting (s,u) and (s,v) by size §). A sequence of splittings is complete if the
resulting multigraph G’ does not have any neighbor of s. The following theorem is proven by

Mader [27].

Theorem 2.1 [27] Let G = (V, E) be a multigraph with a designated vertex s € V with cq(s) #
1,3 and Ag(z,y) > 2 for all pairs x,y € V —s. Then there is a pair of two edges ey, ey € Eg(s)
such that the multigraph G' obtained by splitting edges e1 and ez satisfies A\gi(z,y) = Ag(z,y)
for all pairs x,y € V — s. O

Repeating this, we see that, if c(s) is even, there always exists a complete splitting at s such
that the resulting multigraph G satisfies Ag_4(x,y) = Ag(z,y) for every pair of z,y € V — s.
Gabow [7] proved that such a complete splitting at s can be computed in O(n3mlog (n?/m))

time and the number of new pairs of vertices which became adjacent by the created edges is

O(n).

3 A Polynomial Time Algorithm for EV-AUGMENT

In this section, a polynomial time algorithm for solving EVAP(r),2), called EV-AUGMENT,
is presented. For this, we introduce some definitions. Given a cut vertex v in G, an edge e =
(u,w) with u,w # v is called admaissible with respect to v, if p((G —v) —e) = p(G — v). By
definition, there is no admissible edge if G has no cut vertex. For a subset F' of edges in G, we
say that two edges e; = (uy,wq) and ey = (ug, w9) in F are switched in F, if we delete e; and
es from F and add edges (uy,us) and (wi,wy) to F.

EV-AUGMENT consists of the following four major steps. In each step, we also describe
some properties used to show its correctness. The proofs for these properties will be given in
the subsequent sections. Figure 3 illustrates the process of these four steps for an example

multigraph.

Algorithm EV-AUGMENT

Input: An undirected multigraph G = (V, E) with |V| > 3, and a requirement function ry :

(3) — 2+

Output: A set F' of the smallest number of new edges such that G + F' is (7), 2)-connected.

Step I (Addition of vertex s and associated edges): Add a new vertex s together with a
set Fy of edges between s and V' so that the resulting multigraph G; = (V U {s}, EU F})

satisfies
ey (X) > ra(X) for all cuts X C V, (3.1)
ITa(X)] + T (s)NX| > 2 forall cuts X C VsuchV — X —T¢(X)#0 (3.2)

(except for X = {z} which is an isolated
vertex in Gj i.e., | X| =1 and I'¢(X) = 0)



and Fj is minimal (i.e., any proper subset of Fj violates (3.1) or (3.2)). By (3.1), Gy
satisfies ry-edge-connectivity: Ag, (z,y) > ra(z,y) for all z,y € V.

Property 3.1 The subset Fy obtained in Step I satisfies |Fy| = &(G). 0

Step II (Edge-splitting): If cq, (s) is odd, then add one edge é = (s,w) to Fy by choosing

an arbitrary vertex w € V which is not a cut vertex in G.

Then find a complete edge-splitting at s in G; = (V U {s}, E U Fy) which preserves the
ry-edge-connectivity, i.e.; Ag,(z,y) > ra(z,y) for all pairs x,y € V, where Gy = (V, EUF})
denotes the resulting multigraph (ignoring the isolated vertex s). By Theorem 2.1, there

always exists such a complete edge-splitting.

If k(G2) > 2, then we are done, because |Fy| = |Fy|/2 = [&(G)/2] attains the lower bound
of Lemma 2.2. Otherwise, go to Step III.

Step III (Switching edges): The current multigraph Go is ry-edge-connected, but has cut

vertices. G satisfies

for any cut vertex v and its v-component T, Go[T U {v}] contains

. (3.3)
at least one edge in Fy,

since if this does not hold, it means by the property of edge splitting that T' contains no

end vertex of an edge in Fy in Gy in Step I; [T'q(T)| < 1 and ¢g, (s,7) = 0 in Step I,

contradicting (3.2).

We switch some number of pairs of edges e;,es € Fs to recover 2-vertex-connectivity of

G2 while preserving the r)-edge-connectivity.

Property 3.2 If G5 has two cut vertices v and vy, then there are vi-component Ty and vq-
component Ty such that TyNTy = 0. For this Ty, an arbitrary edge ey € Fy in Go[T1 U{v1}]

18 admaissible with respect to vo. O

Property 3.3 Given a cut vertex v in Go, assume that there i1s an edge ey € Fy in a
v-component T1 of Go, admaissible with respect to v. Let Ty be another v-component such
that e1 & E(Ga[To U{v}]). Then Ga[T2U{v}]| contains an edge es € Fy (by (3.3)), and the

multigraph G resulting from switching ey and e satisfies the followings.

