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multinomial choice models. The test statistic is asymptotically chi-square distributed,
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power of the tests are investigated by Monte Carlo experiments.
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1. Introduction

Not infrequently, variables of interest in economic research are discrete and unordered, as we often
find the variables that indicate the behavior or state of economic agents. Some econometric models have
been developed to deal with these discrete and unordered outcomes. Above all, parametric models, such
as the multinomial logit (MNL) and probit (MNP) models proposed by [1,2], respectively, are widely
employed, for example, in structural econometric analysis (e.g., the economic models of automobile
sales in [3,4]) and as part of econometric methods (e.g., selection bias correction of [5,6]). However,
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results obtained by such parametric models may be seriously misleading when the model is misspecified
or poorly approximates the true model. Thus, researchers need to examine the validity of parametric
assumptions as long as the assumptions are refutable from data alone.

This study proposes a new specification test that is directly applicable to any multinomial choice
models with unordered outcome variables. These models set parametric assumptions on response
probabilities that an option is chosen from multiple alternatives, and identical assumptions are often set
for all response probabilities. Problems occur when these models do not mimic the true models, because
the response probabilities and partial effects of some variables on the probabilities cannot be properly
predicted. Moreover, the parameter estimation results may be misleading and their interpretation
confusing. The specification test proposed here can be utilized to justify the choice of parametric models
and to avoid misspecification problems.

The novelty of the test provided in this study is that it allows us to test the specifications of response
probabilities jointly for all choice alternatives. Multinomial choice models with unordered outcomes
consist of multiple response probabilities, each of which may be parameterized differently. This implies
that one needs to test multiple null hypotheses to justify the parametric assumptions of these models.
A substantial number of specification tests has been developed to test a single null hypothesis. To our
knowledge, however, no joint specification tests have so far been theoretically suggested for multiple
null hypotheses.

The test proposed here is based on moment conditions. We show that the test statistic is asymptotically
chi-square distributed, consistent against a fixed alternative and able to detect a local alternative
approaching the null at the rate of 1/

√
nhq/2, where q is the number of independent variables.

One eminent feature of our test is that a parametric bootstrap procedure works well to calculate
the rejection region for the test statistic. Since the testing method involves nonparametric estimation,
a sufficiently large sample size could be required to establish that the chi-squared distribution is a proper
approximation for the distribution of the test statistic. Thus, a simple parametric bootstrap procedure to
calculate rejection regions is a practical need.

A crucial point that makes parametric bootstrap work is that the orthogonality condition holds with
bootstrap sampling under both the null and alternative hypotheses. This is different from the specification
test for the regression function that requires the wild bootstrapping procedure to calculate the rejection
region proven by [7]. It is also noteworthy that the parametric nature of the model leads to substantial
savings in the computational cost of bootstrapping.

Methodologically, two different approaches have been developed to construct specification tests.
One uses an empirical process and the other a smoothing technique. We call the first type empirical
process-based tests and the second type smoothing-based tests. Most of the literature on specification
tests can be categorized into one of these two types. Empirical process-based tests are proposed
by [8–18], among others. Smoothing-based tests are proposed by [7,19–32], to mention only a few.

These two types of tests are complementary to each other, rather than substitutional, in terms of the
power property. For Pitman local alternatives, empirical process-based tests are more powerful than the
smoothing-based tests. Empirical process-based tests can detect Pitman local alternatives approaching
the null at the parametric rate n−1/2, whereas smoothing-based tests can detect them at a rate slower than
the parametric rate. Smoothing-based tests are, however, more powerful for a singular local alternative
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that changes drastically or is of high frequency. Empirical process-based tests can be represented by a
kernel-like weight function with a fixed smoothing parameter. Thus, it can be intuitively understood
that empirical process-based tests oversmooth the true function and obscure the drastic changes of
alternatives. The work in [33] shows that smoothing-based tests can detect singular local alternatives
at a rate faster than n−1/2.

The test proposed in this study is most related to [30], which proposes a smoothing-based test for
functional forms of the regression function. Most of the specification tests developed for functional
forms of the regression function can be directly applied to test the parametric specifications of ordered
choice models, such as the parametric binary choice models, because ordered choice models have only a
single response probability that is equal to the conditional expectation of the outcome. For example, [34]
applied several specification tests, originally developed for regression functions, to some ordered discrete
choice models for a comparison of their relative merits based on their asymptotic size and power.
However, applying them to unordered multinomial choice models, as done in this study, is not a trivial
task. Extending empirical process-based tests and rate-optimal tests1 to unordered multinomial choice
models is a task left for future research.

This paper is organized as follows. Section 2 introduces unordered multinomial choice models
and reveals the problems of parametric specification. The new test statistic is proposed in Section 3.
The assumptions and asymptotic behavior are provided in Section 4. Section 5 shows how to bootstrap
parametrically. We investigate the size and power of the test by conducting Monte Carlo experiments
in Section 6. We conclude with Section 7. The proofs of the lemmas and propositions are provided in
the Appendix.

2. Unordered Multinomial Choice Models

We have the observations {{Yi,j, Xi,j}ni=1}Jj=1, where Yi,j ∈ {0, 1} is a binary response variable that
takes one if individual i chooses alternative j and zero otherwise. Each individual chooses one of J
alternatives, which implies Yi,m = 0 for all m 6= j if Yi,j = 1. Xi,j ∈ Rkj is a vector of independent
variables that affect the choice decision made by individual i. Throughout this paper, we assume that
{Xi,j, Yi,j}ni=1 is independent and identically distributed for each j = 1, . . . , J . With i remaining fixed,
however, {Xi,j, Yi,j}Jj=1 is not necessarily independent or identical.

Multinomial choice models with unordered response variables are constructed by introducing latent
variables y∗i,j , which may be interpreted as the utility or satisfaction that i can obtain by choosing
alternative j. We assume each individual chooses an alternative that maximizes personal utility; that is,
Yi,j = 1 if y∗i,j > y∗i,m for all m 6= j. Further, y∗i,j depends on a function gj(Xi,j, θ) and unobserved error
εi,j: y∗i,j = gj(Xi,j, θ) + εi,j , where εi,j is independent of Xi,j and θ ∈ Θ is a parameter in a subset of a
finite dimensional space Θ. Then, the response probability that i chooses j can be formulated as follows:

P (Yi,j = 1|Xi) = P (y∗i,j > y∗i,m ∀m 6= j |Xi)

= P (εi,j − εi,m > gm(Xi,m, θ)− gj(Xi,j, θ) ∀m 6= j |Xi), (1)

1 Rate optimal tests are proposed by [35–40], among others.
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where Xi ∈ Rq is a vector consisting of all independent variables. The dimension q of Xi is equal to∑J
j=1 kj when all variables in Xi,j are alternative-specific for all j. This occurs when no variable in Xi,j

is identical to any of those in Xi,m as long as j 6= m.
A specification of the functional forms of g(·) and the distributions of ε leads to full parameterization

of the model in the sense that parameters and response probabilities can be estimated parametrically.
For example, if we assume linearity, gj(Xi,j, θ) = X ′i,jβ, and the Type I extreme-value distribution
for εi,j for all j, we have MNL model in which: P (Yi,j = 1|Xi) = exp(X ′i,jβ)/

∑J
j=1 exp(X ′i,jβ).2

An alternative model suggested by [2] is the MNP model, in which εi,j is assumed to be normally
distributed. In both cases, the parameters can be inferred by maximum likelihood estimation, and the
choice probabilities are obtained by plugging the estimated values into (1).

Specification of the distribution of ε in (1) is less restrictive than specifying a distribution of a random
variable. This is because specification of ε is true if ε is in a family of distributions. The strict inequality
in (1) holds after any transformations on both sides of the inequality with any strictly increasing
functions. For example, the distribution of εi,j − εi,m in (1) could be transformed into a well-known
one as the normal or Type I extreme distribution. In these special cases, the distributions of ε’s may
not be an essential specification issue, provided we can specify the right-hand side of the inequality
correctly. In other words, distributional assumptions of error terms that help us simplify the estimation
of parametric models could be justified by specifying the functional forms of gj(·) prudently.

In empirical studies, however, functional forms of gj(·) and distributions of εi,j are generally unknown
for all j. Moreover, in unordered multinomial choice models, the functional forms of gj(·) and the
distributions of εi,j may be nonidentical across j. Thus, we need joint specification tests that indicate
whether parametric specifications provide a good approximation to the true models. The appropriate null
and alternative hypotheses are as follows:

H0 : P [mθ,j(Xi) = P (Yi,j = 1|Xi)] = 1, for some θ ∈ Θ and for all j,

H1 : P [mθ,j(Xi) = P (Yi,j = 1|Xi)] < 1, for any θ ∈ Θ and for some j,

where mj(Xi) denotes the true response probabilities and mθ,j(Xi) their parameterized variants.

3. Test Statistic

The test statistic proposed in this study is built on the features of response probabilities, that is
the moment conditions that are satisfied when the parametric response probability is true. This implies
that we test the specifications of the functional forms of gj(·) and the distributions of εi.j simultaneously
for all j. Rejection of the null hypothesis, thus, indicates that at least one of the parametric specifications
of gj(·) and εi.j is misspecified.

2 To be accurate, the MNL model consists of alternative-variant coefficients whose response probabilities are indicated by
P (Yj = 1|X) = exp(X ′βj)/[1+

∑J
j=1 exp(X

′βj)]. However, the models represented by alternative-variant coefficients
are able to transform into a model with alternative-invariant coefficients without loss of generality, which is sometimes
called a conditional logit model. In this paper, we describe only a model with alternative-invariant coefficients.
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Before presenting the test statistic, we introduce some notations. Let fh(x) be the non-parametric
density estimator for a continuous point of Xi as follows:

fh(x) =
1

nhq

n∑
i=1

K

(
Xi − x
h

)
,

where K(·) is a kernel function and h is a bandwidth depending on n. In addition, we define K(2) as the
two-times convolution product of the kernel and K(4) as that of K(2).

The test statistic is based on

Zj ≡ E[uθ,i,jE(uθ,i,j|Xi)f(Xi)],

where uθ,i,j = Yi,j − mθ,j(Xi) and f(·) is the marginal density of Xi. Under the null hypothesis,
Zj = 0, since E(uθ,i,j|Xi) = 0. Under the alternative hypothesis, E[uθ,i,jE(uθ,i,j|Xi)f(Xi)] =

E[E(uθ,i,j|Xi)
2f(Xi)] ≥ c E{[P (Yi,j = 1|Xi)−mθ,j(Xi)]

2} > 0, for some positive constant c, provided
that f(·) is bounded away from zero.

