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Abstract

 
We study an extended Cesaro operator I with holomorphic symbol

in the unit ball B of C :

I f z :＝ f tz tz
dt
 
t
, ∈H B ,z∈B,

where f z ＝∑z
f
z
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1. Introduction
 

Let D＝｛z∈C :z ＜1｝denote the open unit disk in the complex
 

plane C.

For 1 p＜＋∞,the Lebesgue space L D,dA is defined to be the
 

Banach space of Lebesgue measurable functions on the open unit disk D
 

with

f :＝ f z dA z ＜＋∞,

where dA z is the normalized area measure on D. The Bergman space
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L D is defined to be the subspace of L D,dA consisting of analytic
 

functions. For 0＜p＜＋∞, the Hardy space H is defined to be the
 

Banach space of analytic functions f on D with

f :＝ sup
1
2π

f re dθ ＜＋∞.

And the weighted Dirichlet space D is defined to be the space of analytic
 

functions f on D such that

f :＝ f 0 ＋ 1－ z f′z dA z ＜＋∞.

If α＝1, then D is the Hardy space H . If α＝2, then D is the
 

Bergman space .

Bloch space  is defined to be the space of analytic functions f on D
 

such that

f :＝ f 0 ＋sup 1－ z f′z ＜＋∞.

For analytic on D,the operators I ,J are defined by the follow-

ing:

0.1 I h z :＝ ζh′ζdζ,J f z :＝ f ζ ′ζdζ.

If z ＝z,then J is the integration operator. If z ＝ log  
1

1－z
,then J

is the Cesaro operator.

In［2］, A. Aleman and A. G. Siskakis studied the operator J

defined on the weighted Bergman space.

In［6］,Ch.Pommerenke proved the following:

Theorem A. The operator J is bounded on D ＝H if and only
 

if
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∈BMOA.

In［2］,A.Aleman and A.G.Siskakis proved the following:

Theorem B. Letα＞1. Then for analytic on D,the operator J

is bounded on D if and only if
 

sup 1－ z ′z ＜＋∞,i.e ∈B.

In［10］,we proved the following results:

Theorem C. Forα＞0The operator I is bounded on D if and
 

only if
 

sup z ＜＋∞.

And I is compact on D if and only if

≡0.

Let H B be the class of all holomorphic functions on the unit ball
 

B of C . For f∈H B having the homogeneous expansion f＝∑ F ,

let f z ＝∑ jF z be the radial derivative of . It is trivial that

f z ＝∑ z
f
z
. For ∈H B , the operator I with symbol is

defined on H B as

0.2 I f z :＝ f tz tz
dt
 
t
, ∈H B ,z∈B.

It is trivial that when n＝1, 0.2 is just 0.1 .

A positive continuous functionϕon 0,1 is called normal if there
 

are two constants 0＜ a＜b such that

ϕr
1－r

↓0,
ϕr
1－r

↑＋∞

as r→1. For normalϕ,and for f∈H B ,we put
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f ＝ M f,r
ϕ r
1－r 

dr 0＜p＜＋∞

and

f :＝ sup M f,r ϕr

Here

 

M f,r ＝ f rζ dσζ 0＜q＜＋∞ ,

M f,r ＝sup f rζ

The mixed norm space H ϕ,0＜p,q ∞,consists of all f∈

H B such that f ＜∞. When 0＜p＝q＜＋∞, the mixed norm
 

space H ϕ is just the weighted Bergman space

 

A ϕ＝｛f∈H B : f ＝ f z
ϕ z
1－ z

dm z ＜＋∞｝.

For a holomorphic function f,f is called a Bloch function if

f ＝sup｛ f z 1－ z :z∈B｝＜＋∞,

and f is called a little Bloch function if
 

lim f z 1－ z ＝0.

The space of all Bloch and little Bloch functions will be denoted by and

,respectively.

In［5］,Z.Hu proved the following:

Theorem D. Let 0＜p,q ＋∞,and letϕbe normal. Then for

∈H B

(I) J is bounded on H ϕ if and only if ∈ .
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(II) J is compact on H ϕ if and only if ∈ .

In this paper,we study the operator I on the mixed norm space
 

H ϕ.

Throughout this paper,C,K will denote positive constant whose
 

value is not necessary the same at each occurrence.

2. The boundedness and compactness of I on the mixed norm
 

space H ϕ.

In this section,we prove the boundedness and compactness of the
 

operator I on the mixed norm space H ϕ. In［5］,Z.Hu showed the
 

following:

Theorem 1.(［5］)Let 0＜p,q ＋∞,and let ϕbe normal. Then
 

for ∈H B

(I) J is bounded on H ϕ if and only if ∈ .

(II) J is compact on H ϕ if and only if ∈ .

Theorem 2.(［5］)Let0＜p,q ＋∞ and let m be a positive integer.

Then for f∈H B ,

f ∑ gradf 0 ＋ M f,r 1－r
ϕ r
1－r 

dr .

Lemma 2.(［5］)Given 0＜p,q ＋∞,takeβ＞b and

 

f z ＝
1－ ζ

ϕ ζ 1－＜z,ζ＞
, ζ∈B.
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Then f C. Here C is independent ofζ.

By using the above results,we prove the following with respect to
 

the boundedness of the operator I on the mixed norm space H ϕ:

Theorem 1.1. Let 0＜p,q ＋∞,and letϕbe normal. Then for

∈H B ,

I is bounded on H ϕ if and only if ∈H .

Proof. Suppose that g∈H . By the proof of Theorem 1 in［5］,

we see that for f, ∈H B ,

I f z ＝ f z . 1.1

So by using Thoerem 2 in［5］and 1.1 ,we have,for any f∈H B ,

I f c M I f ,r 1－r
ϕ r
1－r 

dr

c M f,r 1－r
ϕ r
1－r 

dr

c f .

Hence we have that I is bounded on H ϕ.

To prove the converse,suppose that I is bounded on H ϕ.

Let f z ＝
1－ ζ

ϕ ζ 1－＜z,ζ＞
,ζ∈B. Then we have

f z ＝
1－ ζ
ϕ ζ

∑ z
｛ 1－＜z,ζ＞ ｝

z

＝
1－ ζ
ϕ ζ

n
 
q
＋β ＜z,ζ＞

1

1－＜z,ζ＞

So we have
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f ζ＝
1－ ζ
ϕ ζ

n
 
q
＋β ζ

1

1－ζ

Notice that I f 0 ＝0. Then for anyζ∈B,by using Theorem 2 and
 

Lemma 2 in［5］and 1.1 ,we have

I f c I f

c M I f ,r 1－r
ϕ r
1－r 

dr

c M I f ,r 1－r
ϕ r
1－r 

dr

cM I f ,
1＋ ζ
2

1－ ζ ϕ ζ

c I f ζ 1－ ζ 1－ ζ ϕ ζ

＝c ζ f ζ 1－ ζ ϕ ζ

＝c ζ
n
 
q
＋β ζ

Hence we have

∈H . □

By using the above results,we prove the following with respect to
 

the compactness of the operator I on the mixed norm space H ϕ:

Corollary 1.2. Let0＜p,q ＋∞,and letϕbe normal. Then for

∈H B ,

I is compact on H ϕ if and only if ≡0.

Proof. Suppose that I is compact on H ϕ. Since f weakly
 

convergence to zero in H ϕ, by the compactness and the proof of
 

Theorem 1.1

ζ C I f →0 ζ→1
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Hence we have ≡0. It is trivial the converse. □
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