(i) Aay (z,y) > ralz,y) for all z,y € V (i.e., the rx-edge-connectivity is preserved).

(i) p(GY —v) < p(Gy —v) (i.e., the number of v-components in Go decreases at least by

one).
(iii) /@'G{Z(:Jc, y) > 2 holds for any pair x,y € V such that kg, (z,y) > 2.
(iv) (3.9) holds in GY,. O



As long as Property 3.3 is applicable, we repeat switching pairs of edges e1,es € Fy, by
setting Gy := GY, after each switching. Note that the number of v-components decreases
and the number of v’-components with v’ # v does not increase since GY satisfies (ii) and

(iii) in Property 3.3.

Let G3 = (V, EU F3) be the multigraph obtained by such a sequence of switchings in F,
where F3 denotes the final Fy. Clearly, |F3| = |F3| = [&(G)/2] holds.

Note that if G5 has at least two cut vertices, Property 3.2 ensures that the condition of
Property 3.3 holds (consider vs as the cut vertex v). If G3 has no cut vertex, then we are
done, since |F3| = [&(G)/2] implies that G is optimally augmented. Now we assume that

G'3 has exactly one cut vertex, and go to Step IV.

Step IV (Edge augmentation): The current G3 has exactly one cut vertex v, and we can

prove the following property.

Property 3.4 For the multigraph Gs and its cut vertex v, it holds p(Gs —v) = p(G —

v) — [&(G)/2]. O

Denote G4 = G3 — v, and consider all v-components T, ... an(Gg) in G3. Choose a vertex
z; from each T;, and add a set Fy of p(G%) — 1 edges (z;, zit1), 1 =1,...,p(G%) — 1 to G,
by which G'3 becomes a 2-vertex-connected multigraph G4 = G3 + F4. From Property 3.4
and 3(G) > p(G —v) — 1 (by (2.2)), we see that p(G%) — 1 = p(G —v) — [a(G)/2] —1 <
3(G) — [@(G)/2]. Therefore, |F3| 4 |Fy| = [a(G)/2] + (p(GY) — 1) < B(G). By the lower
bound B(G) of Lemma 2.2, this implies that G4 is optimally augmented. O

This algorithm, together with the proofs and complexity analysis in the subsequent sections,

establishes the next theorem.

Theorem 3.1 Given a multigraph G with n vertices and m edges, and a requirement func-
tion Ty : (‘2/) — Z%, G can be augmented to a (ry,2)-connected multigraph by adding v(G) =
max{[&(G)/2], 3(G)} new edges in O(n3(m + n)log (n2/(m +n))) time. O

4 Stepl

This section proves Property 3.1, which ensures that Step I correctly computes &(G).

Proof of Property 3.1: Let G be the multigraph obtained from G by Step I. By (3.1), Gy
satisfies Ag, (z,y) > ra(z,y) > 2 for all z,y € V. First we see |Fy| > &(G), since otherwise some
cut X C V violates (3.1) or (3.2).

In what follows, we prove the converse, |F}| < &(G). A cut X C V is called critical in Gy if
s € I'¢,(X) holds and the removal of some edge e € E¢, (s, X) violates (3.1) or (3.2). Clearly,

acut X CV with s € ', (X) is critical if and only if at least one of the following conditions
holds:



Figure 3: Computation of algorithm EV-AUGMENT for the requirement 7)(z,y) = 3 and r.(z,y) = 2
for all z,y € V. (1) An input multigraph G = (V, E). The two lower bounds given in Section 2 are
f@] = 12—2 = 6 and B(G) =9 — 1 = 8, where the corresponding subpartition is illustrated by broken
circles. (2) The multigraph G; = (V U {s}, E U Fy) after Step I. Edges in F; are drawn as broken
lines. Observe that ¢, (X) > 3 for all cuts X C V, and [I'g, (X Us)| > 2 for all cuts X C V with
V—-X-T¢ (X)#0,and |Fi| = &(G). (3) The multigraph G3 = (V, E U F3) obtained in Step II. G2
satisfies A(G2) > 3 but has cut vertices v and v'. The edge (uy,w;) € F5 is admissible with respect to
v in Go, and edge (u2,w2) € Fy is contained in a v-component that does not contain (uq,w;). (4) The
multigraph G, = (V, EU Fy) obtained from G5 by switching edges (u;,w;) and (ug, ws) into (uy,us) and
(w1, wsy) during Step III. Observe that A(G4) > 3 holds and the number of v-components is decreased by
one. Moreover, G}, has no admissible edge in Fj (that is, G3 = G} and F3 = F}). (5) The multigraph
G4 = (V,E U F5 U F;) obtained by adding an edge set Fy = {e1,ex} to GL(= G3) in Step IV, where
B(G) — fﬂ] = 2. This G4 is (3, 2)-connected. O

2
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—

(1) g, (X) = ra(X).
(2) ITqg(X)| =1, cg,(s,X)=1Tand V — X — T, (X) # 0.
(3) Ta(X)| =0, |Tq,(s) N X| =2, and ¢, (s,u) =1 for some u € ', (s) N X.

