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Abstract. Let L2(D, dod9/2) be a complete weighted Bergman space on the
open unit disc D, where do 1s a positive finite Borel measure on [0, 1). We show the
following : when ¢ is a continuous function on the closed unit disc D, Ty 1s compact
if and only if ¢ = 0 on 3D.
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Let D be the open unit disc and do a positive finite Borel measure on [0, I). Let
Lf, = LX(D, dodd/2m) be a weighted Bergman space on D; that is, L? consists of
analytic functions fin D with

LA13 = /D |f(ré®)2dodd/2n < 0.

When L2 is closed, P denotes the orthogonal projection from L? = L*(D, dodd/2x)
onto L2. For ¢ in L® = L®(D, dodf/2r), we consider the Toeplitz operator
Ty : L2 — L2 defined by T,f = P(¢f),f € L2. We prove the following theorem in this
paper. For the Bergman space (that is, do = 2rdr), the Theorem is well known; see
[5, p. 107] and [1]. When do = (1 — r?)*dr(—1 < & < o0), the Theorem is also true;
see [3] and [4]. However, that argument does not work for the general situation. We
need a new idea in order to prove the Theorem. Let H = H(D) denote the set of all
analytic functions on D.

THEOREM. Suppose that L2 = L2(D, dodf/2r) is complete. When ¢ is a continuous
Sunction on the closed unit disc D, Ty is compact if and only if ¢ =0 on 3D.

In order to prove the Theorem, we need three lemmas.
LEMMA 1. L2 is complete if and only if o([e, 1)) > 0 for some e with 0 < & < 1.

Proof. For a € D, put

s(,u,a):inf{/ |f1?dw; f € Hand f(a) = 1},
D
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where H is the set of all analytic functions on D and diu = dodf/2x. Statement (1) of

Corollary 1 in [2] is valid for s(j, a) instead of S(u,a). When (suppu)n D is a

uniquenecss set for #, by Statement (1) of Theorem 8 in [2], L2 is complete if and

only if, for all compact sets K in ‘D,/ log s(u, a)rdrdd/m > —oo. If o is not a zero
K

measure, then (suppu) N D is a uniqueness set for H. These statements suffice to
prove the Lemma.

LEMMA 2. If o([e, 1)) > O for every e with 0 < ¢ < 1, then

/r”da
0 =0 (0<e<]l)

1
do
£

lim
H—> 00

Proof. When § is a positive constant with ¢ + 6 < 1, the following inequality
" holds.

/o’ﬂdl o((0.6) _ _o(l0.¢)

1 - 1 n - 1 "
/; r'do /E (g) do /E , (g) do
a([0, €])
< 7 ( )-
(5+8) S O<e<l

&

Since they are positive and lim {(¢ + §)/¢&}" = oo, we have
n—>o0

& 1
lim (/ r”da// r"do) =0.
n—>00 0 £
LEMMA 3. If for every e with 0 < ¢ < 1, we have

&
1 / r"do’
1]

rdo > 0 and lim — =0,

e n—>oo/ o

€

then for any non-negative £

1
/ "o
lim £° 1.

n—o00 I =
/ rdo
0
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Proof. For every ¢ with 0 < ¢ < 1, the following inequality holds.

{ 3 1
/ o / P do + / " do
0 __J0 £
1 - £ 1
/ do / do + / do
4] 0 £
1
gt / Hdo
£
1 £
/ r'do + / do
£ 0

-1

£
/ Fdo
J0

1

do
£

I >

=gt I+

1
) / o
because / "do > 0 and £ > 0. Thus lim Of— >el lete—> 1 to prove the
£

n—>o0
lemma. do

0
. S . —
Proof. Suppose that ¢(re?) = Z ¢>j(r)e’f9 is continuous on D, where
Jje—00

27
¢ = | P(re®)e Pdos2n
0

for j=0, 41, %2, ---. Then ¢,(r) is continuous on [0,1] for any j. Put

en(re®) = a,r'e™

[ o1
=r"e™) f r’ndo
0

for n > 0, then {e,} is an orthonormal basis in L2. For each j, put
®;(re?) = Ve Pg(re”).

Then Te, = Tywi-»Ty for j= 0 and T, = Ty Ty for j < 0. If Ty is compact, then
Ty, is also compact for any j. For each j, if n > 0, then

|<T¢'jen, en)| < TCDjenHZHeHHZ = Tfi[),-enHZ'

Since Tg, is compact for each j and e, — 0(n — 00) weakly, ||Tg,eqllo — 0 (n — o0)
and so (Tg,en, en) — 0 (n — o0). For each j,
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2 1
(To,0n, 00y = / / (™Y e ™™ 2 1 desd ) 2
y Jo

[¢

I
= (1,2,/ (f)_/(l')l‘lj|+2"({(7
0

I
and then lim a,z, q&,-(r)r["“”(l(r:O. By Lemma 1, o([¢. 1)) > 0 for some ¢ with
H—> 00 )
0 < ¢ < | and hence o([g, 1)) > 0 for every ¢ < 1. Hence, by Lemma 2, we have

£
2 da

lim“—ol—— =0for(0<e <)
/ rHdo
&

Then, by Lemma 3, for any integer j we have

1
lim a,zzf A2y = 1.
n—00 0

Since ¢;(r) is continuous on [0,1], we can approximate ¢;(r) uniformly by poly-

k 1
nomials E ¢,r'. Since lim aﬁ/ A2y — 1 for any j, we obtain
n—oo
=0 0

ol k k
tim [[(Soer Jao =3 e
0 \r=0 =0
and so

1—00

1
lim ai/o ¢/ () da = ¢(1).

1
Thus ¢;(1) = 0 for any j because lim a f ¢j(r)rV|+2"da =0, and hence ¢ = 0 on 3D.
H—>00 0

Conversely suppose that ¢ = 0 on 8D. Then we may assume that the support set of
¢ is compact in D. In order to show the compactness of T, it is sufficient to show that if
h, — 0 weakly (n — c0) in L2 then h, — 0 uniformly on supp ¢. By hypothesis on
o, any point z € D has a bounded point evaluation for LZ because Statement (1) of
Corollary 1 in [2] is valid for s(u, a) instead of S(u, a) and r(u, a)s(u, a) = 1(a € D).
Hence h,(z) — 0. By the boundedness of analytic functions on supp ¢ and the uni-
form boundedness principle, 4, — 0 uniformly on supp ¢.
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