International Journal of Innovative
Computing, Information and Control ICIC International (©)2013 ISSN 1349-4198
Volume 9, Number 6, June 2013 pp. 2635-2650

THEORETICAL BASIS FOR MAKING EQUIVALENT
TRANSFORMATION RULES FROM LOGICAL
EQUIVALENCES FOR PROGRAM SYNTHESIS

KATSUNORI MIURA!, KryosHr AkaMA?, HIROSHI MABUCHI?
AND HIDEKATSU KOIKE?

Information Processing Center
Kitami Institute of Technology
Kitami, Hokkaido 090-8507, Japan
k-miura@mail kitami-it.ac.jp

2Information Initiative Center
Hokkaido University
Sapporo, Hokkaido 060-0811, Japan
akama@iic.hokudai.ac.jp

3Faculty of Software and Information Science
Iwate Prefectural University
Takizawa, Iwate 020-0193, Japan
mabu@iwate-pu.ac.jp

4Faculty of Social Information
Sapporo Gakuin University
Ebetsu, Hokkaido 069-8555, Japan
koike@sgu.ac.jp

Received April 2012; revised August 2012

ABSTRACT. To propose methods for making Equivalent Transformation (ET) rules is
important for generating correct and sufficiently efficient programs from a specification
which is a set of logical formulas. An ET rule is a procedure for replacing a clause
set with another one while preserving declarative meaning. This paper proposes a mew
method for making ET rules via a Logical Equivalence (LE) from a specification. An LE
describes an equivalence relationship between two logical formulas under some specified
preconditions. We newly formulate an LE and define the correctness of LFEs with respect
to a specification. It is guaranteed by the method of this paper that an ET rule can be
made from a correct LE. The method is useful for the generation of various programs.
Many ET rules included in programs which solve constraint satisfaction problems, can be
made by the method.

Keywords: Equivalent transformation (ET) rule, Logical equivalence (LE), Equivalence
relationship of clause sets, Rule generation mapping (RGM), LE in Class S

1. Introduction. There are many studies [5, 8, 14| on program synthesis, each of which
discusses methods for automatically generating correct programs from a specification. An
Equivalent Transformation (ET) rule [3] is important for generating correct programs
from a specification which is a set of logical formulas. An ET rule replaces a clause set
with another one while preserving declarative meaning. Correct programs are generated
by making ET rules from a given specification and accumulating them one by one. Suffi-
ciently efficient programs could be generated by consciously making useful ET rules. For
generating correct and sufficiently efficient programs, methods for making ET rules are
important.

2635

2636 K. MIURA, K. AKAMA, H. MABUCHI AND H. KOIKE

Specification | ™

N
N
]
;
y ET rule
‘N, R
s K4
N ,
.

FIGURE 1. An LE is an important bridge between an ET rule and a specification

This paper proposes a new method for making ET rules via a logical formula called a
Logical Equivalence (LE) from a given specification. In this paper, we newly formulate an
LE which describes an equivalence relationship of logical formulas F1 and F2 under some
specified preconditions Z, where F1 and F2 are existentially quantified atom sets and Z
is a set of literals. The form of each LE is V(Z — (F1 <> F2)), where V is a universal
closure and variables other than existentially quantified variables are quantified by V.

An LE is an important bridge between an ET rule and a specification. An ET rule is a
procedure, while a specification is a logical formula. Since an ET rule is a different concept
from a specification, it is not easy to guarantee that a rule made from a specification is
an ET rule. An LE is a logical formula like a specification and describes an equivalence
relationship like an ET rule, as shown in Figure 1. In the proposed method of this paper,
it is guaranteed that an ET rule can be made via a correct LE from a given specification.

For proposing the new method using LEs, the paper carries out the following tasks.

1. Formulate an LE as being different from an ET rule.

2. Define a mapping from an LE to a rewriting rule.

3. Give a sufficient condition for the correctness of the mapping.

4. Define a class of LEs.

5. Prove that a rule made from an LE in the class by the mapping is an ET rule.

In this paper, Section 2 explains specifications, programs and computations, and defines
the correctness of programs, and gives a sufficient condition for correct programs. It also
discusses the importance of program synthesis using ET rules. Section 3 describes the
syntax of LEs, and defines the correctness of LEs, and discusses a method for making ET
rules from LEs. It also defines a mapping from an LE to a rewriting rule, and gives a
sufficient condition for creating a correct mapping. Section 4 defines a class of LEs and a
rule obtained by the mapping. Section 5 explains a procedure of clause transformations
by rules, and defines a mapping from a rule to a relationship of clause sets. Section 6
proves that a rule obtained by a mapping shown in Section 4 is an ET rule. Section
7 shows the effectiveness of the proposed method of this paper as compared with other
methods, and discusses future possibilities of the proposed method.

[Notations and definitions]

The following notations and definitions will be used. Let V be the set of all variables.
Vd and Vr are defined by Vd C V, Vr C V and Vd N Vr = (). Let P be the set of all
predicates. P1 and P2 are defined by P1 C P, P2 C P and P1NP2 = (. AS(P, V) is the
set of atoms which are composed of a predicate set P and a variable set V. C'S(P, P’, V)
is the set of clauses from AS(P, V) to AS(P', V). Var(A) is the set of variables which
have appeared in an atom set A. Term(V) is the set of terms made from variables on V,
where V is a variable set. Also assume that V1 and V2 are a variable set, a substitution

THEORETICAL BASIS FOR MAKING EQUIVALENT TRANSFORMATION RULES 2637

to V2 from V1 is a set {x1/t1, x2/ts, ---, x,/t,}, and the following three conditions are
satisfied:

lL.z; €eV1(i=1, ---, n),

2. t;eTerm(V2) (i=1, -+, n),

3.1 #] = x; # xj.
subst(V1, V2) is the set of all substitutions from V1 to V2. A renaming to V2 from V1
is a substitution which replaces an element of V1 with an element of V2, where different
variables on V1 are replaced by different variables on V2. rename(V1, V2) is the set of
all renamings from V1 to V2.