A cut X is called critical of type (1) (resp., (2) and (3)) if it satisfies (1) (resp., (2) and (3)).
We will now prove via several claims that G has a set of critical cuts Xy,..., X, only of
types (1) and (2) such that

Ig,(s) CXjU---UXgand X;NX; =0, 1<i<j<gq. (4.1)
P q
This implies that |Fy| = Z(TA(Xi) —cq(Xy)) + Z (2 —|Tq(X;)]) p, where cuts X; for i =
1=1 i=p+1

1,...,p are of type (1) and cuts X; for i =p+1,...,q are of type (2). This and the definition
of &(G) imply |Fi| < &(G).

Now it is not difficult to verify the following claims (see [15] for the proofs). A critical cut X
is called u-minimal for u € T, (s) N X if there is no critical cut X’ with {u} C X' C X.

Claim 4.1 Any critical cut X induces a connected subgraph G1[X] (=G[X]). O
Claim 4.2 Any critical cut X of type (3) is also critical of type (1). O

Claim 4.3 [4] Let X and Y be critical cuts of type (1) in G1. Then at least one of the following

statements holds.
(i) Both X NY and X UY are critical of type (1).
(ii) Both X =Y and Y — X are critical of type (1), and cq, (X NY, (VU {s}) —(XUY)) =0.

|

Claim 4.4 Let X and Y be critical cuts of type (2) such that X and Y are respectively u-
minimal and v-minimal for u € (X —=Y)NT¢q,(s) and v € (Y — X)NTg,(s). Then X UY is a
critical cut of type (1) or X NY = 0. O

Claim 4.5 Let X be a critical cut of type (1), and Y be a critical cut of type (2) such that
Fe,(s)N(Y = X) #0. If X and Y cross each other in Gy, then cq,(X NY,s) = 0 holds and
cut Y — X s critical of type (1). O

Let Ny be the set of u € ', (s) such that there is a critical cut X of type (1) with v € X.
Let us consider a set X; of critical cuts of type (1) such that Ny C Uxecx, X. We choose X} so
that 3y, |X| is minimized. For Ny =T'g, (s) — N1, we choose a u-minimal critical cut X, of
type (2) for each u € Ny, and let Xy = {X,, | v € Na} (note that Claim 4.2 implies that every
v € Ny is contained in some critical cut of type (2)). Then the next claim proves the existence

of a set of critical cuts of (4.1).

Claim 4.6 The above family of cuts X = X1 U Xy gives disjoint critical cuts of types (1) and
(2) such that ', (s) C Ux,exX;.
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Proof: Let A} = {Xy,...,X,} and Xy = {Xpy1,..., X}, where @ # X; C V for all i. Clearly,
I'c,(s) C Ux,exX; holds from the construction of X'. Therefore we need to prove that the cuts
are pairwise disjoint.

From the construction of A} and Claim 4.3, it is shown in [4] that X; and X are pairwise
disjoint for any two cuts X;, X; € Aj. Claim 4.4 implies that X; and X, are disjoint for
any two cuts X;, X; € Ay, because X; U X; cannot be critical of type (1) (if so, it holds
I'q,(s) N (X; U X;) C Ny, a contradiction).

Finally, we show that X; and X; are disjoint for each X; € A} and X; € A5. Note that
Fg,(s) N (X; — X;) # 0 holds from definition of N;. Then X; C X; does not hold. Also note
that X; C X, does not hold, since otherwise I', (s) N X; # 0 and T'¢, (s) N (X; — X;) # 0 imply
cq, (Xj,s) > cg,(Xi,s) +1 > 2, contradicting that X is of type (2). Assume that X; and X;
cross each other in G1. Then, by I', (s) N (X; — X;) # 0, Claim 4.5 implies that X; — X is a
critical cut of type (1). This implies that no vertex in X; belongs to Ny, contradicting X; € A5.
a

Before proceeding to Step II, let us consider the time complexity of Step I for constructing
G from G. Let G’ be the multigraph obtained from G by adding a vertex s and max{r(z,y) |
z,y € V} edges between s and every vertex v € V.. For each v € V| we perform the following

procedure sequentially.

