Supplement to the paper "Maximization of some types of information for unidentified item response models with guessing parameters"

Haruhiko Ogasawara

This article supplements Ogasawara (2021).

Reference

Ogasawara, H. (2021). Maximization of some types of information for unidentified item response models with guessing parameters.
Psychometrika, 86 (2), 544-563, https://doi.org/10.1007/s11336-021-09763-4.

In the following, the number of distinct θ_{j} 's among $\theta_{j}(j=1, \ldots, N)$ is assumed to be sufficiently large with the largest one being N. As addressed in Ogasawara (2021), in the case of the 1PL-G model, k_{2} is associated with the location indeterminacies of $a^{*} \theta_{j}^{*}$ and $a^{*} b_{i}^{*}$. Consequently, under $\bar{\theta}=\bar{\theta}^{*}=k_{\theta}, k_{2}$ can be set to 1 . Define $\operatorname{var}\left\{\ln \left(e^{a \theta}+k_{1}\right)\right\}$ as the variance of $\ln \left\{\exp \left(a \theta_{j}\right)+k_{1}\right\}(j=1, \ldots, N)$. Let

$$
\begin{equation*}
\theta_{\min } \equiv \min \left\{\theta_{j} ; j=1, \ldots, N\right\} \text { with inf- } k_{1} \equiv-\exp \left(a \theta_{\min }\right) . \tag{a.1}
\end{equation*}
$$

Then, we have the following result.
Lemma 1. In the case of the 1PL-G model,

$$
\begin{equation*}
\lim _{k_{1} \rightarrow \inf -k_{1}+0} \operatorname{var}\left\{\ln \left(e^{a \theta}+k_{1}\right)\right\}=+\infty . \tag{a.2}
\end{equation*}
$$

Proof. Let $K_{j} \equiv \exp \left(a \theta_{j}\right)+k_{1}(j=1, . ., N)$ and $K_{\min } \equiv \exp \left(a \theta_{\min }\right)+k_{1}$. Then,

$$
\begin{align*}
& \operatorname{var}\left\{\ln \left(e^{a \theta}+k_{1}\right)\right\}=N^{-1} \sum_{j=1}^{N}\left[\ln \left\{\exp \left(a \theta_{j}\right)+k_{1}\right\}-\overline{\ln \left(e^{a \theta}+k_{1}\right)}\right]^{2} \\
& =N^{-1} \sum_{j=1}^{N}\left(\ln K_{j}-N^{-1} \sum_{m=1}^{N} \ln K_{m}\right)^{2}>N^{-1}\left(\ln K_{\min }-N^{-1} \sum_{m=1}^{N} \ln K_{m}\right)^{2} \tag{a.3}\\
& =N^{-1}\left\{\left(1-N^{-1}\right) \ln K_{\min }-N^{-1} \sum_{m=1(m \neq \min)}^{N} \ln K_{m}\right\}^{2}
\end{align*}
$$

When $k_{1} \rightarrow$ inf－$k_{1}+0$ ，by definition $\ln K_{\min } \rightarrow-\infty$ ．Then，since $-N^{-1} \sum_{m=1}^{N} \ln K_{m} \quad$ is finite，the last result in（a．3）goes to $+\infty$ Q．E．D．

A． 1 The results under $a^{*}=\left[\operatorname{var}\left\{\ln \left(e^{a \theta}+k_{1}\right)\right\}\right]^{1 / 2}$
In this section the results under $a^{*}=\left[\operatorname{var}\left\{\ln \left(e^{a \theta}+k_{1}\right)\right\}\right]^{1 / 2}$ with $\bar{\theta}=\bar{\theta}^{*}=0$ and $\operatorname{var}(\theta)=\operatorname{var}\left(\theta^{*}\right)=1$ are shown．

