Glasgow Math. J. 42 (2000) 31-35. C Glasgow Mathematical Journal Trust 2000. Printed in the United Kingdom

COMPACT TOEPLITZ OPERATORS WITH CONTINUOUS SYMBOLS ON WEIGHTED BERGMAN SPACES

TAKAHIKO NAKAZI* and RIKIO YONEDA

Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

(Received 26 March, 1998)

Abstract. Let $L_a^2(D, d\sigma d\theta/2\pi)$ be a complete weighted Bergman space on the open unit disc D, where do is a positive finite Borel measure on [0, 1). We show the following : when ϕ is a continuous function on the closed unit disc \bar{D} , T_{ϕ} is compact if and only if $\phi = 0$ on ∂D .

1991 Mathematics Subject Classification. 47B35, 47B07

Let D be the open unit disc and $d\sigma$ a positive finite Borel measure on [0, 1). Let $L_a^2 = L_a^2(D, d\sigma d\theta/2\pi)$ be a weighted Bergman space on D; that is, L_a^2 consists of analytic functions f in D with

$$
||f||_2^2 = \int_D |f(re^{i\theta})|^2 d\sigma d\theta / 2\pi < \infty.
$$

When L_a^2 is closed, P denotes the orthogonal projection from $L^2 = L^2(D, d\sigma d\theta/2\pi)$
onto L_a^2 . For ϕ in $L^{\infty} = L^{\infty}(D, d\sigma d\theta/2\pi)$, we consider the Toeplitz operator
 $T_{\phi}: L_a^2 \to L_a^2$ defined by $T_{\phi}f = P(\phi f), f \in$ [5, p. 107] and [1]. When $d\sigma = (1 - r^2)^{\alpha} dr (-1 < \alpha < \infty)$, the Theorem is also true; see [3] and [4]. However, that argument does not work for the general situation. We need a new idea in order to prove the Theorem. Let $H = H(D)$ denote the set of all analytic functions on D .

THEOREM. Suppose that $L_a^2 = L_a^2(D, d\sigma d\theta/2\pi)$ is complete. When ϕ is a continuous function on the closed unit disc \overline{D} , T_{ϕ} is compact if and only if $\phi = 0$ on ∂D .

In order to prove the Theorem, we need three lemmas.

LEMMA 1. L_a^2 is complete if and only if $\sigma([\varepsilon, 1)) > 0$ for some ε with $0 \le \varepsilon < 1$.

Proof. For $a \in D$, put

$$
s(\mu, a) = \inf \left\{ \int_D |f|^2 d\mu; f \in H \text{ and } f(a) = 1 \right\},\
$$

^{*}This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

where *H* is the set of all analytic functions on *D* and $d\mu = d\sigma d\theta/2\pi$. Statement (1) of Corollary 1 in [2] is valid for $s(\mu, a)$ instead of $S(\mu, a)$. When $(supp\mu) \cap D$ is a uniqueness set for H, by Statement (1) of Theorem 8 in [2], L_a^2 is complete if and only if, for all compact sets K in D, $\int_K \log s(\mu, a) r dr d\theta / \pi > -\infty$. If σ is not a zero measure, then $(supp\mu) \cap D$ is a uniqueness set for H. These statements suffice to prove the Lemma.

LEMMA 2. If $\sigma([\varepsilon, 1)) > 0$ for every ε with $0 \leq \varepsilon < 1$, then

$$
\lim_{n\to\infty}\frac{\int_0^{\varepsilon}r^n d\sigma}{\int_{\varepsilon}^1 r^n d\sigma}=0 \quad (0\leq \varepsilon<1).
$$

Proof. When δ is a positive constant with $\varepsilon + \delta < 1$, the following inequality holds.