1. Delete all edges in Egi(s,v) and denote the resulting multigraph again as G’ (i.e., G’ :=
G' — Egi(s,v)). Compute Ag/(z,y) for all z,y € V.

2. Add to G' max, yev[{ra(z,y) — Ag/(z,y)},0] edges between s and v, and denote the

resulting multigraph as G'.

3. If there is a cut vertex w # s in the current G’ (hence cqr(s,v) = 0), then add one edge
(s,v) to G".

By Step 2, the current G’ satisfies (3.1). In Step 3, whenever there is a cut vertex w # s, adding
one edge (s,v) preserves (3.2), because this w becomes a cut vertex by cgi(s,v) = 0. So the
resulting G’ satisfies (3.1) and (3.2), and it is easy to see that the removal of any edge in Eg(s,v)
of G' violates (3.1) or (3.2). Step 1 for a vertex v can be carried out in O(n?m’log (n?/m’))
time by using a Gomory-Hu tree [9] which is constructed by n — 1 maximum flow computations
[8], where m’ = m(G’) = O(m(G) + n(G)) (by a Gomory-Hu tree, we can obtain the values
Agi(z,y) for all z,y € V). Steps 2 and 3 can be executed in O(m(G) + n(G)) time. Therefore,
the entire computation for all v € V can be done in O(n?(m + n)log (n?/(m + n))) time. O

5 Step Il

Let Gy = (VU {s}, E U Fy) be the multigraph obtained from G = (V, E) in Step 1. Step II
computes the multigraph G5 by applying a complete splitting at s in G1, which preserves the
ry-edge-connectivity. As noted in Section 2.3, such a complete splitting can be computed in

O(n*m'log (n?/m')) time, where m' = m(G1) = O(m(G) + n(G)), and the number of new pairs
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of adjacent vertices in Gy is O(n). Thus, the number m(G3) of pairs of adjacent vertices in Gy
is O(m(G) + n(Q)).

Remark 5.1: If ¢g, (s) is odd in the beginning of Step II, a “non cut vertex” @ of G is chosen
to add an extra edge é = (s,w) to G1. The choice of this @ will play an important role in

proving the correctness of Step IV.

6 Step III

Let Go = (V, E U F3) be the multigraph obtained in Step II. This G5 is r)-edge-connected but

has cut vertices. The correctness of Step III follows from Properties 3.2 and 3.3.

Proof of Property 3.2: This property follows since 71 N Ty = @) holds and G2[Th U {v1}] — e1
is connected by A(G2) > 2. See [15] for the details. O

To show Property 3.3, we use the next claim, which can be easily seen from the definition of

the admissibility.

Claim 6.1 Let v € V be a cut vertex in Go. Assume that a v-component T contains an admais-
sible edge e = (u,u’) with respect to v. Then Go[T| — e contains a path P between u and u'.
O

As defined in the statement of Property 3.3, given a cut vertex v, let e; = (uy,w;) € F5 be
an edge in a v-component 717 of G, admissible with respect to v, T5 be another v-component
in Gy such that e; € E(Ga[T> U {v}]), and ez = (u2,w2) € F» be an edge in Ga[T> U {v}].
Then GY, = (V, E U F}) denotes the multigraph obtained from G5 by switching e; and eg, where
F) = Fo U{(uy,us), (wy,ws)} —{e1,e2}.

Proof of Property 3.3(i): We show that Aay (z,y) > ra(x,y) holds for all z,y € V. Assume
otherwise; i.e., there is a cut X such that cg; (X) < 73(X)—1 holds. Note that cg; (X) > cg,(X)
holds if cut X does not separate {uy,us} and {wy,ws} in GY. Therefore assume that X separates
{u1,uz} and {wy, ws}, and hence ¢y (X) = cq,(X) — 2, i.e., ¢, (X) <y (X)+1. Since at least
one of the cuts X and V' — X crosses each of the v-components T and T5, the subgraph G5[X]
or G3[V — X] (the one not containing v) is not connected. Without loss of generality, assume
that G2[X] is not connected, i.e., two cuts X;, i = 1,2, satisfy X; N Xy =0, X; U Xy = X,
and Eq,(X1,X2) = 0. The ry-edge-connectivity of Gy implies cq,(X;) > i (X;) > 2 for
i = 1,2. Furthermore, at least one of cg,(X1) > rA(X) and cq,(X2) > ra(X) holds, because
there is a vertex pair x and y such that x € X, y € V — X and ry(x,y) = rA(X). Therefore
ey (X) = ey (X1) + ¢, (X2) > ra(X) + 2, contradicting the assumption cq,(X) < 7 (X) + 1.
O