The nonparametric estimates of Zj , denoted as Zn,j , can be obtained as follows:

Zn,j =
1

n(n− 1)

n∑
i=1

n∑
l 6=i

1

hq
K

(
Xi −Xl

h

)
ûθ,i,jûθ,l,j,

where ûθ,i,j = Yi,j − mθ̂,j(Xi) and mθ̂,j(Xi) is the estimate of mθ,j(Xi). We denote the asymptotic
variance of Zn,j and the covariance between Zn,j and Zn,m by Vj,j and Vj,m, respectively.

We introduce some further notations to provide the test statistic. Note that testing the specification
of an arbitrary pair of J − 1 response probabilities is a sufficient test for the null hypothesis subject to∑J

j=1 P (Yi,j = 1|Xi) = 1 for all i. For notational simplicity, we omit the J-th response probability
from our test statistic. Let Zn ≡ (Zn,1, . . . , Zn,J−1)′ be a (J − 1)× 1 vector and V̂ a (J − 1)× (J − 1)

variance-covariance matrix whose (j,m) elements are estimates of Vj,m. Then, the test statistic is

Cn = n2hqZ ′nV̂
−1Zn,

where

V̂j,j = K(2) (0)
2

n

n∑
i=1

[σ̂2
j(Xi)]

2fh(Xi),

V̂j,m = K(2) (0)
2

n

n∑
i=1

[σ̂j,m(Xi)]
2fh(Xi),

for all j = 1, . . . , J − 1 and j 6= m. σ̂2
j(·) is the estimated conditional variance of ui,j ≡ Yi,j −mj(Xi),

where E(ui,j|Xi) = 0 and mj(x) ≡ P (Yi,j = 1|Xi = x) = E(Yi,j|Xi = x), and σ̂j,m(·) is the estimated
covariance between ui,j and ui,m.

Considering the nature of the model, σ̂2
j(·) and σ̂j,m(·) can be easily obtained. Since Yi,j is a binary

variable taking zero or one, ui,j = [1 − mj(Xi)]1(Yi,j = 1) − mj(Xi)1(Yi,j = 0), where 1(·) is an
indicator function. The conditional variance of ui,j and the covariance between ui,j and ui,m can then be
written straightforwardly as follows:

σ2
j(Xi) ≡ E(u2

i,j|Xi) = mj(Xi)[1−mj(Xi)], (2)



Econometrics 2015, 3 672

σj,m(Xi) ≡ E(ui,jui,m|Xi) = −mj(Xi)mm(Xi). (3)

Thus, consistent parametric estimators of σ2
j(Xi) and σj,m(Xi) under the null hypothesis are

σ̂2
j(x) = mθ̂,j(x)[1−mθ̂,j(x)] and σ̂j,m(x) = −mθ̂,j(x)mθ̂,m(x), respectively.

4. The Asymptotic Behavior

First, we provide sufficient assumptions to show the asymptotic behavior of the test statistic.
Asymptotic distributions under the null and alternative hypothesis are then given. Finally, we show
the asymptotic behavior of the test statistic under Pitman local alternatives.

4.1. Assumptions

The following are sufficient assumptions to show the test statistic’s asymptotic behavior.

Assumption 1: X lies on a compact set. The marginal density of Xi, denoted as f(·), is continuously
differentiable and bounded away from zero.

Assumption 2: m(·) is continuously differentiable on the support of X .

Assumption 3: P (Yi,j = 1|Xi) 6= 0 and P (Yi,j = 1|Xi) 6= 1, for all i and j. None of the alternatives is
a perfect substitute for any other.

Assumption 4: mθ,j(X) is differentiable with respect to θ, the derivative ∂
∂θ
mθ,j(X) is continuous with

respect to X and θ, and supθ∈Θ |mθ,j(x)| <∞ for all x.

Assumption 5: There exists a unique value for the θ, defined as θ0 = arg max
θ

∑n
i=1

∑J
j=1 1{Yi,j =

1} log[mθ,j(Xi)]. Letting θ0 = θ, it satisfies θ̂− θ = Op(1/
√
n).

Assumption 1 establishes that the first-order derivative of f(·) is bounded. The assumption thatX lies
on a compact set may be considered too strong, because it excludes X from some tractable distributions,
such as the normal. However, it does not confine applications of the test to empirical study, because,
in general, observations rarely take an infinite value. The assumption that f(·) is bounded from zero
avoids the random denominator problem associated with a nonparametric kernel estimation. It is also
straightforward to see that the first-order derivative of m(·) is also bounded under Assumptions 1 and 2.

Assumption 3 guarantees that σ2
j(Xi) 6= 0 and σj,l(Xi) 6= 0 for any j and l 6= j, because σ2

j(Xi) =

P (Yi,j = 1|Xi)P (Yi,j = 0|Xi) and σj,l(Xi) = −P (Yi,j = 1|Xi)P (Yi,l = 1|Xi). It is also clear that
σ2
j(Xi) and σj,l(Xi) never tend to infinity, owing to the nature of the model. The fact that no alternatives

are perfect substitutes for each other ensures that the variance-covariance matrix V is invertible.
We need Assumption 4 to show the asymptotic behavior of Cn. The

√
n-consistency of the parametric

estimation given in Assumption 5 is obtained, for example, by maximal likelihood estimation of a
multinomial probit or logit model.

The kernel function assumption is as follows:

Assumption 6: The kernel K is a symmetric function and satisfies
∫
K(u)du = 1,

∫
|K(u)|du < ∞,

sup |K(u)| <∞ and |uK(u)| → 0 as |u| → ∞.
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Assumption 6 is satisfied by commonly-used second-order kernels, such as the Epanechnikov, Gaussian
and quartic kernels, and the two-times convolution product of the kernel is bounded under this
assumption. Furthermore, the nonparametric density estimator is consistent under Assumptions 1 and 5
(see, for example, Theorem 4.1 of [41]).

4.2. Asymptotic Distribution under the Null Hypothesis

We provide a proposition about the asymptotic distribution ofCn under the null hypothesis. The proof
of the proposition is provided in the Appendix.

Proposition 1. Let Assumptions 1–6 hold. Then, under the null hypothesis,

Cn
d−→ χ2

(J−1),

as h→ 0 and nhq →∞.

Proposition 1 indicates that the asymptotic distribution of the test statisticCn under the null hypothesis
is a chi-squared distribution with J − 1 degrees of freedom. Therefore, we reject the null hypothesis that
the parametric specification of the response probability is identical to the true one with a probability of
one if Cn > tα, where tα is the (1 − α) quantile of the chi-squared distribution with J − 1 degrees
of freedom.

4.3. Asymptotic Distribution under the Alternative Hypothesis

We show that the test statistic is consistent, that is its asymptotic power is equal to one. The proof of
the lemma is provided in the Appendix.

Lemma 1. Let Assumptions 1–6 hold. Then, under the alternative hypothesis,

1

nh2/q

nh2/qZn,j√
V̂j,j

p−→ E{[mθ,j(Xi)−mj(Xi)]
2f(Xi)}√

2K(2) (0)E{mθ,j(Xi)2[1−mθ,j(Xi)]2f(Xi)}
> 0,

for some j as n→∞ and h→ 0.

The proof of Lemma 1 provided in the Appendix implies that nh2/qZn,j diverges for some j as the
sample size n increases and V̂j,j converges to a constant that is strictly larger than zero. In addition, it is
straightforward to see that the probability limits of V̂j,m under the alternative hypothesis is

2K(2) (0)E[mθ,j(Xi)
2mθ,m(Xi)

2f(Xi)],

which is bounded above by Assumptions 1–3 and 5 for any j 6= m. Thus, the following proposition
follows immediately.

Proposition 2. Let Assumptions 1–6 hold. Then, under the alternative hypothesis, Cn diverges in
probability, and thus, the asymptotic power of the test is one.
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The proof of Proposition 2 is apparent from Lemma 1 and the discussion on the probability limits of
V̂j,m under the alternative hypothesis mentioned above.

4.4. Asymptotic Distribution under the Pitman Local Alternative

We show that the test statistic Cn has nontrivial power against Pitman local alternatives approaching
the null at the rate of 1/

√
nhq/2. The proof of the lemma is provided in the Appendix. Let us consider a

sequence of local alternatives:

H1n : P (Yi,j = 1|Xi) = mθ,j(Xi) + δnlj(Xi),

where lj(·) is a known continuous function with E[lj(·)2] < ∞ for all j and δn → 0 at the rate
of 1/

√
nhq/2.

Lemma 2. Let Assumptions 1–6 hold. Then, under the local alternative hypothesis,

nhq/2Zn,j
d−→ N(Mj, Vj,j) for all j,

where Mj ≡ E[lj(x)2f(x)].

Lemma 2 indicates that the limiting distribution of nhq/2Zn,j/Vj,j is the normal distribution with mean
MjV

−1/2
j,j and variance one. The following proposition shows that the test statistic can detect the local

alternative with nontrivial power.

Proposition 3. Let Assumptions 1–6 hold. Then, under the local alternative hypothesis, the test statistic
Cn converges to a non-central chi-squared distribution with J − 1 degrees of freedom:

Cn
d−→ χ2

(J−1)(λ̃),

where λ̃ ≡M ′V −1M is a noncentrality parameter.

The proof of Proposition 3 is straightforward from Lemma 2 and the discussion on the probability
limits of V̂j,m for j 6= m in the proof of Proposition 1.

5. Bootstrap Methods

This section presents a bootstrapping method that is useful in approximating the distribution of the
test statistic when the sample size is small. Specification tests for the regression function usually require
the wild bootstrapping procedure to calculate the rejection region, as proven by [7]. In our case, however,
the wild bootstrap does not work well. The intuitive reason is that it fails to generate a bootstrap sample
for the binary response variable.

We show that the parametric bootstrap procedure works well to calculate the rejection region for the
test statistic. Intuitively, this is because the binary bootstrap sample for the response variable, say Y ∗i ,
can be driven according to the parametrically-generated response probabilities, and there are no specific
conditions that should be held by Y ∗i in multinomial choice models. This is, for example, different from
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the case of the regression model in which the conditional expectation of the error term should be zero.
The proof for the proposition in this section is provided in the Appendix.

The response probability that person i chooses alternative j can be parametrically estimated
under the null hypothesis for all i and j by using the observations {{Xi,j, Yi,j}ni=1}Jj=1. For each
person, we randomly choose one of J alternatives (say, alternative mi) with individual probabilities
equal to the estimated response probabilities. Then, we derive bootstrap observations Y ∗i ≡
{Y ∗i,1, Y ∗i,2, . . . , Y ∗i,mi

, . . . , Y ∗i,J} for each i = 1, · · · , n, so that P (Y ∗i,j|Xi) = mθ̂,j(Xi), where Y ∗i,mi
= 1

and Y ∗i,j = 0 for j 6= mi. We use {{Xi,j, Y
∗
i,j}ni=1}Jj=1 as the bootstrap observations.