2. Program Synthesis and ET Rules.
2.1. Specifications, programs, and computations.

2.1.1. Specifications. A problem is a pair (D, q), where D is a set of predicate definitions,
representing background knowledge, and ¢ represents a query. The aim is to generate a
program which solves multiple problems, so a specification is a set of problems. Thus,
a specification is a pair (D, Q), where Q represents a set of queries. A specification is
defined by definite clauses. For any definite clause cl, in Q, the predicate appearing in the
head atom of cl, exists neither in D nor in the body atoms of ¢/,. An unlimited variety of
predicates can be defined in ID. A diverse number of queries can be made by combining
various atoms composed of predicates on . Therefore, specifications with respect to
various problems can be given.

[Correct answers|
A correct answer is obtained by transforming a clause set to another one while preserv-

ing the declarative meaning. Given a set D of definite clauses, the declarative meaning
of D, denoted by M(D), is given by Definition 2.1.

Definition 2.1. Declarative meaning

Let S be the set of all substitutions. Let G be all ground atoms, where G C G. Given a
set A of atoms, pow(A) denotes the power set of A. Given a definite clause cl, a mapping
T from pow(G) to pow(G) is defined by

Tu(G)={g| (cl=(H+ B)) & (A €S) & (BICG) & (9= HO € G)}.
Given a set D of definite clauses, Tp is defined by
Tp(G) ={UTu(G) | (cl € D)}.
M(D) is defined by
M(D) = UL [To]"(0),
where n is a nonnegative integer, and [Tp]* () = Tp(0), [Tp]*(0) = To([Tp]"(0)).

Definition 2.2. Correct answers
An answer set A with respect to any query q(€ Q) and D is correct iff

A= M(DUgq) - M(D).

2638 K. MIURA, K. AKAMA, H. MABUCHI AND H. KOIKE

2.1.2. Programs. A program is a set of rewriting rules, where a rewriting rule replaces a
clause with one or more clauses, so a clause set is transformed into another clause set.
Each rule is composed of a head part X', a condition part C, an execution part &, and a
replacement part), where n is a nonnegative integer. X consists of one or more atoms
while all other parts consist of zero or more atoms. Using X, C, &, and), a rewriting
rule is described by the following syntax.

X, {C}:> {51}, yl,
= {&F), Vo

= {&} Y

A rewriting rule applicable to a clause set is determined by a head part X and a condition
part C. A rule is applicable to that clause set if there exists a substitution § that satisfies
X = As, and exec(Cd) = true, where As is a part of body atoms appearing in a clause.
X9 is transformed into Y, (06, U p,) by applying a rewriting rule, where exec(&,0) = 0,
pn is a renaming for variables that appear only in). For example, a rewriting rule

r: divide([A | B], C, D), {int(A)} = {odd(A), C =[A| E]}, divide(B, E, D);

= {even(A), D =[A| E|}, divide(B, C, E).

is applicable to
cly {ans(X, Y) < divide([1, 2, 3], X, Y)}.
By applying r to cla, cl4 is transformed into
cp:{ans([l| Z], Y) < divide([2, 3|, Z, Y)}.
A computation is executed by repeating the transformation of a clause set.

[Correct programs|
A program R is correct with respect to a specification (D, Q) iff for any query ¢ € Q
an answer, obtained from any computation of R on g, is correct.

[Program synthesis]

Program synthesis in this paper is formulated as follows: given a specification (D, Q),
generate a program R such that R is correct with respect to (D, Q) and R is sufficiently
efficient.

2.1.3. Computations. A computation of a program R on a query ¢ is to repeatedly trans-
form a clause set, so that computation is a sequence seq = [so(= ¢q), $1, S2, - -], where
s; is a clause set, and the following conditions are satisfied:

1. For any two successive elements s,, and s, in seq, s, is transformed into s, by

a one-time application of a rule in R,

2. If seq is finite, then any rule in R is not applicable to a last element in seq.
If seq is a finite sequence and a last state in seq is a set of unit clauses, then the answer
set with respect to a query ¢ is the set of all ground atoms obtained from the last state.
Otherwise, the answer set cannot be obtained.

2.2. Definition of ET rules and sufficient condition for correct programs.

2.2.1. The definition of ET rules. An ET rule replaces a clause set with another one while
preserving the declarative meaning with respect to background knowledge.

THEORETICAL BASIS FOR MAKING EQUIVALENT TRANSFORMATION RULES 2639

Definition 2.3. Definition of ET rules
A rewriting rule r is an ET rule with respect to background knowledge D iff the formula

M(DUclsl) = M(D U cls2)
18 true for any clause sets clsl and cls2 such that clsl is transformed to cls2 by r.

2.2.2. Sufficient condition for correct programs. In program synthesis using ET rules, a
sufficient condition for correct programs is given.

Proposition 2.1. Sufficient condition for correct programs
A program R is correct with respect to a specification (D, Q) iff the following conditions
are all satisfied:

1. A program R is a set of ET rules with respect to D.

2. If some non-unit clause appears in q' then a rule applicable to that non-unit clause
exists in R for any query q(€ Q) and ¢ such that ¢’ is reached from q by applying
R.

3. For any query q(€ Q), every computation of R on q is finite.

Conditions 1, 2, and 3 denote “partial correctness”, “applicability of a program”, and
“termination of computation”, respectively.

Proof: The correctness of Proposition 2.1 is proven in [3]. [l

To satisfy a condition 1, all rewriting rules in a program must be made with ET rules. To
satisfy a condition 2, if some non-unit clause appears in a clause set, then a programmer
must make a rewriting rule applicable to that clause set. To satisfy a condition 3, a
programmer must take care not to make a related rule which causes an infinite loop at
least. Thus, a correct program is generated by making ET rules until a set of unit-clauses
is obtained, while taking care not to make a related rule which causes an infinite loop.