Proof of Property 3.3(ii): We show that p(G4 — v) < p(G2 — v) holds. It suffices to show
that G5[T1 UTh] is connected. This follows from Claim 6.1, A(G2) > 2 and Eq (T1,T2) # 0 (see
[15] for the details). O
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Proof of Property 3.3(iii): We show that k¢ (z,y) > 2 holds if kg, (z,y) > 2. Assume that
there are vertices z,y € V such that kg,(z,y) = 2 but nc;/z(:r,y) = 1. Let v € V denote a
cut vertex in G that disconnects z and y. Clearly, v # v (because v is a cut vertex in G
and v = ¢ would imply kq,(z,y) = 1). Let Wy, Ws,..., W, (¢ > 2) be the v'-components
of G, where x € W, and y € Wy. In this case, Go[W1 U Wy U {v'}] contains all the end
vertices w1, wy, us, and wy (otherwise, switching e; and ey would join some other two W;, W;,
contradicting the definition of Wi, W5). Since the cut vertex v’ does not disconnect = and y in
G, e1 € Eq, (W1, Ws) or es € Eg, (W1, Ws) holds. Also no edge other than e; and ez belongs
to Eg,(Wi,Ws). We show that u;, w; € W; cannot hold for any ¢, j with 1 <4, j < 2. For this,
assume uq,w; € Wi without loss of generality. Then ey = (ug2, we) € Eq, (Wi, W) holds, where
we assume uy € Wi and wy € Wy without loss of generality. Hence (wy,wy) € EG’2 (W, Wy)
would hold, contradicting that W; and W5 are v'-components in G). Therefore, for eachi = 1,2,
we see that e; = (u;, w;) € Eg,(Wi,W3) or v’ € {u;, w;}.

We first consider the case ey € Eq, (W1, Ws). Thus v’ € T} holds since Go[T1]—e; is connected
by Claim 6.1. Since v’ € T} implies us # v’ # wy, we have es € Eq, (Wi, Ws); assume uy €
TiNWy, wy € TiNWy ug € ToNW1, weg € To "Wy and v € Wy without loss of generality. Since
the cut vertex v € Wy disconnects wy € Th and wy € Ty in Go, ¢, (To N Wa, Wo U {v'} —T5) =0
holds. From this and Eq, (W1, Ws) = {e1, ez}, cq,(To N W3) = [{ea}| = 1 holds, contradicting
the r)-edge-connectivity of G.

We then consider the case e; ¢ Eq, (Wi, Ws) (ie., v/ =wuy € Ty or v/ = wy € T1). In this
case, we see that es € Eg, (W1, Ws) and v’ ¢ Ty. This also leads to a contradiction, analogously

to the above case. O

Proof of Property 3.3(iv): We show that (3.3) holds in G%. If G4[T' U {v}] contains no edge
in Fy for some cut vertex v and its v-component T, then T contains no end vertex of an edge in
F} in GY. This implies that ', (s) N T = 0 holds in Step I, i.e., |Tg(T)| < 1 but ¢q,(s,T) =0,
contradicting (3.2) in Gj. O

Now we evaluate the time complexity of Step III. We can check whether G5 has more than
one cut vertex in linear time. If this is the case, for an admissible edge e; € F» in Go[T1 U {v1}],
an edge ez in Property 3.3 can be found in linear time by computing all biconnected components
of Gy [30]. Also, if G2 has exactly one cut vertex v, then we can find a pair of edges e; and
eg in Property 3.3 in linear time by computing all bridges in G2[V — v]. By switching such a
pair of edges in Fy, Property 3.3(ii) and (iii) tell that the number of v-components decreases
at least by one, and for other cut vertices v/ in G5, the number of v’-components does not
increase. Note that the total number of v-components over all cut vertices v in G9 is at most
2n. Therefore, the number of switching executed in Step III is O(n). This also implies that the
number of new pairs of adjacent vertices created by the switchings is O(n). Thus, the number
of pairs of adjacent vertices in G3, m(G3), is O(m + n). Therefore Step III can be performed in
O(n-m(G3)) = O(nm) time.
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7 SteplV

Let G = (V, E U F3) be the multigraph obtained after Step III, where |F3| = [&(G)/2]; G3 is
ry-edge-connected, has exactly one cut vertex v and satisfies (3.3). The correctness of Step IV
follows from Property 3.4, which we now prove via two claims. Let X" be the set of disjoint critical
cuts of Claim 4.6 for G;. Recall that one edge é = (s,w) is added to |F}| at the beginning of
Step IT if ¢, (s) is odd in Step II, where @ is chosen to be a non-cut vertex in G. We call this
edge é = (s,w) additional.