 $\hat{\mathcal{A}}$

$$
\frac{\int_0^{\varepsilon} r^n d\sigma}{\int_{\varepsilon}^1 r^n d\sigma} \le \frac{\sigma([0, \varepsilon])}{\int_{\varepsilon}^1 \left(\frac{r}{\varepsilon}\right)^n d\sigma} \le \frac{\sigma([0, \varepsilon])}{\int_{\varepsilon+\delta}^1 \left(\frac{r}{\varepsilon}\right)^n d\sigma}
$$

$$
\le \frac{\sigma([0, \varepsilon])}{\left(\frac{\varepsilon+\delta}{\varepsilon}\right)^n \sigma([\varepsilon+\delta, 1])} \qquad (0 < \varepsilon < 1).
$$

Since they are positive and $\lim_{n\to\infty} \{(\varepsilon+\delta)/\varepsilon\}^n = \infty$, we have

$$
\lim_{n\to\infty}\left(\int_0^\varepsilon r^n d\sigma/\int_\varepsilon^1 r^n d\sigma\right)=0.
$$

LEMMA 3. If for every ε with $0 \leq \varepsilon < 1$, we have

$$
\int_{\varepsilon}^{1} r^{n} d\sigma > 0 \text{ and } \lim_{n \to \infty} \frac{\int_{0}^{\varepsilon} r^{n} d\sigma}{\int_{\varepsilon}^{1} r^{n} d\sigma} = 0,
$$

 \overline{a}

then for any non-negative ℓ

$$
\lim_{n \to \infty} \frac{\int_0^1 r^{n+\ell} d\sigma}{\int_0^1 r^n d\sigma} = 1
$$

Proof. For every ε with $0 \le \varepsilon < 1$, the following inequality holds.

$$
1 \geq \frac{\int_0^1 r^{n+\ell} d\sigma}{\int_0^1 r^n d\sigma} = \frac{\int_0^{\epsilon} r^{n+\ell} d\sigma + \int_{\epsilon}^1 r^{n+\ell} d\sigma}{\int_0^{\epsilon} r^n d\sigma + \int_{\epsilon}^1 r^n d\sigma}
$$

$$
\geq \frac{\epsilon^{\ell} \int_{\epsilon}^1 r^n d\sigma}{\int_{\epsilon}^1 r^n d\sigma + \int_0^{\epsilon} r^n d\sigma}
$$

$$
= \epsilon^{\ell} \left(1 + \frac{\int_0^{\epsilon} r^n d\sigma}{\int_{\epsilon}^1 r^n d\sigma}\right)^{-1}
$$

 $\int_{1}^{1} r^{n+\ell} d\sigma$ because $\int_{\epsilon}^{1} r^{n} d\sigma > 0$ and $\ell \ge 0$. Thus $\lim_{n \to \infty} \frac{\int_{0}^{r^{n+\ell} d\sigma}}{\int_{r^{n} d\sigma}^{1} r^{n} d\sigma} \ge \epsilon^{\ell}$. Let $\varepsilon \to 1$ to prove the

Proof. Suppose that $\phi(re^{i\theta}) = \sum_{i=1}^{\infty} \phi_i(r)e^{i j\theta}$ is continuous on \overline{D} , where *j=-oo* $\phi_j(r) = \int_0^{2\pi} \phi(re^{i\theta}) e^{-ij\theta} d\theta/2\pi$

for $j = 0, \pm 1, \pm 2, \cdots$. Then $\phi_j(r)$ is continuous on [0,1] for any j. Put

$$
e_n(re^{i\theta}) = a_n r^n e^{in\theta}
$$

$$
= r^n e^{in\theta} / \sqrt{\int_0^1 r^{2n} d\sigma}
$$

for $n \geq 0$, then $\{e_n\}$ is an orthonormal basis in L^2_a . For each j, put

$$
\Phi_j(re^{i\theta})=r^{|j|}e^{-ij\theta}\phi(re^{i\theta}).
$$

Then $T_{\Phi_j} = T_{r^{j_0}e^{-ij\theta}}T_{\phi}$ for $j \ge 0$ and $T_{\Phi_j} = T_{\phi}T_{r^{j_0}e^{-ij\theta}}$ for $j < 0$. If T_{ϕ} is compact, then T_{Φ_i} is also compact for any *j*. For each *j*, if $n \geq 0$, then

$$
|\langle T_{\Phi_j}e_n, e_n \rangle| \leq ||T_{\Phi_j}e_n||_2||e_n||_2 = ||T_{\Phi_j}e_n||_2.
$$