Theorem 2．Under $a^{*}=\left[\operatorname{var}\left\{\ln \left(e^{a \theta}+k_{1}\right)\right\}\right]^{1 / 2}$ in the $1 P L-G$ model，

$$
\begin{align*}
& \lim _{k_{1} \rightarrow \text { inf- }-k_{1}+0} a^{*}=+\infty, \lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} b_{i}^{*}=\frac{N^{1 / 2}}{N-1}, \\
& 0<\lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} c_{i}^{*}=\frac{c_{i} \exp \left(a b_{i}\right)-\inf -k_{1}}{\exp \left(a b_{i}\right)-\inf -k_{1}}<1, \tag{a.4}\\
& \lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} \theta_{\min }^{*}=-N^{1 / 2} \text { with } \theta_{\min }^{*}=\ln \left\{\exp \left(a \theta_{\min }\right)+k_{1}\right\} \\
& \lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} \theta_{j}^{*}=\lim _{k_{1} \rightarrow \text { inft }-k_{1}+0} b_{i}^{*}=\frac{N^{1 / 2}}{N-1}(i=1, \ldots, n ; j=1, . ., N ; j \neq \min) .
\end{align*}
$$

Proof． $\lim _{k_{1} \rightarrow \inf -k_{1}+0} a^{*}=+\infty$ is given by Lemma 1．For b_{i}^{*} ，let $K_{j}^{*}=1 / K_{j}=1 /\left\{\exp \left(a \theta_{j}\right)+k_{1}\right\}(j=1, \ldots, N)$ and $K_{\min }^{*}=1 / K_{\min }$ ．Denote $\operatorname{var}\left\{\ln \left(e^{a \theta}+k_{1}\right)\right\}=\operatorname{var}\left[\ln \left\{1 /\left(e^{a \theta}+k_{1}\right)\right\}\right]$ by $\operatorname{var}\left(\ln K^{*}\right)$ ．When $k_{1} \rightarrow$ inf $-k_{1}+0$ ，we find from Lemma 1 that the denominator of b_{i}^{*} in the first paragraph of Section 4 i．e．，$\left\{\operatorname{var}\left(\ln K^{*}\right)\right\}^{1 / 2} \rightarrow+\infty$ ．On the other hand，for the numerator of b_{i}^{*}, when $k_{1} \rightarrow \inf -k_{1}+0$, using $\ln K_{\min } \rightarrow-\infty$ and $\ln K_{\text {min }}^{*} \rightarrow+\infty$, we have

$$
\begin{align*}
& \left.\lim _{k_{1} \rightarrow \text { inf }-k_{1}+0}\left[\ln \left\{\exp \left(a b_{i}\right)-k_{1}\right\}-\overline{\ln \left(e^{a \theta}+k_{1}\right.}\right)\right] \\
& = \\
& =\ln \left\{\exp \left(a b_{i}\right)-\inf -k_{1}\right\}-N^{-1} \sum_{j=1(j \neq \min)}^{N} \ln \left\{\exp \left(a \theta_{j}\right)+\inf -k_{1}\right\} \tag{a.5}\\
& \\
& +N^{-1} \lim _{K_{\min } \rightarrow+\infty} \ln K_{\min }^{*} \\
& =N^{-1} \lim _{K_{\min } \rightarrow+\infty}^{\lim } \ln K_{\min }^{*}=+\infty .
\end{align*}
$$

Then,

$$
\begin{align*}
& \lim _{K_{\min }^{*} \rightarrow+\infty} b_{i}^{*}=\lim _{K_{\min }^{*} \rightarrow+\infty} \frac{N^{-1} \ln K_{\min }^{*}}{\left\{\operatorname{var}\left(\ln K^{*}\right)\right\}^{1 / 2}} \\
& =\lim _{K_{\min }^{*} \rightarrow+\infty} N^{-1 / 2}\left\{\sum_{j=1}^{N}\left(\frac{\ln K_{j}^{*}}{\ln K_{\min }^{*}}-N^{-1} \sum_{m=1}^{N} \frac{\ln K_{m}^{*}}{\ln K_{\min }^{*}}\right)^{2}\right\}^{-1 / 2}=\frac{N^{-1 / 2}}{1-N^{-1}}=\frac{N^{1 / 2}}{N-1} \tag{a.6}
\end{align*}
$$

and the results for c_{i}^{*} are obvious $(i=1, \ldots, n)$.
For $\theta_{\min }^{*}=\ln \left\{\exp \left(a \theta_{\min }\right)+k_{1}\right\}$, we have