Claim 7.1 For each critical cut X € X of type (1) in Gy, the induced multigraph G3[X] contains

no edge in Fj.
Proof: It follows from A(G3) > 2 (see [15] for the details). O
Claim 7.2 F3 contains no edge incident to the cut vertex v in Gs.

Proof: We assume that G3 has an edge e = (v,v') € F3 incident to the cut vertex v. Note that
Claim 4.6 implies that v is contained in a critical cut in Gy, except for the case that v = w,

(where é = (s,w) is an additional edge).

Case-1: v is contained in a critical cut X of type (1) in Gy. Then v,v" € T'g, (s) holds
by e = (v,v') € F3. We first show that both G3[X] and G3[V — X] are connected. Since
G[X] is connected by Claim 4.1, G3[X] is also connected. Assume that G3[V — X] has two
disjoint vertex sets V3 and V, such that V3 UVe =V — X and ¢q,(V1,V2) = 0. In this case,
cGs(Vi, X) > 2 holds for i = 1, 2 since A(G3) > 2. There are vertices z* € X and y* € V—X with
ra(z*, y*) = ra(X) > ¢, (X)—1 (note that 7\ (X)+1 = ¢g,(X) holds if w € X). Assume y* € V)
without loss of generality. Then we have cg, (V1) = cg,(V — X) — gy (V2) < e, (V —X) —2 =
cas (X)—2 < ry(z*,y*)—1 < ry(V1)—1, contradicting the r)-edge-connectivity of G3. Therefore
G3[V — X] is also connected.

Claim 7.1 and v € X imply v' € V — X. Let T’ be the v-component that contains v'. Since
G3[X] and G3[V —X] are both connected, we see that G3[X] contains all the v-components except
for T'. Now for each v-component T' C X, there is another edge (¢,t') € F5 with t € T C X by
(3.3) (note that F3 is the final F5 in Step IT and hence satisfies (3.3)). By Claim 7.1, the other
end vertex t' is not in X, i.e., ' € V — X =T’ — X. Such edge (¢,t') connects two v-components

T and T' in G3, contradicting that v is a cut vertex of Gs.

Case-2: v is contained in a critical cut X of type (2) in Gy. Let {z} =T'¢(X) and V' C V be
the component of G that contains v. Thus, X is an z-component of G (where z is not necessarily
a cut vertex in G). Note that no other edge than e in F3 is incident to v except for the case
that v = .

(i) The case where e is the only edge in F3 which is incident to v in G3. We see that v is not
a cut vertex in G (this can occur if e connects two components in G). If v is a cut vertex in
G, then we have v # w and Lemma 2.1 implies that there is a v-component X, C X — v of G,

which contradicts that the critical cut X of type (2) has no neighbor of s in G; other than v (see
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[15] for the details). Therefore G[V' — v] is connected. Thus G3[V’ — v] is connected and hence
V! —wv is contained in a v-component T} of G3. Hence for any other v-component T5 of G5, T5 is
contained in a component of G other than V' and therefore Eq,(Ty) = Eq,(T2,v) C F3 holds.
By A(G3) > 2, Eq,(T>) must contain at least two edges in F3, a contradiction.

(ii) The case where at least one more edge (say, e’ # €) of Fj3 is incident to v. In this case, at
least two edges in Fj is incident to v in G3. However, since c¢g, (s, X) =1 holds in Gy (since X
is of type (2)), it means that the additional edge (s, ) with v = 4 has been chosen in Step II.
Thus, Eg,(v) N F3 = {e,€¢’} and v = . Since @ = v is not a cut vertex in G, G[V' — v] (and
hence G3[V' — v]) is connected, and V' — v is contained in a v-component T in G5. From
this, any other v-component T, satisfies Eq,(T>2) = Eg,(T2,v) C F3. By AMG3) > 2, Eg,(T»)
must contain at least two edges in F3. Thus, by Eq,(v) N F3 = {e, €'}, we see that there are
exactly two v-components T} and Ty in G3 and Eg,(v) N F3 = {e,e'} = Eq,(T2). By (3.3),
G3[T1 U {v}] contains at least one edge e* = (v*,w*) € F3. From Eq,(v) N F3 = Eq,(T>), this
e* is not incident to v. Then we see that e¢* € F3 is admissible with respect to v in G3 since
otherwise A(G[V — v']) > 0 implies that there is another component V/(C T} — V') of G with
Eq,(V", Ty —V") = {e*}, which contradicts A(G3) > 2 (see [15] for the details). This contradicts

the assumption of G3.