Since T_{Φ_j} is compact for each *j* and $e_n \to 0$ ($n \to \infty$) weakly, $||T_{\Phi_j} e_n||_2 \to 0$ ($n \to \infty$) Since T_{Φ_j} is compact for each *j* and $e_n \to 0$ (*n* and so $\langle T_{\Phi_j} e_n, e_n \rangle \to 0$ (*n* $\to \infty$). For each *j*,

$$
\langle T_{\Phi_j} e_n, e_n \rangle = \int_0^{2\pi} \int_0^1 \phi(re^{i\theta}) r^{|j|} e^{-ij\theta} a_n^2 r^{2n} d\sigma d\theta / 2\pi
$$

$$
= a_n^2 \int_0^1 \phi_j(r) r^{|j|+2n} d\sigma
$$

and then $\lim_{n\to\infty} a_n^2 \int_0^{\infty} \phi_j(r) r^{|j|+2n} d\sigma = 0$. By Lemma 1, $\sigma([\varepsilon, 1)) > 0$ for some ε with $0\leq\varepsilon< 1$ and hence $\sigma([\varepsilon,\,1))>0$ for every $\varepsilon< 1.$ Hence, by Lemma 2, we have

$$
\lim_{n \to \infty} \frac{\int_0^{\varepsilon} r^{2n} d\sigma}{\int_{\varepsilon}^1 r^{2n} d\sigma} = 0 \text{ for } (0 \le \varepsilon < 1).
$$

Then, by Lemma 3, for any integer j we have

$$
\lim_{n\to\infty}a_n^2\int_0^1 r^{|j|+2n}d\sigma=1.
$$

Since $\phi_j(r)$ is continuous on [0,1], we can approximate $\phi_j(r)$ uniformly by polynomials $\sum_{t=0}^{k} c_t r^t$. Since $\lim_{n \to \infty} a_n^2 \int_0^1 r^{|j|+2n} d\sigma = 1$ for any *j*, we obtain $\lim_{n\to\infty} a_n^2 \int_0^1 \left(\sum_{t=0} c_t r^t \right) r^{|j|+2n} d\sigma = \sum_{t=0} c_t$

and so

$$
\lim_{n\to\infty}a_n^2\int_0^1\phi_j(r)r^{|j|+2n}d\sigma=\phi_j(1).
$$

Thus $\phi_j(1) = 0$ for any j because $\lim_{n \to \infty} a_n^2 \int_0^1 \phi_j(r) r^{[j]+2n} d\sigma = 0$, and hence $\phi = 0$ on ∂D .

Conversely suppose that $\phi = 0$ on ∂D . Then we may assume that the support set of ϕ is compact in *D*. In order to show the compactness of T_{ϕ} , it is sufficient to show that if $h_n \to 0$ weakly $(n \to \infty)$ in L^2_a then $h_n \to 0$ uniformly on supp ϕ . By hypothesis on σ , any point $z \in D$ has a bounded point evaluation for L^2_a because Statement (1) of Corollary 1 in [2] is valid for $s(\mu, a)$ instead of $S(\mu, a)$ and $r(\mu, a)s(\mu, a) = 1(a \in D)$. Hence $h_n(z) \to 0$. By the boundedness of analytic functions on supp ϕ and the uniform boundedness principle, $h_n \to 0$ uniformly on supp ϕ .

REFERENCES

1. S. Axler and D. C. Zheng, Compact operators via the Berezin transform, *Indiana Univ. Math. J.* 47 (1998), 387-400.

2. T. Nakazi and M. Yamada. Ricsz's functions in wcightcd Hardy and Bergman s[Jaces, *Callad.* J. *Ma/h.* **48** (1996), 930-945.

3. K. StroethofT, Com[Jact Tocplitz o[Jcrators on Bergman s[Jaces, *Ma/h. Proc. Call/* brilz~e *Phil. Soc.* **124** (1998),151-160.

4. K. Stroethoff, Compact Toeplitz operators on weighted harmonic Bergman spaces, *J*. *Aus/ra!iall Ma/h. Soc. Ser. A* **64** (1998), 136-148.

5. K. Zhu, Operator theory in function spaces (Dekker, New York, 1990).

 ~ 10

 $\sim 10^{-1}$

 \bar{z}

 $\bar{\bar{z}}$