Glasgow Math. J. 42 (2000) 31-35. C. Glasgow Mathematical Journal Trust 2000. Printed in the United Kingdom

COMPACT TOEPLITZ OPERATORS WITH CONTINUOUS SYMBOLS ON WEIGHTED BERGMAN SPACES

TAKAHIKO NAKAZI* and RIKIO YONEDA

Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

(Received 26 March, 1998)

Abstract. Let $L^2_{\alpha}(D, d\sigma d\theta/2\pi)$ be a complete weighted Bergman space on the open unit disc D, where $d\sigma$ is a positive finite Borel measure on [0, 1). We show the following : when ϕ is a continuous function on the closed unit disc \overline{D} , T_{ϕ} is compact if and only if $\phi = 0$ on ∂D .

1991 Mathematics Subject Classification. 47B35, 47B07

Let D be the open unit disc and $d\sigma$ a positive finite Borel measure on [0, 1). Let $L_a^2 = L_a^2(D, d\sigma d\theta/2\pi)$ be a weighted Bergman space on D; that is, L_a^2 consists of analytic functions f in D with

$$\|f\|_2^2 = \int_D |f(re^{i\theta})|^2 d\sigma d\theta/2\pi < \infty.$$

When L_a^2 is closed, P denotes the orthogonal projection from $L^2 = L^2(D, d\sigma d\theta/2\pi)$ onto L_a^2 . For ϕ in $L^{\infty} = L^{\infty}(D, d\sigma d\theta/2\pi)$, we consider the Toeplitz operator $T_{\phi}: L_a^2 \to L_a^2$ defined by $T_{\phi}f = P(\phi f), f \in L_a^2$. We prove the following theorem in this paper. For the Bergman space (that is, $d\sigma = 2rdr$), the Theorem is well known; see [5, p. 107] and [1]. When $d\sigma = (1 - r^2)^{\alpha} dr(-1 < \alpha < \infty)$, the Theorem is also true; see [3] and [4]. However, that argument does not work for the general situation. We need a new idea in order to prove the Theorem. Let H = H(D) denote the set of all analytic functions on D.

THEOREM. Suppose that $L_a^2 = L_a^2(D, d\sigma d\theta/2\pi)$ is complete. When ϕ is a continuous function on the closed unit disc D, T_{ϕ} is compact if and only if $\phi = 0$ on ∂D .

In order to prove the Theorem, we need three lemmas.

LEMMA 1. L_a^2 is complete if and only if $\sigma([\varepsilon, 1)) > 0$ for some ε with $0 \le \varepsilon < 1$.

Proof. For $a \in D$, put

$$s(\mu, a) = \inf\left\{\int_D |f|^2 d\mu; f \in H \text{ and } f(a) = 1\right\},\$$

^{*}This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

where *H* is the set of all analytic functions on *D* and $d\mu = d\sigma d\theta/2\pi$. Statement (1) of Corollary 1 in [2] is valid for $s(\mu, a)$ instead of $S(\mu, a)$. When $(\text{supp}\mu) \cap D$ is a uniqueness set for *H*, by Statement (1) of Theorem 8 in [2], L_a^2 is complete if and only if, for all compact sets *K* in *D*, $\int_K \log s(\mu, a) r dr d\theta/\pi > -\infty$. If σ is not a zero measure, then $(\text{supp}\mu) \cap D$ is a uniqueness set for *H*. These statements suffice to prove the Lemma.

LEMMA 2. If $\sigma([\varepsilon, 1)) > 0$ for every ε with $0 \le \varepsilon < 1$, then

$$\lim_{n \to \infty} \frac{\int_0^{\varepsilon} r^n d\sigma}{\int_{\varepsilon}^1 r^n d\sigma} = 0 \quad (0 \le \varepsilon < 1).$$

Proof. When δ is a positive constant with $\varepsilon + \delta < 1$, the following inequality holds.

