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Abstract
In this paper, we propose a fast image denoising method based on discrete Markov 
random fields and the fast Fourier transform. The purpose of the image denoising is 
to infer the original noiseless image from a noise corrupted image. We consider the 
case where several noisy images are available for inferring the original image and 
the Bayesian approach is adopted to create the posterior probability distribution of 
the denoised image. In the proposed method, the estimation of the denoised image is 
achieved using belief propagation and an expectation–maximization algorithm. We 
numerically verified the performance of the proposed method using several standard 
images.

Keywords Image denoising · Discrete Markov random field · Belief propagation · 
EM algorithm · FFT

1 Introduction

Bayesian image processing based on Markov random fields (MRFs) is an important 
framework in the field of image processing [1, 2]. An MRF is a undirected graph 
representation of probability distribution, and many applications of MRFs exist 
in the image processing and computer vision fields [3–5]. MRFs have also been 
applied to other research fields, including traffic engineering [6, 7] and earth science 
[8, 9]. In Bayesian image processing, the objective image can be inferred based on 
the posterior probability distribution.

Recently, we proposed a fast image denoising method for the case where multiple 
noisy images are available for inferring the original noiseless image that is based on 
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Gaussian MRFs [10]. However, in the study in [10], for ease of mathematical treat‑
ment, we made an unnatural assumption that pixel values are continuous. In general, 
a pixel takes a discrete value from 0 to 255, and an additional framework is required 
to treat pixel values as discrete instead of continuous values. Therefore, in this paper, 
we focus on the Bayesian image denoising problem of inferring the original noiseless 
image from multiple noisy images when the pixel values are treated as discrete values. 
We created a probability model for image denoising based on the discrete MRF and 
Bayesian perspective. A major disadvantage of an image processing model based on 
discrete MRFs is the computational complexity. In fact, the inference problem from 
discrete MRFs belongs to the NP‑hard class. Therefore, an approximate inference tech‑
nique is required to infer the objective image from a discrete MRF. Belief propagation 
[11] is known as one such effective technique. In this paper, we propose an effective 
image denoising algorithm for multiple noisy images that applies belief propagation. 
The main contributions of this paper are that an MRF model for image denoising with 
multiple noisy images is defined and a fast effective denoising algorithm based on our 
discrete MRF model and the fast Fourier Transform (FFT) is proposed.

The remainder of this paper is organized as follows. In Sect. 2, we define a prob‑
ability model for image denoising with multiple noisy images based on the discrete 
MRF and Baysian perspective. In Sect.  3, we derive an image denoising algorithm 
based on the posterior probability distribution defined in Sect. 2. In Sect. 4, we describe 
the framework for estimating the parameters in the posterior probability distribution. 
We explain the implementation of our denoising method using the FFT in Sect. 5. In 
Sect.  6, we describe the numerical verification of the performance of the proposed 
method. Finally, in Sect. 7, we present our concluding remarks.

2  Framework of Bayesian Image Denoising Method

In this section, we briefly explain the framework of the Bayesian image denoising 
method for the case where multiple noisy images are available. Suppose that we have K 
degraded images that are independently obtained by adding additive white Gaussian 
noise (AWGN) to the original image. We assume that the images are composed of 
N = h × w pixels. Let x =

[
x1 x2 ⋯ xN

]T and y(k) =
[
y
(k)

1
y
(k)

2
⋯ y

(k)

N

]T
 be N dimen‑

sional vectors corresponding to the original image and the k‑th noisy image, respec‑
tively. Vectors x and y(k) can be easily obtained by raster scanning the images. We 
assume that xi(i = 1, 2,…N) takes L discrete values from 0 to L − 1.