2.3. Importance of program synthesis using ET rules. The following features of
the ET rule could be effective for generating correct and efficient programs. (1) A program
composed of a set of ET rules guarantees the partial correctness with respect to a specifi-
cation; (2) each ET rule is completely independent and individually correct. Additionally,
the previous paper [4] reports that an ET rule can describe various procedures. Therefore,
a correct and sufficiently-efficient program can be generated by successively accumulating
useful ET rules.

The squeeze method [4] had been proposed for effectively utilizing program synthesis by
ET rules. The aim of the programming based on the squeeze method is not to randomly
make ET rules, but to make only necessary ET rules to solve all queries. The squeeze
method can be efficiently utilized if each program component can describe various correct
procedures and has complete independence. Since each ET rule has the above feature,
the squeeze method can be efficiently used by ET rules. As a result, various software
systems [6, 12, 19], such as an e-learning system for programming education and knowledge
processing systems in various data, can be developed by using ET rules.

3. Logical Equivalences and Rule Generation Mapping.

3.1. Logical equivalences. An LE describes an equivalence relationship of logical for-
mulas F1 and F2 under some specified preconditions Z, where F1 and F2 are existentially
quantified atom sets and Z is a set of literals. The form of each LE is V(Z — (F1 <> F2)),
where V is a universal closure and variables other than existentially quantified variables
are quantified by V. A specification is a pair (D, Q), where D represents background
knowledge and Q represents a set of queries (see Section 2.1). It is important that an LE
is correct with respect to D when an ET rule is made by using an LE.

2640 K. MIURA, K. AKAMA, H. MABUCHI AND H. KOIKE

Definition 3.1. Correctness of LEs
An LE is correct with respect to D iff the formula

DEVYZ = (F1+ F2)
18 true.

3.2. Rule generation mapping and its correctness. In this section we establish a
rule generation mapping (RGM) from an LE to an ET rule and propose to make ET rules
by the following two steps.

1. An LE is made from a specification.
2. An ET rule is obtained from the LE by an RGM.

Let F' be a subset of all LEs and let Rule be a subset of all rewriting rules. An RGM
is a mapping f from F' to Rule as shown in Figure 2. It is assumed that the output of
an RGM is obtained without dependence on ID. The correctness of ET rules and LEs is
dependent on . A correct LE with respect to I is given in Definition 3.1. An RGM
is used with respect to various Ds, so it is desirable that the correctness of an RGM is
discussed in accordance with the following condition.

An RGM is correct, iff for any D and any e € F, if e is correct with respect to D,
then f(e) is correct with respect to D.

Therefore, strictly speaking, an ET rule is made by the following two steps.

1. A correct LE with respect to D is made from among F'.
2. An ET rule is obtained from the LE by an RGM.

A rule made by the above step is correct with respect to ID. It is desirable that an RGM
is created to output ET rules at a low cost.

3.3. Sufficient condition for the correctness of RGM. This section gives a sufficient
condition for the correctness of an RGM in order to create a correct RGM given in Section
3.2. An ET rule is read as a set of equivalence pairs of two clause sets. Let h be a mapping
from a rewriting rule to a relationship of clause sets. On the other hand, it is believed
that there exists a relationship of clause sets as determined by an LE. If an equivalence
relationship of clause sets can be determined by an LE, then an ET rule could be made
by using a subset of the obtained relationship.

It is assumed that there exists a mapping ¢ from an LE to a relationship of clause sets.
A relationship g(e) of clause sets can be determined by e € F. If g(e) is an equivalence
relationship and a relationship h(f(e)) as determined by f(e) satisfies g(e) 2 h(f(e)),
then f(e) is correct with respect to D (see Figure 3). f(e) made from a correct e with
respect to D is correct with respect to ID. Therefore, if an RGM satisfies the following
condition, then it is guaranteed that an RGM is correct.

Specification <D, Q>

Correct
(Definition 2.3)

Rewriting rules

F1GURE 2. An ET rule is made from a correct LE with respect to D

THEORETICAL BASIS FOR MAKING EQUIVALENT TRANSFORMATION RULES 2641

Specification <D , Q>

Logical equivalences

.-

Correct

Ui RGM (f:F — Rule)

Plar » Sy]
’ Rule <
\\ ~ - ‘
Rewriting rules

F1GURE 3. A sufficient condition for the correctness of RGM

There exists g such that

1. for any D and any e € F', if e is correct with respect to D and (DUP;, DUPR,) € g(e),
then M(DU P) = M(DU By),

2. for any e € F, g(e) D h(f(e)).

It is proven that a rewriting rule made from a correct LE with respect to D by an RGM
is an ET rule.

Theorem 3.1. An RGM 1is correct iff f satisfies the above condition.

Proof: From an assumption, there exists g such that

1. for any D and any e € F', if e is correct with respect to D and (DU P, DU P,) € g(e),
then M(DU P,) = M(DU P,),
2. for any e € F, g(e) 2 h(f(e)).