$$\frac{\int_{0}^{\varepsilon} r^{n} d\sigma}{\int_{\varepsilon}^{1} r^{n} d\sigma} \leq \frac{\sigma([0,\varepsilon])}{\int_{\varepsilon}^{1} \left(\frac{r}{\varepsilon}\right)^{n} d\sigma} \leq \frac{\sigma([0,\varepsilon])}{\int_{\varepsilon+\delta}^{1} \left(\frac{r}{\varepsilon}\right)^{n} d\sigma} \leq \frac{\sigma([0,\varepsilon])}{\left(\frac{\varepsilon+\delta}{\varepsilon}\right)^{n} \sigma([\varepsilon+\delta,1])} \quad (0 < \varepsilon < 1).$$

Since they are positive and $\lim_{n\to\infty} \{(\varepsilon + \delta)/\varepsilon\}^n = \infty$, we have

$$\lim_{n\to\infty} \left(\int_0^\varepsilon r^n d\sigma / \int_\varepsilon^1 r^n d\sigma \right) = 0.$$

LEMMA 3. If for every ε with $0 \le \varepsilon < 1$, we have

$$\int_{\varepsilon}^{1} r^{n} d\sigma > 0 \text{ and } \lim_{n \to \infty} \frac{\int_{0}^{\varepsilon} r^{n} d\sigma}{\int_{\varepsilon}^{1} r^{n} d\sigma} = 0,$$

...

then for any non-negative *l*

$$\lim_{n \to \infty} \frac{\int_0^1 r^{n+\ell} d\sigma}{\int_0^1 r^n d\sigma} = 1$$

Proof. For every ε with $0 \le \varepsilon < 1$, the following inequality holds.

$$1 \ge \frac{\int_{0}^{1} r^{n+\ell} d\sigma}{\int_{0}^{1} r^{n} d\sigma} = \frac{\int_{0}^{\varepsilon} r^{n+\ell} d\sigma + \int_{\varepsilon}^{1} r^{n+\ell} d\sigma}{\int_{0}^{\varepsilon} r^{n} d\sigma + \int_{\varepsilon}^{1} r^{n} d\sigma}$$
$$\ge \frac{\varepsilon^{\ell} \int_{\varepsilon}^{1} r^{n} d\sigma}{\int_{\varepsilon}^{1} r^{n} d\sigma + \int_{0}^{\varepsilon} r^{n} d\sigma}$$
$$= \varepsilon^{\ell} \left(1 + \frac{\int_{\varepsilon}^{\varepsilon} r^{n} d\sigma}{\int_{\varepsilon}^{1} r^{n} d\sigma}\right)^{-1}$$

because $\int_{\varepsilon}^{1} r^{n} d\sigma > 0$ and $\ell \ge 0$. Thus $\lim_{n \to \infty} \frac{\int_{0}^{1} r^{n+\ell} d\sigma}{\int_{0}^{1} r^{n} d\sigma} \ge \varepsilon^{\ell}$. Let $\varepsilon \to 1$ to prove the

Proof. Suppose that $\phi(re^{i\theta}) = \sum_{j=-\infty}^{\infty} \phi_j(r)e^{ij\theta}$ is continuous on \bar{D} , where $\phi_j(r) = \int_0^{2\pi} \phi(re^{i\theta})e^{-ij\theta}d\theta/2\pi$

for $j = 0, \pm 1, \pm 2, \cdots$. Then $\phi_j(r)$ is continuous on [0,1] for any j. Put

$$e_n(re^{i\theta}) = a_n r^n e^{in\theta}$$
$$= r^n e^{in\theta} / \sqrt{\int_0^1 r^{2n} d\theta}$$

for $n \ge 0$, then $\{e_n\}$ is an orthonormal basis in L^2_a . For each *j*, put

$$\Phi_j(re^{i\theta}) = r^{|j|}e^{-ij\theta}\phi(re^{i\theta}).$$

Then $T_{\Phi_j} = T_{r^{ij}e^{-ij\theta}}T_{\phi}$ for $j \ge 0$ and $T_{\Phi_j} = T_{\phi}T_{r^{ij}e^{-ij\theta}}$ for j < 0. If T_{ϕ} is compact, then T_{Φ_j} is also compact for any j. For each j, if $n \ge 0$, then

$$|\langle T_{\Phi_j}e_n, e_n\rangle| \leq ||T_{\Phi_j}e_n||_2 ||e_n||_2 = ||T_{\Phi_j}e_n||_2.$$