The purpose of the image denoising is to infer the original noiseless image x from K 
noisy images Y =

{
y
(1), y(2),… , y(K)

}
 . In the Bayesian framework, the original image 

x can be inferred using the posterior probability distribution P(x|Y) that is expressed as

where 
∑

x
 denotes the multiple summations over all the possible LN states of x . The 

framework of the proposed Bayesian image denoising method is illustrated in Fig. 1. 
From the definition of y(k) , the probability density function P(Y|x) is expressed as

(1)P(x�Y) = P(Y�x)P(x)
∑

x
P(Y�x)P(x)

,
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where V = {1, 2,… ,N} and �2 is the variance of the AWGN. We express the param‑
eters of the probability model by its arguments after the semicolon as Eq. (2). We 
define the prior probability distribution as

where E is a set of edges of the h × w lattice graph and �(x) is a downward convex 
even function taking its minimum at x = 0 . In this study, we assumed the periodic 
boundary condition on the graph structure E, as demonstrated in Fig. 2. 𝛼 > 0 is the 
parameter of the prior probability distribution; if � is set to a large value, neighbor‑
ing xi and xj tend to take close values. Zprior(�) is a normalization constant defined as

By substituting Eqs. (2) and (3) into Eq. (1), the posterior probability distribution 
P(x|Y) is expressed as

(2)

P
�
Y�x;�2

�
=

K�

k=1

P
�
y
(k)���x;�

2
�

=

K�

k=1

�

i∈V

1
√
2��2

exp

�
−

1

2�2

�
y
(k)

i
− xi

�2
�
,

(3)P(x;�) =
1

Zprior(�)
exp

(
−�

∑

ij∈E

�
(
xi − xj

)
)
,

(4)Zprior(�) =
∑

x

exp

(
−�

∑

ij∈E

�
(
xi − xj

)
)
.

(5)

P
(
x|Y;�, �2

)

=
1

Zpost
(
�, �2

) exp

(
−

1

2�2

∑

i∈V

�i

(
xi
)
− �

∑

ij∈E

�
(
xi − xj

)
)
,

Fig. 1  Illustration of the proposed Bayesian image denoising method
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where

and

respectively.

3  Inference Algorithm Based on Belief Propagation

The image denoising is achieved by finding the image x̂ that maximizes the posterior 
probability distribution in Eq. (5):

However, the problem of determining such an image is intractable, because this 
maximization problem belongs to the NP‑hard class. Therefore, we need an approxi‑
mate inference method to find x̂ . In this section, we explain an effective approximate 
inference method called belief propagation for inferring the denoised image x̂.

Belief propagation is a method of computing the approximate marginal distributions 
bi
(
xi
)
 and bij

(
xi, xj

)
 for each i ∈ V and ij ∈ E . In the belief propagation framework, the 

approximate marginal distributions bi
(
xi
)
 and bij

(
xi, xj

)
 are given by

(6)�i

(
xi
)
=

K∑

k=1

(
xi − y

(k)

i

)2

,

(7)Zpost
(
�, �2

)
=
∑

x

exp

(
−

1

2�2

∑

i∈V

�i

(
xi
)
− �

∑

ij∈E

�
(
xi − xj

)
)
,

(8)x̂ = argmax
x

P
(
x|Y;�, �2

)
.

(9)bi
(
xi
)
=
1

Zi
exp

(
−

1

2�2
�i

(
xi
))∏

k∈�i

M
post

k→i

(
xi
)
,

(10)Zi =
∑

xi

exp
(
−

1

2�2
�i

(
xi
))∏

k∈�i

M
post

k→i

(
xi
)
,

Fig. 2  Periodic boundary condi‑
tion for h × w lattice graph E, 
when h = 4 and w = 4
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and

respectively, where �i = {k ∈ V|ik ∈ E} is a set of all the neighboring pixels of pixel 
i. Mpost

k→i

(
xi
)
 in Eqs. (9) and (10) is a message from pixel k to pixel i and is obtained 

by the convergence point of the message update rule

where Zj→i is a normalization constant to ensure algorithmic stability. The estima‑
tion of the denoised image x̂ =

{
x̂i|i ∈ V

}
 is achieved by finding

for i ∈ V  in the belief propagation framework.

4  Parameter Estimation Using Expectation–Maximization Algorithm

In the preceding section, we explained the method for inferring the denoised image x̂ 
based on belief propagation. In our framework, the denoised image is inferred from the 
posterior probability distribution in Eq. (5), which has two parameters, � and �2 . It is 
obvious that the inferred denoised image x̂ depends on these parameters. In this sec‑
tion, we explain the method for determining these parameters from degraded images Y 
based on the expectation–maximization (EM) algorithm [12].