$$
\begin{align*}
& \lim _{k_{1} \rightarrow \text { inf } f k_{1}+0} \theta_{\min }^{*}=\lim _{k_{1} \rightarrow \text { inf } f k_{1}+0} \frac{\ln \left\{\exp \left(a \theta_{\min }+k_{1}\right)\right\}-\overline{\ln \left(e^{a \theta}+k_{1}\right)}}{\left[\operatorname{var}\left\{\ln \left(e^{a \theta}+k_{1}\right)\right\}\right]^{1 / 2}} \\
& =\lim _{K_{\min }^{\prime} \rightarrow+\infty} \frac{-\ln K_{\min }^{*}+\overline{\ln K^{*}}}{\left\{\operatorname{var}\left(\ln K^{*}\right)\right\}^{1 / 2}}=-\frac{1-N^{-1}}{N^{-1 / 2}\left(1-N^{-1}\right)}=-N^{1 / 2} . \tag{a.7}
\end{align*}
$$

For $\theta_{j}^{*}(j=1, \ldots, N ; j \neq \mathrm{min})$, as for b_{i}^{*}, we obtain

$$
\begin{align*}
& \lim _{k_{1} \rightarrow \inf -k_{1}+0} \theta_{j}^{*}=\lim _{k_{1} \rightarrow \text { inf } k_{1}+0} \frac{\ln \left\{\exp \left(a \theta_{j}+k_{1}\right)\right\}-\overline{\ln \left(e^{a \theta}+k_{1}\right)}}{\left[\operatorname{var}\left\{\ln \left(e^{a \theta}+k_{1}\right)\right\}\right]^{1 / 2}} \\
& =\lim _{K_{\min }^{*} \rightarrow+\infty} \frac{N^{-1} \ln K_{\min }^{*}}{\left\{\operatorname{var}\left(\ln K^{*}\right)\right\}^{1 / 2}}=\lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} b_{i}^{*}(i=1, \ldots, n)=\frac{N^{1 / 2}}{N-1} . \text { Q.E.D. } \tag{a.8}
\end{align*}
$$

It is easily confirmed that

$$
\begin{equation*}
\overline{\lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} \theta^{*}} \equiv N^{-1} \sum_{j=1}^{N} \lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} \theta_{j}^{*}=0 . \tag{a.9}
\end{equation*}
$$

However，

$$
\begin{equation*}
\operatorname{var}\left(\lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} \theta^{*}\right) \equiv N^{-1} \sum_{j=1}^{N}\left(\lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} \theta_{j}^{*}-\overline{\lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} \theta^{*}}\right)^{2}=\frac{N}{N-1}>1 . \tag{a.10}
\end{equation*}
$$

When $k_{1} \rightarrow \inf -k_{1}+0, \Psi_{i \text { min }}^{*}\left(\equiv \Psi_{i j}^{*}=1 /\left[1+\exp \left\{-a^{*}\left(\theta_{j}^{*}-b_{i}^{*}\right)\right\}\right] \quad\right.$ when $\left.\theta_{j}^{*}=\theta_{\min }^{*}=\ln \left\{\exp \left(a \theta_{\min }\right)+k_{1}\right\}\right)$ goes to zero，and consequently，$P_{i \min }\left(\equiv P_{i j}\right.$ when $\theta_{j}=\theta_{\text {min }}$ or equivalently $\theta_{j}^{*}=\theta_{\min }^{*}$ ）goes to c_{i}^{*} ．The last result holds only for $\theta_{\min }^{*}$ since $-a^{*}\left(\theta_{j}^{*}-b_{i}^{*}\right)=\ln \left\{\exp \left(a b_{i}\right)-k_{1}\right\}-\ln \left\{\exp \left(a \theta_{j}\right)+k_{1}\right\}$ is finite for $\theta_{j}(j=1, \ldots, N ; j \neq \mathrm{min})$ ．

Lemma 2．Under $a^{*}=\left[\operatorname{var}\left\{\ln \left(e^{a \theta}+k_{1}\right)\right\}\right]^{1 / 2}$ in the $1 P L-G$ model，

$$
\begin{equation*}
\left.\lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} \frac{\partial P_{i}^{*}}{\partial \theta^{*}}\right|_{\theta^{*}=\theta_{\min }^{*}} \equiv \lim _{k_{1} \rightarrow \rightarrow \text { inf }-k_{1}+0} \frac{\partial P_{i}^{*}}{\partial \theta_{\min }^{*}}=0 \quad(i=1, \ldots, n) . \tag{a.11}
\end{equation*}
$$