Case-3: The remaining case (i.e., v is contained in no critical cut X € X and v = @ holds).
Let V' C V be the component of G that contains v. Clearly, no other edge ¢ # e in Fj is
incident to v, and G[V’ —v] (and hence G3[V’ — v]) is connected since v = w is not a cut vertex
of G. Thus, V! — v is contained in a v-component Ty, and E¢,(v,T2) = {e} holds for another
v-component Ty in Gi3. This T; satisfies ¢g,(T2) = 1, contradicting A\(G3) > 2. O

Proof of Property 3.4: Since |F3| = [&(G)/2] holds from construction, it suffices to show
p(G—v) =p(Gs —v)+|F5]. If p(G—v) < p(G3—v)+|F3|, then there is at least one edge e € F3
such that p((G3 —v) — e) = p(G3 — v). Thus e is admissible with respect to v, since no edge in
F3 is incident to v by Claim 7.2. This contradicts the construction of G5 (since this implies that
Step IIT has not finished yet). Therefore p((G3z —v) —e) = p(Gs —v) + 1 for all edges e € F3.
This leads to p(G —v) = p(G3 —v) + |F3|. O

Clearly, Step IV can be executed in linear time since computing all biconnected components
of G3 can be done in linear time [30].

As a result of proofs in Sections 4 — 7, the correctness of algorithm EV-AUGMENT has been
proved. By summing up the running time of all steps, we conclude that the total time complexity
of algorithm EV-AUGMENT is O(n3(m + n)log (n?/(m +n))). This proves Theorem 3.1.

Before concluding this section, we remark that in the special case of the uniform requirement
ra(z,y) = (£ for all x,y € V, the complexity can be improved by a factor of n?. By results of
[28, 29], we observe the following theorem. See [15] for the proof.

Theorem 7.1 Problem EVAP({,2) can be solved by algorithm EV-AUGMENT in O((nm +
n%logn)logn) time. O
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8 Preserving Simplicity

In this section, we consider another variant of the augmentation problem: Given a simple graph
G = (V,E) and requirement functions 7y and 7, find a smallest set F' of new edges such
that G' = (V, E U F) remains simple and becomes (r),7,)-connected. This problem is called
the simplicity preserving edge-and-vertex-connectivity augmentation problem, and is denoted by
SEVAP (7, 7x)-

The problem SEVAP(r),0) was first posed in [5] as an important open problem, and recently
Jordan [22] proved that SEVAP(¢,0) (i.e., ry(x,y) = £ for all z,y € V') is NP-hard for a general
¢ even if the input simple graph G is assumed to be (£ — 1)-edge-connected. On the other
hand, Bang-Jensen and Jordan [1] showed that SEVAP(r),0) can be solved in polynomial time
if 0* = max{r\(z,y) | z,y € V} is considered to be a fixed constant. They proved the next

result, which plays a key role in their algorithm.

Lemma 8.1 [1] Let G' = (V U s, E') be a multigraph such that G' — s is simple and ry-edge-
connected, where r) : (‘2/) — 7T is a given function. Then there are polynomial functions f(£*)

and g(0*) of £* = max{rx(z,y) | v,y € V} satisfying the following properties.

(i) If cqr(s) > f(£*), then there is a complete splitting such that the resulting multigraph
(ignoring s) is simple and ry-edge-connected. Moreover, such a complete splitting can be

obtained wn polynomaial time.

(i) If cqr(s) < f(£*), then G' — s can be augmented by at most g(£*) new edges so that the

resulting multigraph becomes simple and r)-edge-connected. O

For a uniform requirement r) = £, f(£) = 3¢* and g(¢) = 3¢1/2 + 2% + 1 are shown in [1].
In this section, we show that algorithm EV-AUGMENT in Section 3 can be modified to
exploit Lemma 8.1 so as to solve SEVAP(ry, 2).

Theorem 8.1 Given a simple graph G = (V, E) and a function r) : (‘2/) — ZT, SEVAP(r),2)

can be solved in polynomial time for a fized £* = max{ry(z,y) | z,y € V'}. O

To solve SEVAP(r),2) we modify Steps IT and III of algorithm EV-AUGMENT in order to
maintain the simplicity of the graph.

Algorithm EV-AUGMENT'

Step I': The same as Step I of EV-AUGMENT, which computes a multigraph G for a given
simple graph G.
Step II': We distinguish the following two cases, where * = max{r)(z,y) | z,y € V'}.