The EM algorithm is a statistical inference method to infer the maximum likelihood 
estimates

by an iterated method. In the EM algorithm framework, the parameters � and �2 are 
estimated by iterative maximization of the Q function defined as

(11)bij
(
xi, xj

)
=

1

Zij
exp

(
−��

(
xi − xj

))
m

post

�j→i

(
xi
)
m

post

�i→j

(
xj
)
,

(12)Zij =
∑

xi

∑

xj

exp
(
−��

(
xi − xj

))
m

post

�j→i

(
xi
)
m

post

�i→j

(
xj
)
,

(13)M
post

j→i

(
xi
)
=

1

Zj→i

∑

xj

exp
(
−��

(
xi − xj

))
m

post

�i→j

(
xj
)
,

(14)m
post

�j→i

(
xi
)
= exp

(
−

1

2�2
�i

(
xi
)) ∏

k∈�i�{j}

M
post

k→i

(
xi
)
,

(15)x̂i = argmax
xi

bi
(
xi
)
,

(16)�̂, �̂2 = argmax
�,�2

∑

x

P
(
x, Y;�, �2

)
,
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where �t and �2
t
 are estimates of the parameters at the t‑th iteration and

Using belief propagation, we can approximate the expectations in Eq. (17) as

and

respectively, where b(t)
i

(
xi
)
 and b(t)

ij

(
xi, xj

)
 are the approximate marginal distributions 

of the posterior probability distribution P
(
x|Y;�t, �2

t

)
 computed using Eqs. (9) and 

(11). The parameter update at iteration t is given by

and the maximum likelihood estimates in Eq. (16) are given as the convergence point 
of the above iterative estimation. By differentiating the Q function with respect to � 
and �2 and considering the conditions for the extremal value, the updated parameter 
�t+1 in Eq. (21) is expressed as the solution of the equation

and the updated parameter �2
t+1

 is calculated as

where 
�
�
�
xi − xj

�
;�
�
prior

=
∑

x
�
�
xi − xj

�
P(x;�) ; this expectation can also be com‑

puted approximately using belief propagation similarly to Eq. (20). Using the bisec‑
tion method, we can easily find �t+1 that satisfies Eq. (22).

(17)

Q
(
�, �2;�t, �

2
t

)
=
∑

x

P
(
x|Y;�t, �2

t

)
logP

(
x, Y;�, �2

)

= −
1

2�2

∑

i∈V

⟨
�i

(
xi
)
;�t, �

2
t

⟩
post

−
NK

2
log �2

− �
∑

ij∈E

⟨
�
(
xi − xj

)
;�t, �

2
t

⟩
post

− log Zprior(�)

+ Const.,

(18)
⟨
f (x);�t, �

2
t

⟩
post

=
∑

x

f (x)P
(
x|Y;�t, �2

t

)
.

(19)
⟨
�i

(
xi
)
;�t, �

2
t

⟩
post

=
∑

xi

�i

(
xi
)
b
(t)

i

(
xi
)
,

(20)
⟨
�
(
xi − xj

)
;�t, �

2
t

⟩
post

=
∑

xi

∑

xj

�
(
xi − xj

)
b
(t)

ij

(
xi, xj

)
,

(21)�t+1, �
2
t+1

= argmax
�,�2

Q
(
�, �2;�t, �

2
t

)
,

(22)
∑

ij∈E

⟨
�
(
xi − xj

)
;�t, �

2
t

⟩
post

=
∑

ij∈E

⟨
�
(
xi − xj

)
;�
⟩
prior

,

(23)�2
t+1

=
1

NK

∑

i∈V

⟨
�i

(
xi
)
;�t, �

2
t

⟩
post

,
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5  Proposed Algorithm: Fast Implementation Based on the Fast 
Fourier Transform

The image denoising algorithm based on our probabilistic model in Eq. (5) described 
in Sects. 2–4 is summarized in Algorithm  1, together with the differences in the 
computation times of the naive implementation and the proposed method, which is 
explained in this section. The worst computation time of the naive implementation 
of this algorithm is O