Let D be any background knowledge and let e be any element in F'. Assume that e is
correct with respect to D. Let (DU Py, DU P,) be any element in h(f(e)).
From a condition 2, since g(e) 2 h(f(e)), (DU P, DU P,) € g(e). From a condition 1,
M(DU P) = M(DU P,). From Definition 2.3, f(e) is correct with respect to D.
]

4. Rule Generation Using LEs in Class S.

4.1. LEs in class S and its examples. An LE that can be represented by the form
V(Z — (F1 < F2)) exists variously. LEs treated with this paper are LEs on D(C
CS(P1, P1, Vr)), P1, and Vr, the form of which is

V(X < 35)),

where & and) are subsets of AS(P1, Vr), and § = Var(}y) — Var(X'). This form is a
special form of V(Z — (F1 <> F2)), and is a subclass. Z can be an empty set. In this case
the form of an LE is V({ } — (F1 «» F2)) which is equivalent to V(F1 <> F2). The form
of F1 and F2is 3,,34, - - - s, As, where As is an atom set and n is a nonnegative integer.
Ja,3a, - - - da,, of this form can be abbreviated to 34, 4y,... a,,} Using the form of a variable
set. Thus, 3,34, - - - Ja, As can be written as Jq,, a5, 0, }As. If the number of existen-
tially quantified variables on F1 is zero and the number of existentially quantified variables
on F2 is zero or more, then the form of an LE is V(31X < Jpy,, 4, -, y3 V), where X
and Y are sets of atoms. 3¢ X’ can be abbreviated to X'. Letting ¥ = {y1, v2, ---, ¥n},

2642 K. MIURA, K. AKAMA, H. MABUCHI AND H. KOIKE

the form of an LE in this class is V(X > 33)). In this paper, LEs of this form is called

Class S. Since 7 is determined by X and), an LE in this class is denoted by LE(X,))).
We present four relevant examples with respect to LEs in Class S. app(Al, A2, A3)

means that the concatenation of lists A1 and A2 is a list A3. rev(Al, A2) means that

a list A2 is elements of a list Al in reverse order. eq(Al, A2) means that Al is equal to

A2. false means that X of LE includes atoms which cannot satisfy the constraint of the

predicate.

Example 4.1. LEs in Class S

V{app((X Y], Z, V)} < Spwyleg(Vs [X | W), app(Y, 2, W)})

leg YN({rev([X | Y], Z2)} & Fun{rev(Y, W), app(W, [X], Z)})

V({reo(X, V), rev(X, 2)} ¢ 3 {ea(Y, 2), reo(X, Y)})

V{app(X, [Y [Z], [Z])} < 3¢ y{false})

— —

The first LE le; describes a relationship in which {app([X | Y], Z, V)} is equivalent
to I {eq(V, [X | W), app(Y, Z,W)}. ley describes a relationship in which {rev([X |
Y], Z)} is equivalent to Igpr{rev(Y, W), app(W, [X], Z)}. les describes a relationship
in which {rev(X, Y), rev(X, Z)} is equivalent to 3y {eq(Y, Z), rev(X, Y)}. ley
describes a relationship in which {app(X, [Y | Z], Z)} is equivalent to 3y y{ false}.

A set F' as an input of an RGM is defined. It is desirable that F' is given to make an
ET rule that is useful for generating an efficient program. F' can be arbitrarily given from
among a set of all LEs represented by the form V(Z — (F1 <> F2)). In this paper, F is
a set of all LEs in Class S. Any element in F'is LE(X,). LEs in Class S has a simple
form, but this class is very useful and many ET rules can be made from LEs in this class.
As this paper focuses on LEs in Class S, from here on when say an LE, we are referring
to this class.

4.2. Rules made by using LEs in Class S. A rewriting rule is made from LE(X,)
by an RGM. A set Rule as an output of an RGM is defined. Rule is a set of rewriting
rules on D(C CS(P1, P1, Vr)), P1, and Vr, the form of rules is

X =),

where X and) are subsets of AS(P1, Vr). In this paper, a rule of this form is denoted
by rule(X,)). An RGM relates an element LE(X, V) in F to an element rule(X,))
in Rule.

5. Generation of Relationship of Clause Sets Based on Rewriting Rules.

5.1. Clause transformation. Since the body part of rule(X,)) is a single body, a
clause cl; to which rule(X,)) is applied is transformed to a clause cly. A clause cl; is
H «+ As, B,

where H is an atom in AS(P2, Vd), As and B are subsets of AS(P1, Vd)). If the following
conditions are satisfied, then rule(X’,)) is applicable to As of cl;.

Condition 1 : 9§ € subst(Var(X),Vd)
Condition 2 : X = As

rule(X,) is applied to As of cl; based on a substitution §, consequently cl; is trans-
formed to

cly=(H <+ Y(Up), B),
where p is an arbitrary element in rename((Var()) — Var(X)), (Vd— Var(HUBUXJ))).

THEORETICAL BASIS FOR MAKING EQUIVALENT TRANSFORMATION RULES 2643

5.2. Definition of mapping h. Given an element rule(X,)) in Rule, a mapping h
determines set(X,)). A relationship set(X,)) of clause sets is defined as:

set(X, Y)={({H + X0, B}UQUD, {H+ Y(Up), BBUQUD) |
(@ H € AS(P2, Vd)) & (@ B C AS(P1, Vd)) &
(® Q CCS(PL, P2, Vd)) & (® D C CS(P1, P1, Vd)) &
(® p € rename((Var(Y) — Var(X)), (Vd — Var(H U BU X9)))) &
(® o(€ subst(Vr, Vd)) on Var(X))}.

A clause H < X4, B is a clause cly, a clause H < Y(6 U p), B is a clause cly, so
{H + X4, B} UQ is a query set in which rule(X, Y) applied, {H < Y(6Up), B} UQ
is a query set obtained by applying rule(X, Y). D is background knowledge.

6. Correctness of Rule Generation Using LEs in Class S.

6.1. Overview. In this section, it is proven that an RGM that relates LE(X,)) in F to
rule(X, V) in Rule is correct. If an RGM satisfies a sufficient condition given in Section
3.3, then an RGM is correct. The correctness of an RGM is proven by the following
procedure.