Assumptions 3 and 5 can be rewritten by using the bootstrap observations as follows:

Assumption 3’: P (Y ∗i,j = 1|Xi) 6= 0 and P (Y ∗i,j = 1|Xi) 6= 1, for all i and j. None of the alternatives
is a perfect substitute for any other.

Assumption 5’: There exists a unique value for the θ, defined as θ0 = arg max
θ

∑n
i=1

∑J
j=1 1{Yi,j =

1} log[mθ,j(Xi)]. Letting θ0 = θ, it satisfies θ̂∗ − θ = Op(1/
√
n).

where θ̂∗ is the estimate of θ obtained by using the bootstrap observations {{Xi,j, Y
∗
i,j}ni=1}Jj=1.

Since the bootstrap sample Y ∗i,j is derived in accordance with the parametrically-estimated response
probabilities mθ̂,j(Xi), Assumption 3’ implies that these probabilities do not take the values zero and
one; that is, mθ̂,j(Xi) 6= 0 and mθ̂,j(Xi) 6= 1, for all i and j. Assumption 3’ holds whenever
Assumption 3 holds and one applies parametric models whose estimates do not exceed below zero and
above one, such as the MNL or MNP model. Assumption 5’ requires that θ̂∗ be a consistent estimator
of θ. Assumption 5’ is satisfied whenever Assumption 5 holds because the true value of θ̂∗ is θ̂, which
converges to θ in probability.

Bootstrap Methods for Cn

The test statistic C∗n is constructed similarly to Cn by using the bootstrap observations
{{Xi,j, Y

∗
i,j}ni=1}Jj=1. We obtain the (1−α) quantile t∗α by Monte Carlo approximation for the distribution

of C∗n. The null hypothesis is rejected if Cn > t∗α. In the following proposition, we show that
this parametric bootstrap procedure works: under the null hypothesis, C∗n converges to the asymptotic
distribution of Cn; under the alternative hypothesis, C∗n converges to the asymptotic distribution of the
test statistics under the null hypothesis.

Proposition 4. Let Assumptions 1–6 hold. Then, the test statistic obtained with the bootstrap
observation converges to a chi-squared distribution with J − 1 degrees of freedom:

C∗n
p−→ χ2

(J−1),

as n→∞ and h→ 0.
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6. Monte Carlo Experiments

The size and power of the test are examined by Monte Carlo experiments. We consider a simple case
in which each individual chooses one of three alternatives. To explore the power properties of the test,
we consider three different true models.

The null hypothesis to be tested is the following:

H0 : P

[
mθ,j(Xi) =

exp(β0 + β1Xi,j)∑J
j=1 exp(β0 + β1Xi.j)

]
= 1,

for some β0,β1 ∈ R and for all j = 1, 2, 3. The null hypothesis is based on the assumptions that the
function gj(Xi,j, θ) is linear, specifically, β0 + β1Xi,j , and that εi,j follows the Type I extreme-value
distribution for all j. For simplicity of calculation, Xi,j is assumed to be one-dimensional.

We consider three different true models. Each of these true models has a specific form of gj(·),
which can be generally written as gj(Xi,j, θ) = γjXi,j +cj(Xi,j−1/2)2 +dj(2Xi,j−2/3)3. By applying
specific values in γ ≡ {γ1,γ2,γ3}, c ≡ (c1, c2, c3) and d ≡ (d1, d2, d3), we propose three true models:
Model 1: γ = {1, 1, 1}, c = (0, 0, 1), and d = (0, 0, 0); Model 2: γ = {1, 1, 5}, c = (0, 3, 5),
and d = (0, 0, 0); and Model 3: γ = {1, 1, 1}, c = (0, 3, 5), and d = (0, 3, 5). The true distribution of
εi,j is a Type I extreme-value distribution for all j.

These true models allow us to investigate the power property of the test in the case of misspecification
due to nonlinearity and the choice-specific coefficients. We add nonlinearity to the true function of
gj(·) in all true models by setting cj and dj at nonzero values. Choice-specific coefficients are inserted
into Model 2 by setting γj at different values across j. In this experiment, we do not consider the
misspecification originating in the distribution of εi,j and the omitted variables.

We derive {{Xi,j}3
j=1}ni=1 uniformly from [0,1] and {{εi,j}3

j=1}ni=1 randomly from the Type I
extreme-value distribution. Then, the latent variable y∗ is generated by each true model: y∗i,j =

gj(Xi,j, θ) + εi,j . The binary outcome Yi,j is chosen to be one, if y∗i,j > y∗i,m for all m 6= j, and
zero otherwise. Sample sizes are n = 50 and n = 100. The critical value is computed by B = 100

repetitions of the parametric bootstrap, and all results are based on M = 1000 simulation runs.
To calculate the test statistics, Xi,j is considered to be specific to each alternative, namely, q = 3.

The quartic kernelK(z) = (15/16)(1−z2)2
1(|z| < 1) is used for nonparametric estimation. Bandwidths

for the kernel estimator are chosen to be h ∈ {0.30, 0.35, 0.40, 0.45}.
Table 1 illustrates the size of the test at the 5% significance level. The first and second rows of the

table show the size of the test, where the critical values are obtained by the parametric bootstrap (t∗0.05)
and asymptotic distribution of the test statistic (t0.05), respectively. The first to fourth columns of the table
illustrate the results obtained with a sample size of n = 50 and bandwidths h of 0.30, 0.35, 0.40 and 0.45,
respectively. Similarly, the fifth to eighth columns show the result with n = 100. Overall, the test
tends to over-reject the null hypothesis when the critical values are calculated by parametric bootstrap.
The probability of rejection is close to its nominal size when h = 0.35 and n = 50. In contrast, the test
tends to under-reject the null hypothesis when the critical values are the 95% quantile of the chi-squared
distribution with two degrees of freedom. The probability of rejection is close to its nominal size when
h = 0.30 and n = 50.
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Table 1. Monte Carlo estimates of the size.

Critical Value\h
n = 50 n = 100

0.30 0.35 0.40 0.45 0.30 0.35 0.40 0.45

t∗0.05 0.069 0.047 0.062 0.058 0.058 0.064 0.063 0.077

t0.05 0.049 0.040 0.042 0.043 0.032 0.051 0.050 0.046

The significance level is 0.05.

In comparing the power performance of the test, it is possible to correct size distortion by using the
bandwidths corresponding to the nominal size of the tests. In practice, however, this procedure cannot
be employed, because we do not know the true model. Thus, we do not correct the size distortion in
this experiment. We rather show the power performance with each bandwidth level, since choosing an
appropriate bandwidth in practice is outside the scope of this paper.

Before beginning to show the simulation results of the power performance of the test statistics,
we illustrate the discrepancy between the true and parametric null models. The response probabilities
in this simulation are mappings of the unit cube to the unit interval. For illustration simplicity,
however, we focus on the domain of the response probabilities, being {Xi = (Xi,1, Xi,2, Xi,3) :

Xi,j ∈ [0, 1] for all j and Xi,1 = Xi,2 = Xi,3}. In this setting, the fitted values for the response
probabilities of the parametric model under the null hypothesis are always 1/3 for all j, because the
model does not have any alternative-variant coefficients.

Figure 1 shows how the true and null response probabilities react to the covariates. The larger
distance between the true and null models with x fixed indicates that the parametric null model does
not approximate the true model well. The parametric predictions of response probabilities lie closer
to the true response probability in Model 1 than in Models 2 and 3 for all j. For the second and third
alternatives, the parametric null response probability appears to lie closer to the true response probability
in Model 3 than in Model 2. For the first alternative, however, the distance between the true and null
models seems closer in Model 3. In brief, the null model gives the best response probability predictions
in Model 1, but the predictions are less accurate in Models 2 and 3. The prediction precision of the null
model could reflect the power performance of the test statistics.

Table 2 reports the proportion of rejections of the null hypothesis at the 5% significance level. The
first to third rows of the table show the power of the test when the true models are Model 1, Model 2
and Model 3, respectively, where the critical values are obtained by parametric bootstrap. Similarly,
the fourth to sixth rows of the table show the power, where the critical values are obtained by the 95%

quantile of the chi-squared distribution with two degrees of freedom. The first to fourth columns of the
table illustrate the power results obtained with a sample size of n = 50 and bandwidths h of 0.30, 0.35,
0.40 and 0.45, respectively. Similarly, the fifth to eighth columns show the result with n = 100.

The test does not have a decidedly nontrivial power when Model 1 is true. Non-rejection of the
null hypothesis does not imply that the null model is true. However, in fact, as the top three figures in
Figure 1 show, the parametric model under the null hypothesis may provide a proper approximation for
the response probabilities of Model 1. Therefore, the low power of the test statistic may be acceptable.
In contrast, the test statistic has more nontrivial power when Model 2 or 3 is true. The greater the sample
size, the better the power performance, which depends on the choice of bandwidth.
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Figure 1. Discrepancy between true and estimated parametric response probabilities.

Table 2. Proportion of null hypothesis rejections based on Monte Carlo simulation.

Critical Value Model\h
n = 50 n = 100

0.30 0.35 0.40 0.45 0.30 0.35 0.40 0.45

t∗0.05 Model 1 0.061 0.058 0.055 0.070 0.065 0.053 0.063 0.076

Model 2 0.810 0.888 0.935 0.960 0.998 1.000 1.000 1.000

Model 3 0.236 0.330 0.397 0.411 0.672 0.709 0.791 0.838

t0.05 Model 1 0.047 0.043 0.056 0.061 0.049 0.053 0.052 0.053

Model 2 0.807 0.907 0.940 0.970 0.995 1.000 0.999 1.000

Model 3 0.255 0.304 0.365 0.415 0.600 0.713 0.777 0.839

The significance level is 0.05.

Closer inspection of Table 2 reveals that the test performs better in terms of power when the critical
values are obtained by parametric bootstrap, especially when the sample size is n = 50. Too see this,
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we compare the results of h = 0.35 when critical values are t∗0.05 with those of h = 0.30 when critical
values are t0.05. We compare the results with different bandwidths because the size of the test is close to
its nominal size with these bandwidths (0.047 and 0.049, respectively). When the true model is Model 2,
the probability of the rejection of the null hypothesis is 0.888 for t∗0.05. The probability of the rejection is
0.807 for t0.05. Similarly, when the true model is Model 3, the probability is 0.330 for t∗0.05 and 0.255 for
t0.05. It is surprising that the performance of the test is not unreasonable when critical values are obtained
by an asymptotic distribution. However, at least in this setting, the test shows higher power when critical
values are obtained by parametric bootstrap when the sample size is small.