(
TEMTBPNL

2
)
 , where TEM and TBP are the maximum number of 

updates for the parameter update in Eq. (21) and the message update in Eq. (13), 
respectively. In Algorithm  1, we terminate the parameter and message updates in 
iteration TEM and TBP , respectively. Because we assume the periodic boundary con‑
dition for the graph structure E, the number of edges is |E| = 2N . Therefore, the 
number of messages passing each edge is O(N). The computation time of the naive 
message update from pixel j to pixel i is O

(
L2
)
 , because Eq. (13) must be computed 

for each xi = 0, 1,… , L − 1 to update a message Mpost

j→i
(xi) . 

Algorithm 1 : Image Denoising Algorithm
Require: Y = y(1),y(2), . . . ,y(K)

1: Initialize α0 and σ2
0

2: for t = 0, 1, 2, . . . , TEM − 1 do
3: initialize all messages Mj→i(xi)
4: for t = 0, 1, 2, . . . , TBP − 1 do
5: for all j → i do
6: update Mj→i(xi) using Eq. (13) (naive: O L2 → propose: O (L logL))

7: if all messages Mj→i(xi) are converged then break
8: for all i ∈ V do
9: compute ψi (xi) ;αt, σ2

t post using Eq. (19)

10: for all ij ∈ E do
11: compute φ (xi − xj) ;αt, σ2

t post using Eq. (20) (naive: O L2 → propose:
O (L logL))

12: compute αt+1 using Eq. (22) and bisection method (naive: O L2 → propose:
O (L logL))

13: compute σ2
t+1 using Eq. (23)

14: if α and σ2 are converged then break
15: initialize all messages Mj→i(xi)
16: for t = 0, 1, 2, . . . , TBP − 1 do
17: for all j → i do
18: update Mj→i(xi) using Eq. (13) (naive: O L2 → propose: O (L logL))

19: if all messages Mj→i(xi) are converged then break
20: for all i ∈ V do
21: compute bi (xi) using Eq. (9)
22: compute xi using Eq. (15)

It should be noted that the computation time of the message update can be 
reduced to O(L logL) using the FFT [13]. It has been confirmed that this FFT‑based 
method in fact accelerates the message computation for the probabilistic image 
denoising model in Eq. (5) for the case where K = 1 [14]. However, there exist 
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additional O(L2) computation terms in Algorithm 1: Steps 11 and 12. In this section, 
we show that these O(L2) computation terms can also be computed in O(L logL) 
using the FFT. Therefore, we can reduce the worst computation time of Algorithm 1 
to O

(
TEMTBPNL logL

)
.

The key idea for accelerating the message updates in Eq. (13) is to consider the 
update rule a convolution calculation. If we define the function f (x;�) as

we can reformulate the message update rules as

The calculation of mpost

j→i

(
xi
)
 in Eq. (25) is a convolution calculation. Therefore, we 

can calculate mpost

j→i

(
xi
)
 for xi = 0, 1,… , L − 1 in O(L logL) computation time using 

the FFT, and the computation time of Mpost

j→i

(
xi
)
 in Eq. (26) is linear with respect to 

L. Therefore, we can update a message Mpost

j→i

(
xi
)
 in O(L logL) computation time.

Now, we show that the expectation in Eq. (20) can be calculated in O(L logL) 
computation time by using the FFT. By substituting Eqs. (11) into (20), the expecta‑
tion calculation can be expressed as

If we define functions g(xi) and h(xi) as

respectively, we can reformulate the expectation calculation as

(24)f (x;�) = exp (−��(x)),

(25)m
post

j→i

(
xi
)
=
∑

xj

f (xi − xj;�)m
post

�i→j

(
xj
)
,

(26)M
post

j→i

(
xi
)
=m

post

j→i

(
xi
)/ L−1∑

l=0

m
post

j→i
(l) .

(27)
⟨
�
(
xi − xj

)
;�, �2

⟩
post

=
G

H
,

(28)G =
∑

xi

∑

xj

�
(
xi − xj

)
f (xi − xj;�)m

post

�i→j

(
xj
)
m

post

�j→i

(
xi
)
,

(29)H = Zij =
∑

xi

∑

xj

f (xi − xj;�)m
post

�i→j

(
xj
)
m

post

�j→i

(
xi
)
.