1. Define a mapping g. (Section 6.2)
A mapping ¢ determines R(X, V) for an element LE(X,)) in F.

2. Prove that if LE(X, Y) is correct with respect to D and (DUP;, DUP,) € R(X,)),
then M(D U P;) = M(D U P,). (Section 6.3)

3. Prove that R(X, YV) D set(X,). (Section 6.4)

4. Prove that if LE(X,)) is correct with respect to D, then an RGM is correct.
(Section 6.5)

6.2. Definition of mapping g. Given an element LE(X, }) in F, a mapping g deter-
mines R(X,)). A relationship R(&X, V) of clause sets is defined as:

R(X, ¥) = {({H < X5, BbUQUD, {H + Y(6Up), BUQUD) |
(® H € AS(P2, Vd)) & (@ B C AS(P1, Vd)) &
(® Q C CS(P1, P2, Vd)) & (@ D C CS(P1, P1, Vd)) &
(® p € rename((Var(y) — Var(X)), (Vd — Var(H U BU X0)))) &
(® d(€ subst(Vr, Vd)) on Var(X))}.

Clause sets {H < X6, B}, {H <~ Y(6Up), B}, and @Q are subsets of CS(P1, P2, Vd)
as with a query set. A clause set D is a subset of C'S(P1, P1, Vd) as with background
knowledge.

6.3. Proof with respect to M(D U P;) = M(D U Py). If a set {H < X0,B} in
R(X, V) is equivalent to a set {H < Y(d U p), B}, then R(X, V) is an equivalence
relationship of clause sets. In this section, it is proven that if LE(X, J) is correct with
respect to D, then R(X,)) is an equivalence relationship of clause sets.

Proposition 6.1. If LE(X,) is correct with respect to D and (DU P;, DU P,) €
R(X, V), then M(DUP,) = M(D U P,).

Proof: Assume that LE(X,)) is correct with respect to D and (DU P, DU P,) €
R(X, V). There exist

Pl = {Cll} U Qv

P2 = {CZQ} U Qv

cly = (H « X3, B),

cloy = (H < Y(6Up), B),

2644 K. MIURA, K. AKAMA, H. MABUCHI AND H. KOIKE

an atom H, an atom set B, definite clause sets) and D, substitutions p and 4, and
definite clauses cl; and cly, where all conditions of R(X,)) are satisfied. To prove that
le (M(D)) = TCIQ(M(D)), it is proven that Tcl1 (M(D)) g TCZQ (M(D)) and Tcll (M(D))
2 T.,(M(D)) hold.

® : Ta,(M(D)) C T, (M(D))

Assume h € Ty, (M(D)). Since definite clause cl; = (H < X4, B), there exists a
ground substitution v on Var(H U X6 U B) that satisfies Hy = h, Xdy C M(D) and
By C M(D), where H~ is a ground atom.

A renaming p satisfies a condition () of R(X, }), a substitution J satisfies a condition
©® of R(X, V), and ~ is a substitution on Var(H U X6 U B). From Proposition A.2,
Xoy € M(D) holds and there exists a substitution w such that V(6 U p)yw C M(D)
holds.

A definite clause cly’ = (H(yw) < Y(6 U p)(yw), B(yw)) is obtained by applying yw
to cly = (H < Y(6 Up), B). Since Hv is a ground atom and B7 is a set of ground
atoms, H(yw) = Hvy and B(yw) = B, respectively. Additionally, since Hy = h, cly’ =
(h < Y(0 U p)yw, Bry). Since Y(§ U p)yw € M(D) and By C M(D), h € Ty,(M(D)).
Consequently, T, (M(D)) C T, (M(D)).

® : Tu(M(D)) D T, (M(D)

Assume h € T,,(M(D)). Since definite clause clo = (H < Y (0 U p), B), there exists a
ground substitution v on Var(HUY(dUp)U B) that satisfies Hy = h, Y(§Up)y € M(D)
and By C M(D), where H~ is a ground atom. A substitution v is the composition of 1
and 2, where 1 applies to variables on Var((H U B UY(d U p)) —7p) and 2 applies to
variables on yp.

A renaming p satisfies a condition (&) of R(X,)), a substitution § satisfies a condition
© of R(X, V), 71 is a substitution on Var((H U B U Y(6 U p)) — yp), and 72 is a
substitution on yp. From Proposition A.3, Y(§ U p)y1y2 C M(D) holds and for any
ground substitution w, Xdylw € M(D) holds.

A definite clause cl,’ = (H(ylw) + X§(vlw), B(vylw)) is obtained by applying vylw
to cly = (H < X4, B). 71 is a substitution which applies to variables on (Var(H U
BUY((Up)) —7yp). Since Hvy is a ground atom, H~yl also is a ground atom, so
H~1 = H~. Thus, H(ylw) = H~. Since B7y is a set of ground atoms, Byl also is a
set of ground atoms, so Byl = B~. Thus, B(ylw) = B~. Additionally, since Hy = h,
cly’ = (h + Xéylw, B7). Since Xdylw € M(D) and By C M(D), h € T.;,(M(D)).
Consequently, T, (M(D)) 2 Ty, (M(D)).

From @ and @®), it is proven that T, (M(D)) = Tu,(M(D))---@©. If predicates
appearing in D do not appear in the head atom of @), then the following formula is true.

M(DU Q) = M(D) U{UTu(M(D)) | (c € @)}

In this paper, the proof of the correctness of the above formula is omitted. Therefore, the
following formula is true.

M(DU P1) = M(D)U{{JTu(M(D)) | el € ({ch}UQ)}
{UTcl Cl € Q} U Tcll (M(D))
= {From ©}

U{UTaM(D)) | el € Q} U T, (M(D))
U {U Tu(M(D)) | el € ({els} U Q)} — M(DUP,)

THEORETICAL BASIS FOR MAKING EQUIVALENT TRANSFORMATION RULES 2645

Consequently, M(D U P;) = M(D U P,) is proven. [

6.4. Proof with respect to R(X, V) D set(X, Y) . If any element pa in set(X,))
satisfies the condition, from (@) to (), of R(X,)), then pa is an element in R(X,). In
this section, it is proven that R(X,)) 2 set(X, V).

Proposition 6.2. R(X, Y) D set(X, V).