7. Conclusions

This study proposes a consistent specification test for unordered multinomial choice models. It tests
the specifications of multiple response probabilities jointly for all choice alternatives. The test statistic is
asymptotically chi-square distributed with J−1 degrees of freedom, consistent against a fixed alternative
and have nontrivial power against local alternatives approaching the null at the rate of 1/

√
nhq/2.

The rejection region for the test statistic can be calculated through a simple parametric bootstrap
procedure, when the sample size is small. In Monte Carlo experiments, we test the specification of
the MNL model under three true models to examine the power performance of the test. We find that
the test statistic does not have a decidedly nontrivial power when the parametric model under the null
hypothesis provides a proper approximation for the response probabilities of the true model. The test
statistic has more nontrivial power when the approximation of the null model is less successful. In
addition, we find that the test shows higher power performance when critical values are obtained by
parametric bootstrap than when they are obtained by the asymptotic distribution of the test statistic. The
differences of the power performances are greater when the sample size is small. We can reduce size
distortion by choosing an appropriate bandwidth, but this issue remains for future research.

The test proposed in this study can be applied to testing the parametric specifications of response
probabilities for any unordered multinomial choice models, including the MNL and MNP models.
However, the test is not able to detect local alternatives approaching the null hypothesis at the parametric
rate, nor is it rate-optimal. Extending the testing procedure to incorporate such features is left for
future research.
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Appendix: Proofs

Proof of Proposition 1. We first prove the following:

nhq/2Ẑn,j
d−→ N(0, Vj,j), (4)

Vj,j − V̂j,j = op(1), (5)

Vj,m − V̂j,m = op(1), (6)

where Vj,j and Vj,m are the asymptotic variance of nhq/2Ẑn,j and the covariance between nhq/2Ẑn,j and
nhq/2Ẑn,m, respectively. We show that they can be written as follows:

Vj,j ≡ 2K(2)(0)E{[σ2(x)]2f(x)},
Vj,m ≡ 2K(2)(0)E{[σj,m(x)]2f(x)}.

Proof of (4) . Under the null hypothesis, we have mj(·) = mθ,j(·). Thus, it follows that

nhq/2Ẑn,j

=
1

hq/2(n− 1)

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
uθ̂,i,juθ̂,l,j

=
1

hq/2(n− 1)

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ,j(Xi)−mθ̂,j(Xi) + ui,j][mθ,j(Xl)−mθ̂,j(Xl) + ul,j]

=
1

hq/2(n− 1)

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ,j(Xi)−mθ̂,j(Xi)][mθ,j(Xl)−mθ̂,j(Xl)]

+
1

hq/2(n− 1)

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
ui,jul,j

+
1

hq/2(n− 1)

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ,j(Xi)−mθ̂,j(Xi)]ul,j

+
1

hq/2(n− 1)

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ,j(Xl)−mθ̂,j(Xl)]ui,j

≡ Z1,j + Z2,j + Z3,j + Z4,j.

We will prove the following:

Z1,j = op (1) , (7)

Z2,j
d−→ N (0, Vj,j) , (8)

Z3,j + Z4,j = op (1) . (9)

Proof of (7). We show that Z1,j = op (1). By Assumption 4, there is an interior point θ̃ between θ and
θ̂, such that

mθ̂,j(Xi)−mθ,j(Xi) =
∂

∂θ′
mθ̃,j(Xi)(θ̂− θ). (10)
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By using this, Z1,j can be represented as follows:

Z1,j =
1

hq/2(n− 1)

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ,j(Xi)−mθ̂,j(Xi)][mθ,j(Xl)−mθ̂,j(Xl)]

= hq/2
√
n(θ̂− θ)′

1

n(n− 1)

n∑
i=1

n∑
l 6=i

1

hq
K

(
Xi −Xl

h

)
∂mθ̃,j(Xi)

∂θ

∂mθ̃,j(Xl)

∂θ′
√
n(θ̂− θ)

≡ hq/2
√
n(θ̂− θ)′

1

n(n− 1)

n∑
i=1

n∑
l 6=i

Z̄1(Xi, Xl)
√
n(θ̂− θ),

where Z̄1(Xi, Xl) is a symmetric function. We apply Lemma 3.1 of [42] to the second-order U-statistic,
1

n(n−1)

∑n
i=1

∑n
l 6=i Z̄1(Xi, Xl). To do this, we need to show that E[‖Z̄1(Xi, Xl)‖2] = o(n).

E[‖Z̄1(Xi, Xl)‖2] =
1

h2q
E

[
K

(
Xi −Xl

h

)2 ∥∥∥∥∂mθ̃,j(Xi)

∂θ

∥∥∥∥2 ∥∥∥∥∂mθ̃,j(Xl)

∂θ

∥∥∥∥2
]

=
1

h2q

∫
K

(
x− y
h

)2 ∥∥∥∥∂mθ̃,j(x)

∂θ

∥∥∥∥2 ∥∥∥∥∂mθ̃,j(y)

∂θ

∥∥∥∥2

f(x)f(y)dxdy

=
1

hq

∫
K(u)2

∥∥∥∥∂mθ̃,j(x)

∂θ

∥∥∥∥2 ∥∥∥∥∂mθ̃,j(x− uh)

∂θ

∥∥∥∥2

f(x)f(x− uh)dxdu

=
1

hq
K(2)(0)

∫ ∥∥∥∥∂mθ̃,j(x)

∂θ

∥∥∥∥4

f(x)2dx+O(h)

= O(h−q) +O[n(nhq)−1] = o(n) since nhq →∞. (11)

Applying Lemma 3.1 of [42], we obtain 1
n(n−1)

∑n
i=1

∑n
l 6=i Z̄1(Xi, Xl) = E[Z̄1(Xi, Xl)] + op(1/

√
n),

where

E[Z̄1(Xi, Xl)] =
1

hq
E
[
K

(
Xi −Xl

h

)
∂mθ̃,j(Xi)

∂θ

∂mθ̃,j(Xl)

∂θ′

]
=

1

hq

∫
K

(
x− y
h

)
∂mθ̃,j(x)

∂θ

∂mθ̃,j(y)

∂θ′
f(x)f(y)dxdy

=

∫
K(u)

∂mθ̃,j(x)

∂θ

∂mθ̃,j(x− uh)

∂θ′
f(x)f(x− uh)dxdu

=

∫
∂mθ̃,j(x)

∂θ

∂mθ̃,j(x)

∂θ′
f(x)2dx

= O(1).

Therefore, we yield

Z1,j = hq/2
√
n(θ̂− θ)′

1

n(n− 1)

n∑
i=1

n∑
l 6=i

Z̄1(Xi, Xl)
√
n(θ̂− θ),

= Op(h
q/2) = op(1).

Proof of (8). Note that Z2,j can be treated as a second-order degenerate U-statistic:

hq/2

n
Z2,j =

1

n(n− 1)

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
ui,jul,j.
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Define Gn(Z1, Z2) = EZi
[{K [(X1 −Xi)/h]u1,jui,j}{K [(X2 −Xi)/h]u2,jui,j}], where Zi =

{Xi, ui}. According to the central limit theorem for degenerate U-statistics proposed by [43],

Z2,j

h−q/2

√
2E{[u1,ju2,jK

(
X1−X2

h

)
]2}

d−→ N(0, 1),

if

E[G2
n(Z1, Z2)] + n−1E{[u1,ju2,jK

(
X1−X2

h

)
]4}

E{[u1,ju2,jK
(
X1−X2

h

)
]2}2

→ 0 as n→∞. (12)

Thus, it is enough to show that (12) and

2

hq
E

{[
u1,ju2,jK

(
X1 −X2

h

)]2
}
→ Vj,j, (13)

hold.

Proof of (12). First, straightforward calculation gives

E[G2
n(Z1, Z2)] = E

[{
EZi

[
u1,ju2,ju

2
i,jK

(
X1 −Xi

h

)
K

(
X2 −Xi

h

)]}2
]

= E

{
σ2
j(X1)σ2

j(X2)

[∫
σ2
j(z)K

(
X1 − z
h

)
K

(
X2 − z
h

)
f(z)dz

]2
}

= h3qK(4)(0)

∫
[σ2

j(x)]4f(x)4dx+O(h3q+1) + o(h3q+1)

= O(h3q). (14)

Similarly, it can be shown that

1

n
E

{[
u1,ju2,jK

(
X1 −X2

h

)]4
}

=
1

n

∫
σ4
j(x)σ4

j(y)

[
K

(
x− y
h

)]4

f(x)f(y)dxdy

=
hq

n

∫
[σ4

j(x)]2f 2(x)dx

∫
[K (u)]4 du+O

(
h2q

n

)
= O

(
hq

n

)
. (15)

Following some calculation, we obtain

E

{[
u1,ju2,jK

(
X1 −X2

h

)]2
}2

= E

{
σ2(X1)σ2(X2)

[
K

(
X1 −X2

h

)]2
}2

= h2q

{
K(2)(0)

∫
[σ2(x)]2f 2(x)dx+O(h)

}2

= O(h2q). (16)

Finally, (14)–(16) indicate that (12) holds because
O(h3q)+O(hq

n )
O(h2q)

→ 0 as h→ 0 and nhq →∞.
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Proof of (13). From Equation (16), it is clear that

2

hq
E

{[
u1,ju2,jK

(
X1 −X2

h

)]2
}

= 2K(2)(0)

∫
[σ2(x)]2f 2(x)dx+O(h)

= 2K(2)(0)E{[σ2(x)]2f(x)}+O(h)

→ Vj,j. (17)

Proof of (9). We show that Z3,j +Z4,j = op(1). By using (10), Z3,j +Z4,j can be represented as follows:

Z3,j + Z4,j =
1

(n− 1)

n∑
i=1

n∑
l 6=i

1

hq/2
K

(
Xi −Xl

h

)
{[mθ,j(Xi)−mθ̂,j(Xi)]ul,j + [mθ,j(Xl)−mθ̂,j(Xl)]ui,j}

=
1

(n− 1)

n∑
i=1

n∑
l 6=i

1

hq/2
K

(
Xi −Xl

h

){[
∂mθ̃,j(Xi)

∂θ′
(θ̂− θ)

]
ul,j +

[
∂mθ̃,j(Xl)

∂θ′
(θ̂− θ)

]
ui,j

}

=
hq/2

(n− 1)

n∑
i=1

n∑
l 6=i

1

hq
K

(
Xi −Xl

h

)[
ul,j

∂mθ̃,j(Xi)

∂θ′
+ ui,j

∂mθ̃,j(Xl)

∂θ′

]
(θ̂− θ)

≡ hq/2

(n− 1)

n∑
i=1

n∑
l 6=i

Z̄3(Xi, Xl)(θ̂− θ),

where Z̄3(Xi, Xl) is a symmetric function. We apply Lemma 3.1 of [42] to the second-order U-statistic,
1

n(n−1)

∑n
i=1

∑n
l 6=i Z̄3(Xi, Xl). To do this, we need to show that: E[‖Z̄3(Xi, Xl)‖2] = o(n).