(30)g(xi) =
∑

xj

�
(
xi − xj

)
f (xi − xj;�)m

post

�i→j

(
xj
)
,

(31)h(xi) =
∑

xj

f (xi − xj;�)m
post

�i→j

(
xj
)
,

(32)G =
∑

xi

g(xi)m
post

�j→i

(
xi
)
,
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and

respectively. Therefore, the computation time of the expectation in Eq. (27) is 
O(L logL) , because the total computation time to calculate convolutions g(xi) and 
h(xi) in Eqs. (30) and (31) for all xi = 0, 1,… , L − 1 is O(L logL) , and Eqs. (32) and 
(33) can be computed in O(L) computation time.

In Eq. (22), we need to calculate the messages and expectation of prior probability 
distribution P

(
x;�t

)
 to find �t+1 that satisfies this equation using the bisection method. 

It should be noted that, because we assume the periodic boundary condition for the 
graph structure E, we can calculate the messages and expectation of prior probabil‑
ity distribution faster than those of posterior probability distribution by considering the 
translational symmetry assumption. If we assume both a periodic boundary condition 
and translational symmetry, the messages and expectation of prior probability distribu‑
tion become not dependent on the position of the edges ij ∈ E . Therefore, the message 
update rule and expectation calculation for prior probability distribution are expressed 
as

and

respectively, where Mprior
(
xi
)
 is a message of the prior probability distribution. The 

calculation of the message and the expectation of the prior probability distribution 
in Eqs. (34) and (36) can be computed in O(L logL) computation time by the same 
calculation method as Eqs. (25, 26) and Eqs. (27)–(33), respectively.

(33)H =
∑

xi

h(xi)m
post

�j→i

(
xi
)
,

(34)Mprior
(
xi
)
=

1

Zprior

∑

xj

�
(
xi − xj

)
f (xi − xj;�)

(
Mprior

(
xj
))3

,

(35)Zprior =
∑

xi

∑

xj

exp
(
−��

(
xi − xj

))(
Mprior

(
xj
))3

,

(36)
∑

ij∈E

⟨
�
(
xi − xj

)
;�
⟩
prior

= 2N
Gprior

Hprior
,

(37)Gprior =
∑

xi

∑

xj

�
(
xi − xj

)
f (xi − xj;�)

(
Mprior

(
xi
))3(

Mprior
(
xj
))3

,

(38)Hprior =
∑

xi

∑

xj

f (xi − xj;�)
(
Mprior

(
xi
))3(

Mprior
(
xj
))3

,
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6  Numerical Experiments

In this section, we describe the numerical verification of the proposed method. We 
used the standard images in Fig. 3, which are widely used in the image processing 
research field. The pixel values of these images take L = 256 different values. All 
the experiments were implemented using C++ and were run single‑threaded on an 
Ubuntu 18.04.1 LTS (64 bit) machine with an Intel Core i7‑6850K CPU running at 
3.60 GHz and 128 GB RAM. In this experiment, we defined the function �(x) as

and set the parameters of the proposed method as follows. The initial parameter �0 
was set at 0.005 and �2

0
 was set at the sample variance calculated from Y. The maxi‑

mum numbers of iterations TEM and TBP were set at 100 and 1000, respectively. We 
considered that the messages converged if the absolute value of the average change 
in the messages was smaller than 10−4 ; the same applied to the parameters � and �2 . 
We set the search interval of the bisection method for computing �t+1 as [0, 2�t].

First, we compared the computation time of the proposed method with that of the 
previous methods (belief propagation FFT (BP‑FFT) and Naive). The Naive method 
is the naive implementation version of Algorithm  1; the worst computation time is 
O
(
TEMTBPNL

2
)
 . BP‑FFT is the method used in the study presented in [14], where only 

the message updates in Eqs. (13) and (14) were speeded‑up by using the FFT. Tables 1 
and 2 show the average computation times over 10 trials for each method where K 
noisy images Y were generated by adding an AWGN of � = 15 to the original noise‑
less images. According to the results, the proposed method was faster than the other 
methods. It should be noted that the difference between the three methods is in whether 
Algorithm 1 is implemented using the FFT. Therefore, the image denoising results of 
these method are all the same.