Proof．Recall that $K_{j}^{*}=1 / K_{j}=1 / \ln \left\{\exp \left(a \theta_{j}\right)+k_{1}\right\}(j=1, \ldots, N)$ and $K_{\min }^{*}=1 / K_{\min }$ ．Then，as derived in Section 3 we have

$$
\begin{align*}
\frac{\partial P_{i}^{*}}{\partial \theta_{\min }^{*}} & =\frac{\left\{\operatorname{var}\left(\ln K^{*}\right)\right\}^{1 / 2}\left\{\exp \left(a \theta_{\min }\right)+k_{1}\right\}\left(1-P_{i \min }\right)}{\exp \left(a \theta_{\min }\right)+\exp \left(a b_{i}\right)} \\
& \equiv \frac{\left\{\operatorname{var}\left(\ln K^{*}\right)\right\}^{1 / 2}}{K_{\min }^{*}} h_{i}(i=1, \ldots, n), \tag{a.12}
\end{align*}
$$

where $h_{i}=\left(1-P_{i \min }\right) /\left\{\exp \left(a \theta_{\min }\right)+\exp \left(a b_{i}\right)\right\}$ does not depend on k_{1} ；and $\operatorname{var}\left(\ln K^{*}\right)=\operatorname{var}\left[\ln \left\{1 /\left(e^{a \theta}+k_{1}\right)\right\}\right]=\operatorname{var}\left\{\ln \left(e^{a \theta}+k_{1}\right)\right\}$.

When $k_{1} \rightarrow \inf -k_{1}+0$ ，we have $\ln K_{\min }^{*} \rightarrow+\infty$ and from Lemma 1 $\operatorname{var}\left(\ln K^{*}\right) \rightarrow+\infty$ ．Using L＇Hôpital＇s rule，we obtain

$$
\begin{align*}
& \lim _{k_{1} \rightarrow \inf -k_{1}+0} \frac{\partial P_{i}^{*}}{\partial \theta_{\min }^{*}}=\lim _{K_{\min }^{*} \rightarrow+\infty} \frac{\partial\left\{\operatorname{var}\left(\ln K^{*}\right)\right\}^{1 / 2} / \partial K_{\min }^{*}}{\partial K_{\min }^{*} / \partial K_{\min }^{*}} h_{i} \\
& =\frac{1}{2}\left\{\operatorname{var}\left(\ln K^{*}\right)\right\}^{-1 / 2} 2 \lim _{K_{\min }^{*} \rightarrow+\infty}\left(N^{-1} \frac{\ln K_{\min }^{*}}{K_{\min }^{*}}-N^{-2} \sum_{j=1}^{N} \frac{\ln K_{j}^{*}}{K_{\min }^{*}}\right) h_{i} \tag{a.13}\\
& =0 \quad(i=1, \ldots, n),
\end{align*}
$$

where $\lim _{K_{\min }^{*} \rightarrow+\infty}\left(\ln K_{\min }^{*}\right) / K_{\min }^{*}=0$ is given again by L'Hôpital's rule. Q.E.D.
Then, we obtain the following main result.
Theorem 3. Under $a^{*}=\left[\operatorname{var}\left\{\ln \left(e^{a \theta}+k_{1}\right)\right\}\right]^{1 / 2}$ in the $1 P L-G$ model,

$$
\begin{align*}
& \lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} \sum_{i=1}^{n} I_{\text {Fimin** }}=\lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} I_{\text {Smin*}}=\lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} I_{\mathrm{Qmin}^{*}}=0 \text { and } \tag{a.14}\\
& \lim _{k_{1} \rightarrow \text { inf } k k_{1}+0} I_{\mathrm{F}^{*}}^{+}=\lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} I_{\mathrm{S}^{*}}^{+}=\lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} I_{\mathrm{Q}^{*}}^{+}=+\infty, \tag{a.15}
\end{align*}
$$

where $I_{\mathrm{Smin}^{*}}=I_{\mathrm{Sj}^{*}}$ when $\theta_{j}=\theta_{\min }$ with other similar expressions defined similarly.