Since T_{Φ_j} is compact for each j and $e_n \to 0 (n \to \infty)$ weakly, $||T_{\Phi_j}e_n||_2 \to 0 \ (n \to \infty)$ and so $\langle T_{\Phi_j}e_n, e_n \rangle \to 0 \ (n \to \infty)$. For each j,

$$\langle T_{\Phi_j} e_n, e_n \rangle = \int_0^{2\pi} \int_0^1 \phi(re^{i\theta}) r^{|j|} e^{-ij\theta} a_n^2 r^{2n} d\sigma d\theta / 2\pi$$
$$= a_n^2 \int_0^1 \phi_j(r) r^{|j|+2n} d\sigma$$

and then $\lim_{n\to\infty} a_n^2 \int_0^1 \phi_j(r) r^{|j|+2n} d\sigma = 0$. By Lemma 1, $\sigma([\varepsilon, 1)) > 0$ for some ε with $0 \le \varepsilon < 1$ and hence $\sigma([\varepsilon, 1)) > 0$ for every $\varepsilon < 1$. Hence, by Lemma 2, we have

$$\lim_{n \to \infty} \frac{\int_0^{\varepsilon} r^{2n} d\sigma}{\int_{\varepsilon}^1 r^{2n} d\sigma} = 0 \text{ for } (0 \le \varepsilon < 1).$$

Then, by Lemma 3, for any integer j we have

$$\lim_{n \to \infty} a_n^2 \int_0^1 r^{|j|+2n} d\sigma = 1.$$

Since $\phi_j(r)$ is continuous on [0,1], we can approximate $\phi_j(r)$ uniformly by polynomials $\sum_{t=0}^{k} c_t r^t$. Since $\lim_{n \to \infty} a_n^2 \int_0^1 r^{|j|+2n} d\sigma = 1$ for any *j*, we obtain $\lim_{n \to \infty} a_n^2 \int_0^1 \left(\sum_{t=0}^k c_t r^t\right) r^{|j|+2n} d\sigma = \sum_{t=0}^k c_t$

and so

$$\lim_{n\to\infty}a_n^2\int_0^1\phi_j(r)r^{|j|+2n}d\sigma=\phi_j(1).$$

Thus $\phi_j(1) = 0$ for any *j* because $\lim_{n \to \infty} a_n^2 \int_0^1 \phi_j(r) r^{|j|+2n} d\sigma = 0$, and hence $\phi = 0$ on ∂D .

Conversely suppose that $\phi = 0$ on ∂D . Then we may assume that the support set of ϕ is compact in D. In order to show the compactness of T_{ϕ} , it is sufficient to show that if $h_n \to 0$ weakly $(n \to \infty)$ in L_a^2 then $h_n \to 0$ uniformly on supp ϕ . By hypothesis on σ , any point $z \in D$ has a bounded point evaluation for L_a^2 because Statement (1) of Corollary 1 in [2] is valid for $s(\mu, a)$ instead of $S(\mu, a)$ and $r(\mu, a)s(\mu, a) = 1(a \in D)$. Hence $h_n(z) \to 0$. By the boundedness of analytic functions on supp ϕ and the uniform boundedness principle, $h_n \to 0$ uniformly on supp ϕ .

REFERENCES

1. S. Axler and D. C. Zheng, Compact operators via the Berezin transform, Indiana Univ. Math. J. 47 (1998), 387-400.

2. T. Nakazi and M. Yamada, Riesz's functions in weighted Hardy and Bergman spaces, *Canad. J. Math.* 48 (1996), 930–945.
3. K. Stroethoff, Compact Toeplitz operators on Bergman spaces, *Math. Proc. Cam-*

3. K. Stroethoff, Compact Toeplitz operators on Bergman spaces, Math. Proc. Cambridge Phil. Soc. 124 (1998), 151–160.
4. K. Stroethoff, Compact Toeplitz operators on weighted harmonic Bergman spaces, J.

4. K. Stroetholl, Compact Toeplitz operators on weighted harmonic Bergman spaces, J. Australian Math. Soc. Ser. A **64** (1998), 136–148.

5. K. Zhu, Operator theory in function spaces (Dekker, New York, 1990).