(39)�(x) = x2,

Fig. 3  Gray scale standard images used in experiments ( L = 256)

Table 1  Average computation 
time over 10 trials with � = 15 , 
K = 1 , and image size 128 × 128

Fig. 3a Fig. 3b Fig. 3c Fig. 3d

Proposed (min) 15.24 15.24 11.56 15.74
BP‑FFT (min) 45.14 45.10 49.79 47.55
Naive (min) 275.17 249.64 230.18 263.57
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Figure 4 shows the average computation time versus image size for K = 1 and K = 5 
over 10 trials, where the noise level of AWGN was � = 15 . The computation time of 
our denoising methods grows approximately linearly with the increase in the image 
size (it dose not grow strictly linearly, because we break off the message and parameter 
updates according to the convergence condition).

Figure 5 shows the denoising performance of the proposed method versus various 
values of K for two levels of AWGN ( � = 15 and � = 30 ). We evaluated the perfor‑
mance of the method according to the average peak signal‑to‑noise ratio (PSNR) over 
10 trials. The PSNR is defined as

(40)PSNR = 10 log10
2552

MSE
,

Table 2  Average computation 
time over 10 trials with � = 15 , 
K = 5 , and image size 128 × 128

Fig. 3a Fig. 3b Fig. 3c Fig. 3d

Proposed (min) 4.86 6.46 4.22 6.05
BP‑FFT (min) 14.02 18.92 16.24 16.18
Naive (min) 100.92 119.43 97.54 103.63

Fig. 4  Average computation time and peak signal‑to‑noise ratio over 10 trials versus various image sizes 
( 128 × 128 , 256 × 256 , and 512 × 512 ) for K = 1 and K = 5 . The noise level applied in these experiments 
was � = 15 . a Fig. 3a. b Fig. 3b. c Fig. 3c. d Fig. 3d
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where MSE is the mean squared error between the original noiseless image and 
the inferred denoised image x̂ . Figure 5 conforms that the image denoising results 
improve as the value of K is increased. Example of image denoising results for 
Fig. 3a are shown in Fig. 6 for K = 1 and K = 5 , respectively.

Fig. 5  Average peak signal‑to‑noise ratio over 10 trials against K for � = 15 and � = 30 . a Fig.  3a. b 
Fig. 3b. c Fig. 3c. d Fig. 3d

Fig. 6  Examples of the image denoising results for Fig. 3a. a Example of a noisy image when � = 30 
(peak signal‑to‑noise ratio (PSNR):18.61). b Denoised image obtained by the proposed method for K = 1 
(PSNR:25.49). c Denoised image obtained by the proposed method for K = 5 (PSNR:30.33)
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7  Concluding Remarks

In this paper, we defined a discrete MRF model for the Bayesian image denoising 
problem with multiple noisy images. We proposed a fast denoising algorithm for 
inferring a denoised image in O

(
TEMTBPNL logL

)
‑time by using belief propagation 

and an EM algorithm based on our MRF model and FFT. We numerically verified 
the proposed denoising method using standard images. The results show that the 
proposed algorithm inferred the denoised image faster than previous implementation 
methods that use belief propagation.

We believe that the proposed method is the most fastest implementation of an 
image denoising algorithm based on a discrete MRF model that uses belief propaga‑
tion and an EM algorithm. However, the method cannot yet be used for real‑time 
processing. Therefore, we need to seek a further effective fast approximate method 
that preserves the restoration quality for the discrete MRF model. In our experiment, 
we adopted the quadratic function as the form of function �(x) . However, the pro‑
posed method is not restricted to the quadratic function: we can apply it to other 
types of the function �(x) , such as the Huber prior [15] and generalized sparse prior 
[16]. Moreover, because it can be used in any discrete MRF with �(xi − xj) potential 
for ij ∈ E interaction, it is expected that the proposed method is applicable to not 
only image denoising but also other inference problems such as sparse modeling 
[17, 18]. We intend to develop the method in these directions.
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