On the other hand, when $k_{1} \rightarrow \sup -k_{1}-0$, all the values of $I_{\mathrm{F}^{*}}^{+}, I_{\mathrm{S}^{*}}^{+}$ and $I_{\mathrm{Q}^{*}}^{+}$are finite and their unattained limiting values are given by $k_{1}=\sup -k_{1}$ in $\partial P_{i}^{*} / \partial \theta_{j}^{*}(i=1, \ldots, n ; j=1, \ldots, N)$ of the total informations, and $c_{\text {sup }-k_{1}}^{*}\left(\equiv c_{i}^{*}\right.$ when $\left.b_{i}=\min \left\{b_{m} ; m=1, \ldots, n\right\}\right)$ goes to $-\infty$.

Proof. The first set of limiting zero informations (see (a.14)) is given by Lemma 2. For the second set of their infinite limiting values (see (a.15)), when $k_{1} \rightarrow \inf -k_{1}+0$, it is found that

$$
\begin{align*}
& \frac{\partial P_{i}^{*}}{\partial \theta_{j}^{*}}=\left[\operatorname{var}\left\{\ln \left(e^{a \theta}+k_{1}\right)\right\}\right]^{1 / 2}\left\{\exp \left(a \theta_{j}\right)+k_{1}\right\} h_{i} \tag{a.16}\\
& (i=1, \ldots, n ; j=1, \ldots, N ; j \neq \mathrm{min})
\end{align*}
$$

go to $+\infty$ since $\operatorname{var}\left\{\ln \left(e^{a \theta}+k_{1}\right)\right\} \rightarrow+\infty$ and $\exp \left(a \theta_{j}\right)+k_{1}$ is finite as h_{i}, which gives the second set of infinite limiting informations.

The results when $k_{1} \rightarrow \sup -k_{1}-0$ are obviously derived since all the factors in $\partial P_{i}^{*} / \partial \theta_{j}^{*}$ are finite for this limiting case while
$c_{i}^{*}=\left\{c_{i} \exp \left(a b_{i}\right)-k_{1}\right\} /\left\{\exp \left(a b_{i}\right)-k_{1}\right\}$, when $c_{i}^{*}=c_{\text {sup－} k_{1}}^{*}$ goes to $-\infty$ since the numerator is negative and finite and the denominator approaches +0 ． Q．E．D．

A． 2 The results under $a=a^{*}=k_{3}(>0)$

Next，we consider the case of parametrization with $a=a^{*}=k_{3}(>0)$ ， where $k_{3}=1$ is used without loss of generality．That is，$a b_{i}$ and $a \theta_{j}$ are redefined as b_{i} and θ_{j} ，respectively before transformation with $\bar{\theta}=N^{-1} \sum_{j=1}^{N} \theta_{j}=0$ to remove the location indeterminacy．After transformation，using $a^{*}=1$ we have

$$
\begin{align*}
& b_{i}^{*}=\ln \left\{\exp \left(b_{i}\right)-k_{1}\right\}-\overline{\ln \left(e^{\theta}+k_{1}\right)}, c_{i}^{*}=\frac{c_{i} \exp \left(b_{i}\right)-k_{1}}{\exp \left(b_{i}\right)-k_{1}} \tag{a.17}\\
& \theta_{j}^{*}=\ln \left\{\exp \left(\theta_{j}\right)+k_{1}\right\}-\overline{\ln \left(e^{\theta}+k_{1}\right)} \text { with } \bar{\theta}^{*}=N^{-1} \sum_{m=1}^{N} \theta_{m}^{*}=0 \\
& (i=1, \ldots, n ; j=1, \ldots, N) .
\end{align*}
$$

We have two possible regions of k_{1} as given in Section 2：

$$
\inf -k_{1}=-\min \left\{\exp \left(\theta_{j}\right) ; j=1, \ldots, N\right\}<k_{1}<\min \left\{\exp \left(b_{i}\right) ; i=1, \ldots, n\right\}=\sup -k_{1},(\text { a.18) }
$$

$$
\begin{equation*}
\text { and } \inf -k_{1}<k_{1} \leq \min \left\{c_{i} \exp \left(b_{i}\right) ; i=1, \ldots, n\right\}=\max -k_{1}<\sup -k_{1} \tag{a.19}
\end{equation*}
$$