Proof: Any element pa in a relationship set(X,)) is represented as a pair (DUP;, DU
Py) of clause set. There exist

P ={ch}UQ,

Py = {012} uaQ,

cly =(H «+ X4, B),

cly =(H < Y(0Up), B),

an atom H, an atom set B, definite clause sets () and D, substitutions p and d, and definite
clauses cl; and cly, where all conditions of set(X,)) are satisfied. A pa satisfies the
condition, from (@) to (6), of R(X,)), so that pa € R(X,). Consequently, R(X, J) 2
set(X, V). [

6.5. Proof with respect to the correctness of RGM. In this section, it is proven
that if an element LE(X,)) in F is correct with respect to D, then an RGM from F' to
Rule is correct. It is guaranteed by applying Theorem 6.1 that rule(X,)) made from a
correct LE(X, V) with respect to D is an ET rule.

Theorem 6.1. If LE(X,)) is correct with respect to D, then an RGM is correct.

Proof: Assume that LE(X,) is correct with respect to D. Assume that rule(X,))
is obtained from LE(X, V) by an RGM, set(X,) is obtained from rule(X,)) by a
mapping h, and R(X,)) is obtained from LE(X,) by a mapping g. Let (DUP;, DUP,)
be an element in R(X,)). From Proposition 6.1, M(D U P;) = M(D U B,). From
Proposition 6.2, R(X, YV) D set(X, V). Since two conditions of Theorem 3.1 is satisfied,
an RGM is correct.]

7. Discussion.

7.1. Comparison with other theories. To generate efficient programs, it is important
that knowledge as a problem description and a procedure for solving problems are indi-
vidually defined. In the program synthesis using ET rules, knowledge and a procedure are
strictly defined by a logical formula and an ET rule, respectively. Thus, we can discuss
how to make a useful ET rule from a logical formula. On the other hand, some formu-
las called a rule had been proposed by previous researches. The programming in CHR
1,9, 16], LP [7, 13, 18] and CLP [10, 17] is to define declarative knowledge using a logical
formula, a procedure is obtained by the procedural interpretation of the logical formula.
Thus, a rule is the logical formula. The programming in the production system [11] is to
make the formula written in the “if o then " format, so a rule is this formula, where
knowledge is not strictly defined. In these frameworks, since logical formulas and rules
are treated as one, the concept of rules is not independent of that of logical formulas, so
problem settings seeking better rules from logical formulas do not exist. Therefore, these
frameworks cannot define a relationship of clause sets shown in this paper and propose a
method for making a rule from a logical formula.

2646 K. MIURA, K. AKAMA, H. MABUCHI AND H. KOIKE

7.2. Comparison with meta-computation-based method. A meta-computation-
based method [2] makes ET rules by replacing meta-clauses using meta-rules. The range
of ET rules possibly made by the meta-computation-based method differs from the range
of ET rules by the proposed method of this paper. By a combination of their methods,
many useful ET rules would be made.

The proposed method can make the following rule, while the meta-computation-based
method cannot.

ri:rev(X, Y), rev(X, Z) = {Y = Z}, rev(X, Y).

The definition of the rev atom in r; is explained in Section 4.1. The rule r; means that if
two rev atoms exist in a body part of a clause and the first arguments in the rev atoms
are same variables, then the second arguments in the rev atoms are equalized based on
the functionality of the rev atom. The rule r; is a rule in the class of Speq rules [15].
Rules in the class are important for solving constraint satisfaction problems [4].

In the proposed method of this paper, the rule r; is made by the following three steps.

1. Prove that a formula Y(rev(X Y), rev(X, Z) — eq(Y, X)) holds.

2. Make an LE V({rev(X, Y), rev(X, Z)} < 3 y{eq(Y, Z), rev(X, Y)}) from the
formula.

3. Make the rule r; from the LE.

A reason why the rule 7, cannot be made by the meta-computation-based method is
that the variable X in r{ presents lists of any length. If the first argument in the rev
atom of ry is a variable, then a mechanism of an induction is necessary. The mechanism
is incorporated in the proposed method, while it is not in the meta-computation-based
method.

7.3. Generation of useful rules by the proposed method. An ET rule of the form
(X =) can be made from an LE in Class S by the proposed method. The proposed
method can make often-used ET rules in actual programming. They include a Speq rule
[15] which is useful for an efficient program generation. To seek new class of LEs is
important for making more useful ET rules. For example, the following form with a
precondition Z can be made based on the form of Class S.

V(Z = (X < 3)))

This LE means that if Z is true then & is equivalent to 33). The part of ET rules with a
condition part could be made by using this LE. For a program which uses ET rules to be
considered efficient, it is essential that answer sets are obtained by carrying out the least
possible number of clause transformations. An useful ET rule can be efficiently used by
taking control of a rule application by a condition part of rules. Since this paper gives a
foundation method for making ET rules using an LE, the concept of this method can be
applied when an ET rule is made from an LE of above form.

7.4. Automatic generation of ET rules based on the proposed method. A
method for automatically generating an LE from a specification had been proposed by
the research paper [15]. The method seeks an LE based on the following form le, and
automatically proves the correctness of the obtained LE. An LE generated by the method
is a correct LE with respect to background knowledge D.

lesy - V(X <> {eq(P, Q)}UX),

where X' is the set of atoms, P € Var(X) and @ € Var(X) satisfy P # QQ = Pr, and 7 is
a substitution on Var(X). An LE of this form is a special form of Class S. Since 7 of this
form is an empty set, dy is omitted from these forms. It is guaranteed by Theorem 6.1

THEORETICAL BASIS FOR MAKING EQUIVALENT TRANSFORMATION RULES 2647

shown in Section 6.5 that a rewriting rule made from a correct LE with respect to D is an
ET rule. Therefore, ET rules of the following form could be generated by a combination
of results of study [15] and this paper.