E[|Z̄3(Xi, Xl)|2] ≤ 2

h2q
E

{
K

(
Xi −Xl

h

)2 ∥∥∥∥∂mθ̃,j(Xi)

∂θ′

∥∥∥∥2

u2
l,j

}

+
2

h2q
E

{
K

(
Xi −Xl

h

)2 ∥∥∥∥∂mθ̃,j(Xl)

∂θ′

∥∥∥∥2

u2
i,j

}

=
2

h2q

∫
K

(
x− y
h

)2 ∥∥∥∥∂mθ̃,j(x)

∂θ′

∥∥∥∥2

σ2
j(y)f(x)f(y)dxdy

+
2

h2q

∫
K

(
x− y
h

)2 ∥∥∥∥∂mθ̃,j(y)

∂θ′

∥∥∥∥2

σ2
j(x)f(x)f(y)dxdy

=
2

hq

∫
K(u)2

∥∥∥∥∂mθ̃,j(x)

∂θ′

∥∥∥∥2

σ2
j(x− uh)f(x)f(x− uh)dxdu

+
2

hq

∫
K(v)2

∥∥∥∥∂mθ̃,j(y)

∂θ′

∥∥∥∥2

σ2
j(y + vh)f(y + vh)f(y)dvdy

=
2

hq
K(2)(0)

∫ ∥∥∥∥∂mθ̃,j(x)

∂θ′

∥∥∥∥2

σ2
j(x)f(x)2dx

+
2

hq
K(2)(0)

∫ ∥∥∥∥∂mθ̃,j(y)

∂θ′

∥∥∥∥2

σ2
j(y)f(y)2dy +O(h)

= O(h−q) +O[n(nhq)−1] = o(n) since nhq →∞. (18)
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Applying Lemma 3.1 of [42], we obtain 1
n(n−1)

∑n
i=1

∑n
l 6=i Z̄3(Xi, Xl) = E[Z̄3(Xi, Xl)] + op(1/

√
n),

where E[Z̄3(Xi, Xl)] = 0. Therefore,

Z3,j + Z4,j =
nhq/2

n(n− 1)

n∑
i=1

n∑
l 6=i

Z̄3(Xi, Xl)(θ̂− θ)

= nhq/2op(1/
√
n)Op(1/

√
n)

= op(h
q/2) = op(1).

Proof of (5) and (6). Since the asymptotic variance is shown above, we derive the asymptotic covariance
between nhq/2Ẑn,j and nhq/2Ẑn,m, which we denote as Vj,m. From the results of (7)–(9), it is clear that
E(Z2,jZ2,m) → Vj,m as n → ∞. Because E(ui,jul,j) = 0 if i 6= l, and E(ui,jui,m|Xi) = σj,m(Xi) if
j 6= m, it follows that

E(Z2,jZ2,m)

=
1

(n− 1)2hq
E

[
n∑

i=1

n∑
l 6=1

K

(
Xi −Xl

h

)
ui,jul,j

n∑
s=1

n∑
t6=s

K

(
Xs −Xt

h

)
us,mut,m

]

=
2

(n− 1)2hq
E

{
n∑

i=1

n∑
l 6=1

ui,jul,jui,mul,m

[
K

(
Xi −Xl

h

)]2
}

=
2n

(n− 1)hq

∫
σj,m(x)σj,m(y)

[
K

(
x− y
h

)]2

f(x)f(y)dxdy

= 2K(2)(0)

∫
[σj,m(x)]2f 2(x)dx+O(h)

→ Vj,m. (19)

Thus, the proofs of (5) and (6) are straightforward from (17) and (19).
Let Z2 = (Z2,1, Z2,2, . . . , Z2,J−1)′. Similarly to the proof of (8), it can be straightforwardly shown

that t′Z2
d−→ N(0, t′V t) for any (J − 1)× 1 vector t, where V is a (J − 1)× (J − 1) variance-covariance

matrix whose (j,m) elements are Vj,m. Then, by the Cramér–Wold device, Z2 converges to a multivariate
normal distribution with (J − 1) × 1 mean vector consists of zero and variance-covariance matrix V .
Therefore, Cn, which is the quadratic form of nhq/2Ẑn,j , converges to a chi-squared distribution with
J − 1 degrees of freedom.

Proof of Lemma 1. Under the alternative hypothesis, nhq/2Zn,j can be represented as follows:

nhq/2Ẑn,j =
1

hq/2(n− 1)

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
uθ̂,i,juθ̂,l,j

=
1

hq/2(n− 1)

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mj(Xi)−mθ̂,j(Xi) + ui,j][mj(Xl)−mθ̂,j(Xl) + ul,j]

=
1

hq/2(n− 1)

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mj(Xi)−mθ,j(Xi) +mθ,j(Xi)−mθ̂,j(Xi) + ui,j]

[mj(Xl)−mθ,j(Xl) +mθ,j(Xl)−mθ̂,j(Xl) + ul,j]
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=
1

hq/2(n− 1)

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mj(Xi)−mθ,j(Xi)][mj(Xl)−mθ,j(Xl)]

+
1

hq/2(n− 1)

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mj(Xi)−mθ,j(Xi)][mθ,j(Xl)−mθ̂,j(Xl)]

+
1

hq/2(n− 1)

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mj(Xi)−mθ,j(Xi)]ul,j

+
1

hq/2(n− 1)

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ,j(Xi)−mθ̂,j(Xi)][mj(Xl)−mθ,j(Xl)]

+
1

hq/2(n− 1)

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ,j(Xi)−mθ̂,j(Xi)][mθ,j(Xl)−mθ̂,j(Xl)]

+
1

hq/2(n− 1)

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ,j(Xi)−mθ̂,j(Xi)]ul,j

+
1

hq/2(n− 1)

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mj(Xl)−mθ,j(Xl)]ui,j

+
1

hq/2(n− 1)

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ,j(Xl)−mθ̂,j(Xl)]ui,j

+
1

hq/2(n− 1)

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
ui,jul,j

≡ A1,j + A2,j + A3,j + A4,j + A5,j + A6,j + A7,j + A8,j + A9,j,

where A5,j = Z1,j = op(1) and A6,j + A8,j = Z3,j + Z4,j = op(1). We show that

1

nh2/q
(A2,j + A3,j + A4,j + A7,j + A9,j) = op(1). (20)

Then, Ẑn,j = 1
nh2/qA1,j + op(1). Thus, it is enough to show that (20), and the following holds:

1

nh2/q
A1,j = E{[mθ,j(Xi)−mj(Xi)]

2f(Xi)}+ op(1), (21)

V̂ Zh
j,j = 2K(2) (0)E{mθ,j(Xi)

2[1−mθ,j(Xi)]
2f(Xi)}+ op(1). (22)

Since σ̂2
j(x) = mθ̂,j(x)[1 − mθ̂,j(x)] converges to mθ,j(x)[1 − mθ,j(x)] in a probability under the

alternative hypothesis, the proofs of (22) is straightforward.

Proof of (20). First, we show 1
nh2/q (A2,j + A4,j) = op(1). 1

nh2/q (A2,j + A4,j) can be represented as a
second-order U-statistic as follows:

1

nh2/q
(A2,j + A4,j)

=
1

n(n− 1)

n∑
i=1

n∑
l 6=i

1

hq
K

(
Xi −Xl

h

)
{

[mj(Xi)−mθ,j(Xi)][mθ,j(Xl)−mθ̂,j(Xl)] + [mθ,j(Xi)−mθ̂,j(Xi)][mj(Xl)−mθ,j(Xl)]
}
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=
1

n(n− 1)

n∑
i=1

n∑
l 6=i

1

hq
K

(
Xi −Xl

h

)
{

[mj(Xi)−mθ,j(Xi)]
∂

∂θ′
mθ̃,j(Xl) + [mj(Xl)−mθ,j(Xl)]

∂

∂θ′
mθ̃,j(Xi)

}
(θ̂− θ)

≡ 1

n(n− 1)

n∑
i=1

n∑
l 6=i

Ā2(Xi, Xl)(θ̂− θ),

where Ā2(Xi, Xl) is a symmetric function. We show that E[‖Ā2(Xi, Xl)‖2] = o(n).

E[‖Ā2(Xi, Xl)‖2] ≤ 2

h2q
E

[
K

(
Xi −Xl

h

)2

|mj(Xi)−mθ,j(Xi)|2
∥∥∥∥ ∂

∂θ′
mθ̃,j(Xl)

∥∥∥∥2
]

+
2

h2q
E

[
K

(
Xi −Xl

h

)2

|mj(Xl)−mθ,j(Xl)|2
∥∥∥∥ ∂

∂θ′
mθ̃,j(Xi)

∥∥∥∥2
]

=
2

h2q

∫
K

(
x− y
h

)2

|mj(x)−mθ,j(x)|2
∥∥∥∥ ∂

∂θ′
mθ̃,j(y)

∥∥∥∥2

f(x)f(y)dxdy

+
2

h2q

∫
K

(
x− y
h

)2

|mj(y)−mθ,j(y)|2
∥∥∥∥ ∂

∂θ′
mθ̃,j(x)

∥∥∥∥2

f(x)f(y)dxdy

=
2

hq

∫
K(u)2|mj(x)−mθ,j(x)|2

∥∥∥∥ ∂

∂θ′
mθ̃,j(x− uh)

∥∥∥∥2

f(x)f(x− uh)dxdu

+
2

hq

∫
K(v)2|mj(y)−mθ,j(y)|2

∥∥∥∥ ∂

∂θ′
mθ̃,j(y + vh)

∥∥∥∥2

f(y + vh)f(y)dvdy

=
2

hq
K(2)(0)

∫
|mj(x)−mθ,j(x)|2

∥∥∥∥ ∂

∂θ′
mθ̃,j(x)

∥∥∥∥2

f(x)2dx

+
2

hq
K(2)(0)

∫
|mj(y)−mθ,j(y)|2

∥∥∥∥ ∂

∂θ′
mθ̃,j(y)

∥∥∥∥2

f(y)2dy +O(h)

= O(h−q) +O[n(nhq)−1] = o(n) since nhq →∞.