Define $\theta_{\text {min }}=\min \left\{\theta_{j} ; j=1, \ldots, N\right\}$ as before with similar expressions defined similarly．Then，we have the following results．

Theorem 4．Under $a=a^{*}=1$ and $\bar{\theta}=\bar{\theta}^{*}=0$ in the 1PL－G model， $\lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} b_{i}^{*}=+\infty, \lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} c_{i}^{*}=\frac{c_{i} \exp \left(b_{i}\right)-\inf -k_{1}}{\exp \left(b_{i}\right)-\inf -k_{1}}(<1)$ is finite， $\lim _{k_{1} \rightarrow \text { sup }-k_{1}-0} c_{\text {sup }-k_{1}}^{*}=-\infty, \lim _{k_{1} \rightarrow \text { sup }-k_{1}-0} c_{i\left(i \neq \text { sup }-k_{1}\right)}^{*} \quad$ is finite，
$\lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} \theta_{\min }^{*}=-\infty, \lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} \theta_{j(j \neq \min)}^{*}=+\infty \quad$ with $\overline{\lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} \theta^{*}}=0$ and
$\operatorname{var}\left(\lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} \theta^{*}\right)=+\infty \quad(i=1, \ldots, n ; j=1, \ldots, N)$.
Proof．The results are given as in Lemma 1 and Theorem 2 with

$$
a=a^{*}=1 \text { and } \bar{\theta}=\bar{\theta}^{*}=0 . \text { Q.E.D. }
$$

Lemma 3. Under $a=a^{*}=1$ and $\bar{\theta}=\bar{\theta}^{*}=0$ in the $1 P L-G$ model,

$$
\begin{align*}
& \lim _{k_{1} \rightarrow \inf -k_{1}+0} \partial P_{i}^{*} / \partial \theta_{\min }^{*}=0 \quad \text { and } \lim _{k_{1} \rightarrow \inf -k_{1}+0} \partial P_{i}^{*} / \partial \theta_{j}^{*} \tag{a.21}\\
& \quad(i=1, \ldots, n ; j=1, \ldots, N ; j \neq \min) \text { are positive and finite. }
\end{align*}
$$

Proof. The zero limiting value is given by $\lim _{k_{1} \rightarrow \text { inf } k_{1}+0} \partial P_{i}^{*} / \partial \theta_{\text {min }}^{*}=$ $\lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} \frac{\left\{\exp \left(\theta_{\min }\right)+k_{1}\right\}\left(1-P_{i j}\right)}{\exp \left(\theta_{\text {min }}\right)+\exp \left(b_{i}\right)}=0$ since $\exp \left(\theta_{\min }\right)+k_{1} \rightarrow+0$. On the other hand,

$$
\begin{align*}
& \lim _{k_{1} \rightarrow \text { inf }-k_{1}+0} \frac{\partial P_{i}^{*}}{\partial \theta_{j}^{*}}=\lim _{k_{1} \rightarrow \inf f_{k_{1}}+0} \frac{\left\{\exp \left(\theta_{j}\right)+k_{1}\right\}\left(1-P_{i j}\right)}{\exp \left(\theta_{j}\right)+\exp \left(b_{i}\right)} \\
& =\frac{\left\{\exp \left(\theta_{j}\right)+\inf -k_{1}\right\}\left(1-P_{i j}\right)}{\exp \left(\theta_{j}\right)+\exp \left(b_{i}\right)}(i=1, \ldots, n ; j=1, \ldots, N ; j \neq \min), \tag{a.22}
\end{align*}
$$

which are obviously positive and finite by definition. Q.E.D.
Theorem 5. Under $a=a^{*}=1$ and $\bar{\theta}=\bar{\theta}^{*}=0$ in the $1 P L-G$ model,

$$
\begin{align*}
& \lim _{k_{1} \rightarrow \text { inf } k_{1}+0} I_{\mathrm{F}^{*}}^{+}=\sum_{j=1}^{N} \sum_{i=1}^{n} I_{\mathrm{F} j^{*} *}, \lim _{k_{1} \rightarrow \text { inf } f k_{1}+0} I_{\mathrm{S}^{*}}^{+}=\sum_{j=1}^{N} I_{\mathrm{Sj}} \text { and } \lim _{k_{1} \rightarrow \text { ini } k_{1}+0} I_{\mathrm{Q}^{*}}^{+}=\sum_{j=1}^{N} I_{\mathrm{Q}^{*}} \tag{a.23}
\end{align*}
$$

are finite, where the right-hand side in each equation of (a.24) is defined to be given by $k_{1}=\inf -k_{1}$.