X =eq(P, Q), X.

7.5. Effectiveness of the proposed method in program construction. This sec-
tion shows how many programs we were actually able to construct based on the proposed
method. We targeted programs constructed by students in practicing-programming edu-
cation. This practice presented thirty-three (33) problems which are constraint satisfac-
tion problems, such as Numberlink and Sudoku. Programs consist of four hundred and
eight (408) rules. Of them, the proposed method can make rules of the form (X =)),
such as:

r1:numList([X | Y]) = num(X), numList(Y).

ro : notMember(X, [Y | Z]) = notMember(X, Y), notMember(X, Z).

ry:neq(A, X), member(X, [Y, A| Z]) = neq(A, X), member(X, [Y,| Z]).

A rule r replaces one atom with two atoms and defines that a number list [X | Y] consists
of one digit X and a number list Y composed of zero or more elements. A rule ry replaces
one atom with two atoms and defines that an element X does not appear in elements of
lists Y and Z. A rule r3 replaces two atoms with two atoms and defines that since A is
not equal to X, an element A of a list [Y, A | Z] can be removed.

From this survey, we saw that one hundred and seventy-nine (179) rules, representing
forty-four percent (44%) of the total rules, could be made based on the proposed method.
Additionally, we saw that a rule of the form (X =) is included in all programs of all
problems and sixty percent (60%) rules of a certain program are this form. By extending
the proposed method, it is believed that rules of the form (X,{C} = V) can be made.
If the extending method is obtained, ET rules which can be made by the extending
method are increased eleven percent (11%). We understood that many useful ET rules
can be made by the proposed method and two hundred and twenty-three (223) rules
(equivalent to fifty-five percent (55%) of the total rules) could be made by the extending
method. Consequently, the proposed method is efficient in the program construction and
the method can be fully developed in the future.

8. Conclusions. This paper has proposed a new method which makes ET rules from an
LE by an RGM. We have given a sufficient condition for the correctness of an RGM and
proven that if an RGM satisfies a sufficient condition, then a rewriting rule made by an
RGM is an ET rule. The proposed method makes it possible to make useful ET rules
for program synthesis. Furthermore, the proposed method is a foundation for making ET
rules from a more difficult and complex LE. In future work we will try to discover other
important classes of LEs for making useful ET rules and also propose methods for making
ET rules from these new classes of LEs.

REFERENCES

[1] D. Aguilar-Solis, Learning semantic parsers: A constraint handling rule approach, Lecture Notes in
Computer Science, pp.447-448, 2006.

[2] K. Akama, H. Koike and E. Miyamoto, A theoretical foundation for generation of equivalent transfor-
mation rules (program transformation, symbolic computation and algebraic manipulation), Research
Institute for Mathematical Sciences Kyoto University Koukyuroku, no.1125, pp.44-58, 2000.

[3] K. Akama and E. Nantajeewarawat, Formalization of the equivalent transformation computation
model, Journal of Advanced Computational Intelligence and Intelligent Informatics, vol.10, no.3,
pp-245-259, 2006.

2648 K. MIURA, K. AKAMA, H. MABUCHI AND H. KOIKE

[4] K. Akama, E. Nantajeewarawat and H. Koike, Program generation in the equivalent transformation
computation model using the squeeze method, Proc. of PSI2006, LNCS, vol.4378, pp.41-54, 2007.

[5] D. Batory, Program refactoring, program synthesis, and model-driven development, Proc. of the 16th
International Conference on Compiler Construction, pp.156-171, 2007.

[6] Z. Cheng, K. Akama and T. Tsuchida, Solving “all-solution” problems by et-based generation of
programs, International Journal of Innovative Computing, Information and Control, vol.5, no.12(A),
pp.4583-4595, 2009.

[7] Y. Deville and K. Lau, Logic program synthesis, The Journal of Logic Programming, vol.19, n0.20,
pp-321-350, 1994.

[8] P. Flener, Logic Program Synthesis from Incomplete Information, Kluwer Academic Publishers, 1994.

[9] T. Frihwirth, Theory and practice of constraint handling rules, Journal of Logic Programming,
Special Issue on Constraint Logic Programming, vol.37, no.1-3, pp.95-138, 1998.

[10] J. Jaffar and J. L. Lassez, Constraint logic programming, Technical Report, Department of Computer
Science, Monash University, 1986.

[11] D. Klahr, P. Langley and R. Neches, Production System Models of Learning and Development, MIT
Press, 1987.

[12] H. Koike, T. Ishikawa, K. Akama, M. Chiba and K. Miura, Developing an e-learning system which
enhances students’ academic motivation, Proc. of the 33rd Annual ACM SIGUCCS Conference on
User Services, pp.147-150, New York, USA, 2005.

[13] J. W. Lloyd, Foundations of Logic Programming, 2nd Edition, Springer-Verlag, 1987.

[14] Z. Manna and R. J. Waldinger, Toward automatic program synthesis, Communications of the ACM,
vol.14, no.3, pp.151-165, 1971.

[15] K. Miura, K. Akama and H. Mabuchi, Generating Speq rules based on automatic proof of logical
equivalence, International Journal of Computer Science, vol.3, no.3, pp.190-198, 2008.

[16] J. Sneyers, T. Schrijvers and B. Demoen, The computational power and complexity of constraint
handling rules, Journal of ACM Transactions on Programming Languages and Systems, vol.31, no.2,
pp-8:1-8:42, 2009.

[17] P. van Hentenryck, Constraint logic programming, The Knowledge Engineering Review, vol.6, no.3,
pp-151-194, 1991.

[18] D. W. Loveland and G. Nadathur, Proof procedures for logic programming, in Handbook of Logic
in Artificial Intelligence and Logic Programming, D. M. Gabbay, C. J. Hogger and J. A. Robinson
(eds.), Oxford University Press, 1998.