Applying Lemma 3.1 of [42], we obtain 1
n(n−1)

∑n
i=1

∑n
l 6=i Ā2(Xi, Xl) = E[Ā2(Xi, Xl)] + op(1), where

E[Ā2(Xi, Xl)] =
1

hq

∫
K

(
x− y
h

)
[mj(x)−mθ,j(x)]

∂mθ̃,j(y)

∂θ′
f(x)f(y)dxdy

+
1

hq

∫
K

(
x− y
h

)
[mj(y)−mθ,j(y)]

∂mθ̃,j(x)

∂θ′
f(x)f(y)dxdy

=

∫
K(u)[mj(x)−mθ,j(x)]

∂mθ̃,j(x− uh)

∂θ′
f(x)f(x− uh)dxdu

+

∫
K(v)[mj(y)−mθ,j(y)]

∂mθ̃,j(y + vh)

∂θ′
f(y + vh)f(y)dvdy

=

∫
[mj(x)−mθ,j(x)]

∂mθ̃,j(x)

∂θ′
f(x)2dx

+

∫
[mj(y)−mθ,j(y)]

∂mθ̃,j(y)

∂θ′
f(y)2dy +O(h)

= O(1).
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Therefore, we yield

1

nh2/q
(A2,j + A4,j) =

1

n(n− 1)

n∑
i=1

n∑
l 6=i

Ā2(Xi, Xl)(θ̂− θ) = Op(1/
√
n) = op(1).

Next, we show 1
nh2/q (A3,j + A7,j) = op(1). 1

nh2/q (A3,j + A7,j) can be represented as a second-order
U-statistic as follows:

A3,j + A7,j

nh2/q
=

1

n(n− 1)

n∑
i=1

n∑
l 6=i

1

hq
K

(
Xi −Xl

h

)
{[mj(Xi)−mθ,j(Xi)]ul,j + [mj(Xl)−mθ,j(Xl)]ui,j}

=
1

n(n− 1)

n∑
i=1

n∑
l 6=i

Ā3(Xi, Xj),

where Ā3(Xi, Xj) is a symmetric function. We show that E[‖Ā3(Xi, Xl)‖2] = o(n).

E[‖Ā3(Xi, Xl)‖2] ≤ 2

h2q
E

{
K

(
Xi −Xl

h

)2

|mj(Xi)−mθ,j(Xi)|2u2
l,j

}

+
2

h2q
E

{
K

(
Xi −Xl

h

)2

|mj(Xl)−mθ,j(Xl)|2u2
i,j

}

=
2

h2q

∫
K

(
x− y
h

)2

|mj(x)−mθ,j(x)|2σ2
j(y)f(x)f(y)dxdy

+
2

h2q

∫
K

(
x− y
h

)2

|mj(y)−mθ,j(y)|2σ2
j(x)f(x)f(y)dxdy

=
2

hq

∫
K(u)2|mj(x)−mθ,j(x)|2σ2

j(x− uh)f(x)f(x− uh)dxdu

+
2

hq

∫
K(v)2|mj(y)−mθ,j(y)|2σ2

j(y + vh)f(y + vh)f(y)dvdy

=
2

hq
K(2)(0)

∫
|mj(x)−mθ,j(x)|2σ2

j(x)f(x)2dx

+
2

hq
K(2)(0)

∫
|mj(y)−mθ,j(y)|2σ2

j(y)f(y)2dy +O(h)

= O(h−q) +O[n(nhq)−1] = o(n) since nhq →∞.

Applying Lemma 3.1 of [42], we obtain 1
n(n−1)

∑n
i=1

∑n
l 6=i Ā3(Xi, Xl) = E[Ā3(Xi, Xl)] + op(1), where

E[Ā3(Xi, Xl)] = 0. Therefore, we yield

A3,j + A7,j

nh2/q
=

1

n(n− 1)

n∑
i=1

n∑
l 6=i

Ā3(Xi, Xj) = op(1).

Finally, we show that n−1h−2/qA9,j = op(1). It is clear that 1
nh2/qA9,j is a second-order U-statistic.

This satisfies the condition for Lemma 3.1 of [42] as follows:

E

[∣∣∣∣ 1

hq
K

(
Xi −Xl

h

)
ui,jul,j

∣∣∣∣2
]

=
1

h2q

∫
K

(
x− y
h

)2

σ2
j(x)σ2

j(y)f(x)f(y)dxdy
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=
1

hq

∫
K(u)2[σ2

j(x)]2f(x)2dxdu+O(h)

= O(h−q) = O(n(nhq)−1) = o(n) since nhq →∞.

Applying Lemma 3.1 of [42], we obtain 1
nhq/2A9,j = E

[
h−qui,jul,jK

(
Xi−Xl

h

)]
+ op(1), where

E
[
h−qui,jul,jK

(
Xi−Xl

h

)]
= 0.

Proof of (21). 1
nh2/qA1,j can be represented as a second-order U-statistic as follows:

1

nh2/q
A1,j =

1

n(n− 1)

n∑
i=1

n∑
l 6=i

1

hq
K

(
Xi −Xl

h

)
[mj(Xi)−mθ,j(Xi)][mj(Xl)−mθ,j(Xl)]

≡ 1

n(n− 1)

n∑
i=1

n∑
l 6=i

Ā1(Xi, Xl),

where Ā1(Xi, Xl) is a symmetric function. Similar to (11), it can be straightforwardly shown that
E[‖Ā1(Xi, Xl)‖2] = o(n). The only difference from (11) is we have ‖mj(x)−mθ,j(x)‖2, which is
uniformly bounded, as a part of the integrand instead of

∥∥∂mθ̃,j(x)/∂θ
∥∥2. By applying Lemma 3.1

of [42], we yield 1
nh2/qA1,j = E[Ā1(Xi, Xl)] + op(1), where

E[Ā1(Xi, Xl)] =
1

hq

∫
K

(
x− y
h

)
[mj(x)−mθ,j(x)][mj(y)−mθ,j(y)]f(x)f(y)dxdy

=

∫
K(u)[mj(x)−mθ,j(x)][mj(x− uh)−mθ,j(x− uh)]f(x)f(x− uh)dxdu

=

∫
[mj(x)−mθ,j(x)]2f(x)2dx+O(h)

= E{[mθ,j(Xi)−mj(Xi)]
2f(Xi)}+O(h).

Proof of Lemma 2. Under the local alternative hypothesis, nhq/2Zn,j can be written as follows:

nhq/2Zn,j =
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
ûθ,i,jûθ,l,j

=
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=1

K

(
Xi −Xl

h

)
[mθ,j(Xi)−mθ̂,j(Xi) + δnlj(Xi) + ui,j]

[mθ,j(Xl)−mθ̂,j(Xl) + δnlj(Xl) + ul,j]

=
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=1

K

(
Xi −Xl

h

)
[mθ,j(Xi)−mθ̂,j(Xi)][mθ,j(Xl)−mθ̂,j(Xl)]

+
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=1

K

(
Xi −Xl

h

)
[mθ,j(Xi)−mθ̂,j(Xi)]δnlj(Xl)

+
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=1

K

(
Xi −Xl

h

)
[mθ,j(Xl)−mθ̂,j(Xl)]δnlj(Xi)

+
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=1

K

(
Xi −Xl

h

)
[mθ,j(Xi)−mθ̂,j(Xi)]ul,j
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+
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=1

K

(
Xi −Xl

h

)
[mθ,j(Xl)−mθ̂,j(Xl)]ui,j

+
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=1

K

(
Xi −Xl

h

)
δ2
nlj(Xi)lj(Xl)

+
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=1

K

(
Xi −Xl

h

)
δnlj(Xi)ul,j

+
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=1

K

(
Xi −Xl

h

)
δnlj(Xl)ui,j

+
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=1

K

(
Xi −Xl

h

)
ui,jul,j

≡ B1,j +B2,j +B3,j +B4,j +B5,j +B6,j +B7,j +B8,j +B9,j,

where B1,j = Z1,j = op(1), B4,j +B5,j = Z3,j + Z4,j = op(1) and B9,j = Z2,j
d−→ N (0, Vj,j). It suffices

to show the following:

B2,j +B3,j = op(1), (23)

B6,j
p−→ E[lj(x)2f(x)], (24)

B7,j +B8,j = op(1). (25)

Proof of (23). We show that B2,j +B3,j = op(1). B2,j +B3,j can be represented as follows:

B2,j +B3,j

=
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=1

K

(
Xi −Xl

h

)
{[mθ,j(Xi)−mθ̂,j(Xi)]lj(Xl) + [mθ,j(Xl)−mθ̂,j(Xl)]lj(Xi)}δn

=
nhq/2

n(n− 1)

n∑
i=1

n∑
l 6=1

1

hq
K

(
Xi −Xl

h

)
{[mθ,j(Xi)−mθ̂,j(Xi)]lj(Xl) + [mθ,j(Xl)−mθ̂,j(Xl)]lj(Xi)}δn

=
nhq/2

n(n− 1)

n∑
i=1

n∑
l 6=1

1

hq
K

(
Xi −Xl

h

)[
∂mθ̃,j(Xi)

∂θ′
lj(Xl) +

∂mθ̃,j(Xl)

∂θ′
lj(Xi)

]
(θ̂− θ)δn

≡ nhq/2

n(n− 1)

n∑
i=1

n∑
l 6=1

B̄2(Xi, Xl)(θ̂− θ)δn,

where B̄2(Xi, Xl) is a symmetric function. Similar to (18), it can be straightforwardly shown that
E[|B̄2(Xi, Xl)|2] = o(n). The only difference from (18) is that we have lj(·)2 instead of σ2

j(·) as a
part of the integrand, where E[lj(·)2] is assumed to be bounded. By applying Lemma 3.1 of [42], we
yield 1

n(n−1)

∑n
i=1

∑n
l 6=1 B̄2(Xi, Xl) = E[B̄2(Xi, Xl)] + op(1), where

E[B̄2(Xi, Xl)] =
1

hq

∫
K

(
x− y
h

)[
∂mθ̃,j(x)

∂θ′
lj(y) +

∂mθ̃,j(y)

∂θ′
lj(x)

]
f(x)f(y)dxdy

=

∫
K(u)

[
∂mθ̃,j(x)

∂θ′
lj(x− uh) +

∂mθ̃,j(x− uh)

∂θ′
lj(x)

]
f(x)f(x− uh)dxdu
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= 2

∫
∂mθ̃,j(x)

∂θ′
lj(x)f(x)2dx+O(h)

= O(1).