When $k_{1} \rightarrow$ sup- $k_{1}-0$, all the values of $I_{\mathrm{F}^{*}}^{+}, I_{\mathrm{S}^{*}}^{+}$and $I_{\mathrm{Q}^{*}}^{+}$are finite and their unattained limiting values are given by $k_{1}=\sup -k_{1}$ in $\partial P_{i}^{*} / \partial \theta_{j}^{*}(i=1, \ldots, n ; j=1, \ldots, N)$ of the total informations, and $c_{\text {sup }-k_{1}}^{*}\left(\equiv c_{i}^{*}\right.$ when $b_{i}=\min \left\{b_{m} ; m=1, \ldots, n\right\}$) goes to $-\infty$.

Proof. Using Lemma 3 and the definitions of the informations, (a.23) and (a.24) follow. The results when $k_{1} \rightarrow \sup -k_{1}-0$ are given as in Theorem 3. Q.E.D.

Recall that under $a^{*}=\left[\operatorname{var}\left\{\ln \left(e^{a \theta}+k_{1}\right)\right\}\right]^{1 / 2}, \operatorname{var}\left(\lim _{k_{1} \rightarrow \mathrm{inf}-k_{1}+0} \theta^{*}\right)$ is finite while $I_{\mathrm{F}^{*}}^{+}, I_{\mathrm{S}^{*}}^{+}$and $I_{\mathrm{Q}^{*}}^{+}$go to $+\infty$ when $k_{1} \rightarrow \inf -k_{1}+0$ ．To the contrary， under $a=a^{*}=1$ ，the opposite results with infinite $\operatorname{var}\left(\lim _{k_{1} \rightarrow \text { inf－}-k_{1}+0} \theta^{*}\right)$ and finite $I_{\mathrm{F}^{*}}^{+}, I_{\mathrm{S}^{*}}^{+}$and $I_{\mathrm{Q}^{*}}^{+}$when $k_{1} \rightarrow \inf -k_{1}+0$ are obtained．

Theorem 6．Under $a=a^{*}=1$ and $\bar{\theta}=\bar{\theta}^{*}=0$ in the $1 P L-G$ model， using the possible region of（a．18）for k_{1} ，the total informations $I_{\mathrm{F}^{*}}^{+}, I_{\mathrm{S}^{*}}^{+}$and $I_{\mathrm{Q}^{*}}^{+}$have no maxima though their suprema are finite，which are given when $k_{1}=\sup -k_{1}$ ．When the possible region of（a．19）for k_{1} is used，the total informations have finite maxima，which are obtained by $k_{1}=\max -k_{1}$ ．

Proof．Since $\frac{\partial P_{i}^{*}}{\partial \theta_{j}^{*}}=\frac{\left\{\exp \left(\theta_{j}\right)+k_{1}\right\}\left(1-P_{i j}\right)}{\exp \left(\theta_{j}\right)+\exp \left(b_{i}\right)}(i=1, \ldots, n ; j=1, \ldots, N)$ ，the total informations are increasing functions of k_{1} ，which gives the results depending on the domains of definition for k_{1} ．Q．E．D．

Corollary 2．Under the same condition as in Theorem 6 using max－k_{1} in （a．19）for k_{1} ，when $c_{i}=0$ for at least one item，the maxima of the informations are already attained before transformation．

Proof．When $c_{i}=0$ for an item， $\max -k_{1}$ $=\min \left\{c_{m} \exp \left(b_{m}\right) ; m=1, \ldots, n\right\}$ becomes 0 ，which gives the required result． Q．E．D．

Corollary 2 shows a flexibility of the model with negative c_{i}^{*} ．Even when $c_{i}=0$ for all items，the informations can further be increased．Note that in this case the model before transformation is the usual 1－parameter logistic or Rasch model．