[19] H. Yoshikawa, K. Akama and H. Mabuchi, Et-based distributed cooperative system, International
Journal of Innovative Computing, Information and Control, vol.5, no.12(A), pp.4655-4666, 2009.

Appendix.

Proposition A.1. 6, is a substitution on Var(H) in LE(H, B), 6y is a renaming for
b(= Var(B) — Var(H)). If Var(H)N'b = 0, Var(H)0, N by = 0, Var(H) N by = 0,
Var(H)0, Nb =0, and LE(H, B) hold, then LE(H6,, B(6, U#®,)) holds.

Proof: Assume that Var(H)Nb =), Var(H)0; Ny = O, Var(H) N b, = O, and
Var(H)6, N'b = 0 hold. Assume that LE(H, B) is

V(H < 3(B)),

where b = Var(B) — Var(H). Since a substitution 6; changes only variables on Var(H),
from LE(H, B),

V(HO, < 33(B6y))

holds. For any 7 in which Var(H)67 is a ground term, it follows that
Hb,m < 3;(BOy).

Since a renaming f, changes only variables on b on one to one, hence

HOm E|b7<Bel7T€2),

THEORETICAL BASIS FOR MAKING EQUIVALENT TRANSFORMATION RULES 2649

where O/ = bf,. From Ji7, for any 7, there exists a ground substitution o of variables on
b, and BOim0y0 is a ground term, thus

<H¢91>7T < (301)71'920'.

Var(H)Nb =0, Var(H)0, Nbhy = O, Var(H) Nbly = B, and Var(H); Nb = P hold. Since
(301)7'['020' (B(‘gl U 02))

(H91)7T g (B(91 U 92))71'0
holds, and for any m, there exists o. Therefore, it follows that

[
Proposition A.2. A renaming p satisfies a condition &) of R(X, Y), a substitution
d satisfies a condition (6) of R(X, V), and 7 is a substitution on Var(H U X U B).
If LE(X, Y) is correct with respect to D, then Xdy C M(D) holds and there exists a
substitution w such that Y (0 U p)yw C M(D) holds.
Proof: Assume that LE(X,)) is correct with respect to D.

E(X,Y) {Premise : Letting 6, =6, 0y = p, b= Var(y) — Var(X), and H = X.

From the definition of LE(X, Y), Var(H)Nb = 0.
Since Var(H) C Vr and b0y C Vd, Var(H) N by = 0.
Since b C Vr and Var(H)0, C Vd, Var(H)0, Nb = (.
From a condition &) of R(X, Y), Var(H)6, Nbhy = 0.
From Proposition A.1, LE(X§, Y(d U p)) holds.}

— LE(Xsd, Y(0Up))
{Premise : Letting 6, =, 6y = { }, b= (Var(y) — Var(X))p, and H = X4.
From LE(XS, Y(0Up)), Var(H)Nb= 0.
Since Var(H)#, is a ground term, Var(H)6; Nb = (.
Since 0y = { }, Var(H) Nbly = () and Var(H)0; N bl = (.
From Proposition A.1, LE(Xdv, Y (6 U p)v) holds.}

— LE(X6y, Y(0U p)y)
{From Xoéy C M(D), X6 < true holds.}

< LE(true, Y(0 U p)y)
{Letting y' = (Var(Y) — Var(X))p.}

~ ayy(d Up)y

Consequently, there exists a ground substitution w of variables on ¢/, and V(6 U p)yw C
M(D) holds.

]
Proposition A.3. A renaming p satisfies a condition (5 of R(X, V), a substitution 0
satisfies a condition (6) of R(X, V), 71 is a substitution on Var((HUBUY(6Up))—7p), and
v2 is a substitution onYp. If LE(X, Y) is correct with respect to D, then Y(6Up)y1y2 C
M(D) holds and for any ground substitution w, Xdylw C M(D) holds.

Proof: Assume that LE(X,)) is correct with respect to D.

E(X,Y) {Premise : Letting §, =6, 0y = p, b= Var(y) — Var()(), and H = X.
From the definition of LE(X, Y), Var(H) Nb =
Since Var(H) C Vr and bfy C Vd, Var(H) N b02
Since b C Vr and Var(H)0, C Vd, Var(H)6, Nb =

2650 K. MIURA, K. AKAMA, H. MABUCHI AND H. KOIKE

From a condition &) of R(X, V), Var(H)0, N by = (.
From Proposition A.1, LE(Xd, Y(d U p)) holds.}
— LE(X0, Y(6Up))
{Premise : Letting 0, =~1, 6 = { }, b = (Var(Y) — Var(X))p, H = X6,
and B = Y(dUp).
From LE(X§, Y(6U p)), Var(H)Nb = 0.
Since Var(H) in B, is a ground term and ¢, changes only variables
on Var(H) in B, Var(H)0, Nb = 0.
Since 0y = { }, Var(H) Nbly = () and Var(H)0; N bl = (.
From Proposition A.1, LE(Xdy1, Y(6 U p)y1) holds.}
— LE(X0v1, Y(dUp)y1)
{Premise : Let w be any substitution in which Var(X)dvylw is a ground term.
Letting 0, =w, 6, ={ }, b=7p, H = X671, and B = Y(6 U p)71.
From LE(X§v1, Y(§U p)yl), Var(H) Nb = (.
Since Var(H)0, is a ground term, Var(H)f; Nb = ().
Since 0y = { }, Var(H) Nbfy = O and Var(H)f; N bl =
From Proposition A.1, LE(X§ylw, V(0 U p)ylw) holds.
Since Var(H) in B is a ground term, B6; = B.}
— LE(X§ylw, Y(6 U p)yl)
{There exists a ground substitution v2 of variables on yp.}
— LE(Xéylw, Y(6 U p)yl1y2)

Consequently, since V(6 U p)y1y2 C M(D) holds, X§ylw € M(D) holds.

0.