(1) cq,(s) > f(£*). We perform a complete splitting at s that preserves the simplicity
of G1 — s as well as the ry-edge-connectivity of G;. Such a splitting can be obtained in
polynomial time for a fixed £* by Lemma 8.1(i). Then we proceed to Step III'.
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(2) cq,(s) < f(€*). By Lemma 8.1(ii), we can make G — s (i.e., the input simple graph
G) ri-edge-connected by adding a set F| of at most g(¢*) new edges, while preserving
simplicity. Let G = (G; — s) + F|. Note that t(G}) < f(¢*) holds, because any minimal
tight set in GY has at least one neighbor of s in Gy, by the construction of Gy. This
tells that the input simple graph G becomes 2-vertex-connected by adding a set Fj of
at most f(£*) — 1 new edges while preserving simplicity. The resulting (7), 2)-connected
graph G% + F} is obviously simple. Now, since the size |F| of an optimal solution F is at
most g(¢*) + f(£*) — 1, such F can be found by inspecting all possible choices of subsets
F CV xV —E with |F| < g(¢*) + f(£*) — 1. This can be done in polynomial time for a
fixed ¢*. Halt.

Step IIT': As in Step III of EV-AUGMENT, we try to continue switching edges e; = (uy, wy),
es = (u2,wy) € Fy, which satisfy the assumption of Property 3.3, until there is no pair of
such edges. However, to keep the multigraph resulting from a switching simple, the edges

to be switched are carefully chosen.

(1) u1 ¢ Tg,(ug) and wy ¢ T'g,(wq) holds, or uy ¢ Tg,(wy) and wy ¢ T, (uz). Then
we switch from ey, ey to (uy,us), (wy,ws) in the former case (resp., to (uy,ws), (ug,wy)
in the latter case). Notice that Property 3.3 says that the two switchings from ej, es to
(w1, us9), (wy,wy) and from ey, es to (uy,ws), (ug, wr) both satisfy conditions (i) — (iv) in
Property 3.3. Clearly, the resulting graph is also simple. Note that if G2 has at least two

cut vertices, then we can find such pairs e, es € F.

(2) Otherwise ey or e (say, e1) is incident to v. Let ey = (uy,v) and T3 be a v-component
containing uy. We choose an arbitrary vertex w in a v-component Ty different from 717,
replace the edge e; = (uy,v) with a new edge ¢ = (uy,w), and update Fy by (Fy —
{e1}) U {€'}. Clearly, the resulting multigraph G% remains simple. As will be shown as
Property 8.1 below, G, still satisfies all conditions (i)—(iv) of Property 3.3.

We repeat these operations (1) or (2) as long as possible. If this leads to the graph G
without a cut vertex, we are done; output the resulting F5 as an optimal solution and halt.

Otherwise we proceed Step IV'.

Property 8.1 Given a cut vertex v in Gy = (V,E U Fy), assume that there is an edge
e = (u,v) € Fy incident to v. Let Ty be the v-component containing u. Then for any
vertez w € V — (Ty U{v}), the multigraph G', obtained by changing e = (u,v) to ¢’ = (u,w)
satisfies the conditions (1)—(iv) of Property 3.5.

Proof: The proof is similar to that of Property 3.3. See [15] for the details. O

Step IV': We see that the resulting graph G3 has exactly one cut vertex v € V', no edge e € Fy
incident to v and no edge e € Fy admissible with respect to v. We add to G3 another set
F, of new edges which is computed in Step IV of EV-AUGMENT. Adding Fj preserves
simplicity of G, because for each edge (z;,x;11) € Fy, x; and x;4; belong to different

18



v-components of G3. Thus, as in Step IV, we conclude that F' = F3 U F} is an optimal
solution, which attains |F3 U Fy| = 3(G).

Clearly, all steps in the above algorithm EV-AUGMENT’ can be executed in polynomial time

(for a fixed £*). Summarizing the argument given so far, Theorem 8.1 is now established. O

9 Conclusion

We considered in this paper the problem of augmenting a multigraph G = (V, E) with the
smallest number of new edges so as to make G (r),2)-connected for a general requirement
function 7y : (‘2/) — Z7T. To solve this, we introduced a lower bound on the number of new edges,
and developed an edge-switching operation that preserves the edge-connectivity and vertex-
biconnectivity. The resulting algorithm runs in O(n®*(m + n)log (n?/(m +n))) time if ry is
general, and in O((nm +n?logn)logn) time if 7y(z,y) = £ holds for all z,y € V. It was further
shown that the problem that augments a simple graph while preserving the simplicity of the
graph can be solved in polynomial time for any fixed £* = max{ry(z,y) | z,y € V'}.

Recently, we generalized the above approach to the following problem: given an arbitrary
multigraph G = (V, E) and an integer ¢ > 3, find the smallest number of new edges to make
G (£,3)-connected. The result in [16, 18] says that this problem can be solved in polynomial
time for any fixed £. Moreover, given a (k — 1)-vertex-connected multigraph G = (V, E') and two
integers ¢ and k with £ > k > 4, we showed that G can be made (¢, k)-connected by adding new

edges whose size is O(¢) over the optimum [17].
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