Therefore,

B2,j +B3,j =
nhq/2

n(n− 1)

n∑
i=1

n∑
l 6=1

B̄2(Xi, Xl)(θ̂− θ)δn

= nhq/2O(1)Op(1/
√
n)O(1/

√
nhq/2)

= Op(
√
hq/2) = op(1).

Proof of (24). We show that B6,j converges to E[lj(x)2f(x)] as n → ∞. B6,j can be represented
as follows:

B6,j =
nhq/2

n(n− 1)

n∑
i=1

n∑
l 6=1

1

hq
K

(
Xi −Xl

h

)
lj(Xi)lj(Xl)δ

2
n

≡ nhq/2

n(n− 1)

n∑
i=1

n∑
l 6=1

B̄6(Xi, Xl)δ
2
n,

where B̄6(Xi, Xl) is a symmetric function. Similar to (11), it can be straightforwardly shown
that E[|B̄6(Xi, Xl)|2] = o(n). The only difference from (11) is that we have lj(·)2 instead of∥∥∂mθ̃,j(Xi)/∂θ

∥∥2 as a part of the integrand, where E[lj(·)2] is assumed to be bounded. By applying
Lemma 3.1 of [42], we yield 1

n(n−1)

∑n
i=1

∑n
l 6=1 B̄6(Xi, Xl) = E[B̄6(Xi, Xl)] + op(1), where

E[B̄6(Xi, Xl)] =
1

hq

∫
K

(
x− y
h

)
lj(y)lj(x)f(x)f(y)dxdy

=

∫
K(u)lj(x− uh)lj(x)f(x)f(x− uh)dxdu

=

∫
l2j (x)f(x)2dx+O(h).

Therefore,

B6,j =
nhq/2

n(n− 1)

n∑
i=1

n∑
l 6=1

B̄6(Xi, Xl)δ
2
n

= nhq/2{E[l2j (x)f(x)] + op(1)}δ2
n

p−→ E[l2j (x)f(x)].

Proof of (25). We show that B7,j +B8,j = op(1). B7,j +B8,j can be represented as follows:

B7,j +B8,j =
nhq/2

n(n− 1)

n∑
i=1

n∑
l 6=1

1

hq
K

(
Xi −Xl

h

)
[lj(Xi)ul,j + lj(Xl)ui,j]δn

≡ nhq/2

n(n− 1)

n∑
i=1

n∑
l 6=1

B̄7(Xi, Xl)δn,

where B̄7(Xi, Xl) is a symmetric function. Similar to (18), it can be straightforwardly shown
that E[|B̄7(Xi, Xl)|2] = o(n). The only difference from (18) is that we have lj(·)2 instead of
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∥∥∂mθ̃,j(Xi)/∂θ
∥∥2 as a part of the integrand, where E[lj(·)2] is assumed to be bounded. By applying

Lemma 3.1 of [42], we yield 1
n(n−1)

∑n
i=1

∑n
l 6=1 B̄7(Xi, Xl) = E[B̄7(Xi, Xl)] + op(1/

√
n), where

E[B̄7(Xi, Xl)] = 0. Therefore,

B7,j +B8,j =
nhq/2

n(n− 1)

n∑
i=1

n∑
l 6=1

B̄7(Xi, Xl)δn

= nhq/2op(1/
√
n)δn = op(1).

Proofs of Proposition 4. Proposition 4 can be proven along the same lines as Proposition 1. Let
u∗i,j = Y ∗i,j − m∗j(Xi), where m∗j(Xi) ≡ E(Y ∗i,j|Xi) = mθ̂,j(Xi), and therefore, E(u∗i,j|Xi) = 0. Then,
the boundedness of σ∗4j (x) ≡ E[u∗4i,j|Xi = x] corresponding to (15) can be shown straightforwardly
because Y ∗i,j is a binary variable taking the values zero and one, and X lies on a compact set by
Assumption 1.

We first prove the following:

nhq/2Ẑ∗n,j
d−→ N(0, V ∗j,j), (26)

V ∗j,j − V̂ ∗j,j = op(1), (27)

V ∗j,m − V̂ ∗j,m = op(1), (28)

where V ∗j,j and V ∗j,m are the asymptotic variance of nhq/2Ẑ∗n,j and covariance between nhq/2Ẑ∗n,j and
nhq/2Ẑ∗n,m, respectively. We show that they can be written as follows:

V ∗j,j ≡ 2K(2)(0)E{[σ∗2j (x)]2f(x)dx},
V ∗j,m ≡ 2K(2)(0)E{[σ∗j,m(x)]2f(x)dx},

where σ∗2j (x) is the conditional variance of u∗i,j and σ∗j,m(x) is the covariance between u∗i,j and u∗i,m.

Proof of (26). Let u∗
θ̂,i,j

= Y ∗i,j − mθ̂∗,j(Xi) and Y ∗i,j = mθ̂,j(Xi) + u∗i,j , where E(u∗i,j|Xi) = 0 by
definition. Then,

nhq/2Ẑ∗n,j =
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
u∗
θ̂,i,j

u∗
θ̂,l,j

=
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ̂,j(Xi)−mθ̂∗,j(Xi) + u∗i,j][mθ̂,j(Xl)−mθ̂∗,j(Xl) + u∗l,j]

=
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ̂,j(Xi)−mθ̂∗,j(Xi)][mθ̂,j(Xl)−mθ̂∗,j(Xl)]

+
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
u∗i,ju

∗
l,j

+
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ̂,j(Xi)−mθ̂∗,j(Xi)]u

∗
l,j
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+
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ̂,j(Xl)−mθ̂∗,j(Xl)]u

∗
i,j

≡ Z∗1,j + Z∗2,j + Z∗3,j + Z∗4,j.

We will prove that

Z∗1,j = op (1) , (29)

Z∗2,j
d−→ N(0, V ∗j,j), (30)

Z∗3,j + Z∗4,j = op (1) . (31)

Proof of (29). Z∗1,j can be represented as follows:

Z∗1,j =
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ̂,j(Xi)−mθ,j(Xi) +mθ,j(Xi)−mθ̂∗,j(Xi)]

[mθ̂,j(Xl)−mθ,j(Xl) +mθ,j(Xl)−mθ̂∗,j(Xl)]

=
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ̂,j(Xi)−mθ,j(Xi)][mθ̂,j(Xl)−mθ,j(Xl)]

+
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ,j(Xi)−mθ̂∗,j(Xi)][mθ,j(Xl)−mθ̂∗,j(Xl)]

+
2

(n− 1)hq/2

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ̂,j(Xi)−mθ,j(Xi)][mθ,j(Xl)−mθ̂∗,j(Xl)]

≡ Z∗
′

1,j + Z∗
′′

1,j + Z∗
′′′

1,j ,

where Z∗′1,j = Z1,j = op(1). By Assumption 4, there is an interior point θ̃∗ between θ and θ̂∗, such that

mθ̂∗,j(Xi)−mθ,j(Xi) =
∂

∂θ′
mθ̃∗,j(Xi)(θ̂

∗ − θ). (32)

Therefore, Z∗′′1,j = op(1) and Z∗
′′′

1,j = op(1) can be also shown similar to the proof for Z1,j = op(1)

by using the above mean value theorem instead of (10), because θ − θ̂∗ = Op(1/
√
n) for all j under

appropriate parametric models and Assumption 5.

Proof of (30). It is clear that Z∗2,j can be treated as second order degenerate U-statistic as follows:

hq/2

n
Z∗2,j =

1

n(n− 1)

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
u∗i,ju

∗
l,j.

Define G∗n(Z1, Z2) = EZi
[{K [(X1 −Xi)/h]u∗1,ju

∗
i,j}{K [(X2 −Xi)/h]u∗2,ju

∗
i,j}], where Z∗i =

{Xi, u
∗
i }. According to the central limited theorem for degenerated U-statistics proposed by [43],

Z∗2,j

h−q/2
√

2E{[u∗1,ju∗2,jK((X1 −X2)/h)]2}
d−→ N(0, 1),

if

E[G∗2n (Z∗1 , Z
∗
2)] + n−1E{[u1,ju2,jK((X1 −X2)/h)]4}

E{[u∗1,ju∗2,jK((X1 −X2)/h)]2}2
→ 0 as n→∞. (33)
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Thus, it suffices to show that (33) and

2h−qE{[u∗1,ju∗2,jK((X1 −X2)/h)]2} → V ∗j,j, (34)

hold.

Proof of (33). First, note that

E[G∗2n (Z1, Z2)] = E

[{
EZi

[
u∗1,ju

∗
2,ju

∗2
i,jK

(
X1 −Xi

h

)
K

(
X2 −Xi

h

)]}2
]

= E

{
σ∗2j (X1)σ∗2j (X2)

[∫
σ∗2j (z)K

(
X1 − z
h

)
K

(
X2 − z
h

)
f(z)dz

]2
}

= h3qK(4)(0)

∫
[σ∗2j (x)]4f(x)4dx+O(h3q+1) + o(h3q+1)

= O(h3q). (35)

In the same way as above, we obtain

n−1E

{[
u∗1,ju

∗
2,jK

(
X1 −X2

h

)]4
}

= n−1

∫
σ∗4j (x)σ∗4j (y)

[
K

(
x− y
h

)]4

f(x)f(y)dxdy

= n−1hq
∫

[σ∗4j (x)]2f 2(x)dx

∫
[K (u)]4 du+O

(
h2q

n

)
= O

(
hq

n

)
. (36)

Following some calculation, we can obtain

E

{[
u∗1,ju

∗
2,jK

(
X1 −X2

h

)]2
}2

= E

{
σ∗2(X1)σ∗2(X2)

[
K

(
X1 −X2

h

)]2
}2

= h2q

{
K(2)(0)

∫
[σ∗2(x)]2f 2(x)dx+O(h)

}2

= O(h2q). (37)

Thus, (33) holds by (35)–(37) because
O(h3q)+O(hq

n )
O(h2q)

=
O(hq)+O( 1

nhq )
O(1)

→ 0, as h→ 0 and nhq →∞.

Proof of (34). From Equation (37), it is clear that

2

hq
E

{[
u∗1,ju

∗
2,jK

(
X1 −X2

h

)]2
}

= 2K(2)(0)

∫
[σ∗2(x)]2f 2(x)dx+O(h)

= 2K(2)(0)E{[σ∗2(x)]2f(x)}+O(h)

→ V ∗j,j. (38)

Thus, we have Z∗2,j
d−→ N(0, V ∗j,j).

Proof of (31). Z∗3,j + Z∗4,j can be represented as follows:

Z∗3,j + Z∗4,j =
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ̂,j(Xi)−mθ̂∗,j(Xi)]u

∗
l,j
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+
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ̂,j(Xl)−mθ̂∗,j(Xl)]u

∗
i,j

=
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ̂,j(Xi)−mθ,j(Xi)]u

∗
l,j

+
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ,j(Xi)−mθ̂∗,j(Xi)]u

∗
l,j

+
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ̂,j(Xl)−mθ,j(Xl)]u

∗
i,j

+
1

(n− 1)hq/2

n∑
i=1

n∑
l 6=i

K

(
Xi −Xl

h

)
[mθ,j(Xl)−mθ̂∗,j(Xl)]u

∗
i,j

≡ Z∗
′

3,j + Z∗
′′

3,j + Z∗
′

4,j + Z∗
′′

4,j.

The only difference between Z∗′3,j + Z∗
′

4,j and Z3,j + Z4,j in (9) is that the former contains u∗l,j and u∗i,j
instead of ul,j and ui,j , respectively. However, since E(u∗i,j|Xi) = 0 and E(u∗l,j|Xl) = 0 from the
definition, Z∗′3,j +Z∗

′
4,j = op(1) can be proven as with the proof of (9). Moreover, Z∗′′3,j +Z∗

′′
4,j = op(1) can

also be proven as with the proof of (9) by using (32) instead of (10).

Proof of (27) and (28). Since the asymptotic variance is shown above, we derive the asymptotic
covariance between nhq/2Ẑ∗n,j and nhq/2Ẑ∗n,m, which we denote V ∗j,m. From the results of (29)–(31),
it is clear that E(Z∗2,jZ

∗
2,m) → V ∗j,m as n → ∞. Because E(u∗i,ju

∗
l,j) = 0 if i 6= l and E(u∗i,jui,m|Xi) =

σ∗j,m(Xi) if j 6= m, it follows that

E(Z∗2,jZ
∗
2,m) =

1

(n− 1)2hq
E

[
n∑

i=1

n∑
l 6=1

K

(
Xi −Xl

h

)
u∗i,ju

∗
l,j

n∑
s=1

n∑
t6=s

K

(
Xs −Xt

h

)
u∗s,mu

∗
t,m

]

=
2

(n− 1)2hq
E

{
n∑

i=1

n∑
l 6=1

u∗i,ju
∗
l,ju
∗
i,mu

∗
l,m

[
K

(
Xi −Xl

h

)]2
}

=
2n

(n− 1)hq

∫
σ∗j,m(x)σ∗j,m(y)

[
K

(
x− y
h

)]2

f(x)f(y)dxdy

= 2K(2)(0)

∫
[σ∗j,m(x)]2f 2(x)dx+O(h)

→ V ∗j,m. (39)

Thus, proofs of (27) and (28) are straightforward from (38) and (39).
By the Cramér–Wold device and a similar calculation to the proof of (30), it can be straightforwardly

shown that Z2 converges to a multivariate normal distribution with the (J−1)×1 mean vector consisting
of zero and variance-covariance matrix V ∗, where V ∗ is a (J − 1)× (J − 1) variance-covariance matrix
whose (j,m) elements are V ∗j,m. Therefore, C∗n, which is the quadratic form of nhq/2Ẑ∗n,j , converges to a
chi-squared distribution with J − 1 degrees of freedom.



Econometrics 2015, 3 695

References

1. McFadden, D. Conditional Logit Analysis of Qualitative Choice Behavior. In Frontiers in
Econometrics; Zarembka, P., Ed.; Academic Press: New York, NY, USA, 1974; pp. 105–142.

2. Hausman, J.A.; Wise, D.A. A Conditional Probit Model for Qualitative Choice: Discrete
Decisions Recognizing Interdependence and Heterogeneous Preferences. Econometrica 1978,
46, 403–426.

3. Berry, S.; Levinsohn, J.; Pakes, A. Automobile Prices in Market Equilibrium. Econometrica
1995, 63, 841–890.

4. Goldberg, P.K. Product Differentiation and Oligopoly in International Markets: The Case of the
US Automobile Industry. Econometrica 1995, 63, 891–951.

5. Heckman, J.J. The Common Structure of Statistical Models of Truncation, Sample Selection and
Limited Dependent Variables and a Simple Estimator for Such Models. Ann. Econ. Soc. Meas.
1976, 5, 475–492.

6. Dubin, J.A.; McFadden, D.L. An Econometric Analysis of Residential Electric Appliance
Holdings and Consumption. Econometrica 1984, 52, 345–362.

7. Härdle, W.; Mammen, E. Comparing Nonparametric versus Parametric Regression Fits.
Ann. Stat. 1993, 21, 1926–1947.

8. Bierens, H.J. Consistent Model Specification Tests. J. Econ. 1982, 20, 105–134.
9. Bierens, H.J. Model Specification Testing of Time Series Regressions. J. Econom. 1984, 26,

323–353.
10. Bierens, H.J. A Consistent Conditional Moment Test of Functional Form. Econometrica 1990,

58, 1443–1458.
11. Delgado, M.A. Testing the Equality of Nonparametric Regression Curves. Stat. Probab. Lett.

1993, 17, 199–204.
12. De Jong, R.M. The Bierens Test under Data Dependence. J. Econom. 1996, 72, 1–32.
13. Andrews, D.W. A Conditional Kolmogorov Test. Econometrica 1997, 65, 1097–1128.
14. Bierens, H.J.; Ploberger, W. Asymptotic Theory of Integrated Conditional Moment Tests.

Econometrica 1997, 65, 1129–1151.
15. Stute, W. Nonparametric Model Checks for Regression. Ann. Stat. 1997, 25, 613–641.
16. Stinchcombe, M.B.; White, H. Consistent Specification Testing with Nuisance Parameters

Present Only under the Alternative. Econom. Theory 1998, 14, 295–325.
17. Chen, X.; Fan, Y. Consistent Hypothesis Testing in Semiparametric and Nonparametric Models

for Econometric Time Series. J. Econom. 1999, 91, 373–401.
18. Whang, Y.J. Consistent Bootstrap Tests of Parametric Regression Functions. J. Econom. 2000,

98, 27–46.
19. Eubank, R.L.; Spiegelman, C.H. Testing the Goodness of fit of a Linear Model via Nonparametric

Regression Techniques. J. Am. Stat. Assoc. 1990, 85, 387–392.
20. Le Cessie, S.; van Houwelingen, J.C. A Goodness-of-fit Test for Binary Regression Models,

Based on Smoothing Methods. Biometrics 1991, 47, 1267–1282.



Econometrics 2015, 3 696

21. Wooldridge, J.M. A Test for Functional Form Against Nonparametric Alternatives. Econom.
Theory 1992, 8, 452–475.

22. Yatchew, A.J. Nonparametric Regression Tests Based on an Infinite Dimensional Least Squares
Procedure. Econom. Theory 1992, 8, 435–451.

23. Gozalo, P.L. A Consistent Model Specification Test for Nonparametric Estimation of Regression
Function Models. Econom. Theory 1993, 9, 451–477.

24. Aït-Sahalia, Y.; Bickel, P.J.; Stoker, T.M. Goodness-of-fit Tests for Kernel Regression with an
Application to Option Implied Volatilities. J. Econom. 2001, 105, 363–412.

25. Delgado, M.A.; Stengos, T. Semiparametric Specification Testing of non-Nested Econometric
Models. Rev. Econ. Stud. 1994, 61, 291–303.

26. Horowitz, J.L.; Härdle, W. Testing a Parametric Model Against a Semiparametric Alternative.
Econom. Theory 1994, 10, 821–848.

27. Hong, Y.; White, H. Consistent Specification Testing via Nonparametric Series Regression.
Econometrica 1995, 63, 1133–1159.

28. Fan, Y.; Li, Q. Consistent Model Specification Tests: Omitted Variables and Semiparametric
Functional Forms. Econometrica 1996, 64, 865–890.

29. Lavergne, P.; Vuong, Q.H. Nonparametric Selection of Regressors: The Nonnested Case.
Econometrica 1996, 64, 207–219.

30. Zheng, J.X. A Consistent Test of Functional Form via Nonparametric Estimation Techniques.
J. Econom. 1996, 75, 263–289.

31. Li, Q.; Wang, S. A Simple Consistent Bootstrap Test for a Parametric Regression Function.
J. Econom. 1998, 87, 145–165.

32. Lavergne, P.; Vuong, Q. Nonparametric Significance Testing. Econom. Theory 2000, 16,
576–601.

33. Fan, Y.; Li, Q. Consistent Model Specification Tests. Econom. Theory 2000, 16, 1016–1041.
34. Mora, J.; Moro-Egido, A.I. On Specification Testing of Ordered Discrete Choice Models.

J. Econom. 2008, 143, 191–205.
35. Fan, J.; Huang, L.S. Goodness-of-fit Tests for Parametric Regression Models. J. Am. Stat. Assoc.

2001, 96, 640–652.
36. Horowitz, J.L.; Spokoiny, V.G. An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression

Model Against a Nonparametric Alternative. Econometrica 2001, 69, 599–631.
37. Spokoiny, V. Data-Driven Testing the fit of Linear Models. Math. Methods Stat. 2001, 10, 465–497.
38. Baraud, Y.; Huet, S.; Laurent, B. Adaptive Tests of Linear Hypotheses by Model Selection.

Ann. Stat. 2003, 31, 225–251.
39. Zhang, C.M. Adaptive Tests of Regression Functions via Multiscale Generalized Likelihood

Ratios. Can. J. Stat. 2003, 31, 151–171.
40. Guerre, E.; Lavergne, P. Data-Driven Rate-Optimal Specification Testing in Regression Models.

Ann. Stat. 2005, 33, 840–870.
41. Härdle, W.; Müller, M.; Sperlich, S.; Werwatz, A. Nonparametric and Semiparametric Models;

Springer: Berlin Heidelberg, Germany, 2004; p. 92.



Econometrics 2015, 3 697

42. Powell, J.L.; Stock, J.H.; Stoker, T.M. Semiparametric Estimation of Index Coefficients.
Econometrica 1989, 57, 1403–1430.

43. Hall, P. Central Limit Theorem for Integrated Square Error of Multivariate Nonparametric
Density Estimators. J. Multivar. Anal. 1984, 14, 1–16.

c© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Unordered Multinomial Choice Models
	Test Statistic
	The Asymptotic Behavior
	Assumptions
	Asymptotic Distribution under the Null Hypothesis
	Asymptotic Distribution under the Alternative Hypothesis
	Asymptotic Distribution under the Pitman Local Alternative

	Bootstrap Methods
	Monte Carlo Experiments 
	Conclusions
	Appendix: Proofs

