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This article supplements Ogasawara (2017).

Proof of Theorem 1
Since

C,, =(n—py)tr(UyU) —ng +2pq
=(n-pq )tr(I(q)_'_U;lep\Q) —nq+2pq
12y1- - Po—P
and E(ZI)ZUQ‘UP‘QZO”Q |[A=0)=—=——1 (A.1)

n—po,—q-1 @
(see e.g. Siotani, Hayakawa & Fujikoshi, 1985, Equation (2.4.11)), we have

E(C,, |A=0)=(n—pg>[1+£jq—nq+2pq
n_pQ_q_l
(n=po)(Po — P)q = pg+ 9(q+D(po —P)
n—po—q-1 n—pg—q-1
When A=0, E(GD, )= pq, which gives from the above result
q(g+D)(po —p)
n—po,—q-1

=—paq+2pq+

E(C,,)-E(GD,)=E(C, )- pq=0

Proof of Theorem 2
The expectations in (3.4) are given by (2.2), (2.4), (2.5) and (2.6)

for A = O . For the variances of (3.4), noting that under normality Ug and

U pla are independent, the following result will be used when X is

independent of Yj (G,j=12).

(1)
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cov(X,Y,, X,¥,) = E(X\Y X,Y,) - E(X,}))E(X,Y,)
=E(X,X,)E(Y\Y,) — E(X,)E(Y, )E(X,,))E(Y,)
~{cov(X,, X, FECX, JECX, )} foov(Y,, Y, J+E(Y)ECY, )]
— B (Y, ECY, E(H)E(Y,)
—cov(X,, X, Jeov(Y,, Y, HECKE(K, eov(Y,, 1)
+eov(X), X, )E(Y))E(Y,).

When A =0, since U;\Q =X,

(A.2)

U, 0E" is Wishart-distributed with the
covariance matrix L) and Po — P degrees of freedom, which is denoted
by W), Po —P), we have

COV{(U;\Q)[p (U;|Q)k[} =(po— p)(5[k5_j[ +6i15jk) .k 1=1,..,9),
where (')g/ indicates the (i, j)th element of a matrix and 5,~k is the Kronecker
delta. On the other hand, UZ{‘ = ZE)/ZUS 21)/2 is inverse-Wishart distributed as

W (X)»n—Pg) and

COV{(UZ;I),;’ (Ugl)kl} =

(i, j,k,1=1,..q)
(see e.g. Siotani et al., 1985, Equation (2.4.12)).
From (A.2),

var{t(U, U )} = Var{tr(U;‘lU;Q)}

=(pa Y var{i(v’;;l)ii}+<n—pg g1’ var{i(v’;g)ﬁ}

i=1

25y5k, +(n— Pa—49 _1)(5ik5jl + 51'15 'k)

J!

(n=po=@)n=po =4 =1 (n=pa=4=3) (, 3

+ z COV{(U;_I)W (U:Z_l)kl}cov{(U;\Q)ijﬁ (U;\Q)kl}a

i,jkl=1
where

*_ *_ 2+2(n_p _q_1)5
COV{(UQI)ii’(UQI)j/‘} = =

i

(n—pq _Q)(”_pg_q_l)z(n_pg _q_3),
COV{(U;‘Q)IAI"(U;‘Q).]]} =2(p, _p)gg (i,j=L...9).
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Consequently,
-1
var{tr(U, U, )}
. 242(n-po—q-1)9;
=(Pa—p)Y, -
ima(m=po—q)n—py—q-1)y(n—py—q-3)

#-py =g 2000 -3,
ij=

+ Z (PQ - p)(é‘iijl + 5i15jk) 25”5]{1 it kb 1)(z5ik5[1 . 6”5/]()

i =1 (n=po—q)n—po—q-1)"(n—po—q-3)
__ 2Apa-pV{g’ +q(n=pa—q=D}  2pa-p)

(n=po—q)(n—po—q=1’(n-py—q-3) (n—py—q-1)

(Po —P){4q+2(n—py —q-1D(¢" +9)}
(n=Ppo—q)n—po—q=1’(n—py—q-3)’

(A.4)
which gives the variances in (3.4). Equation (A.4) is partially justified in that
when ¢ = 1, (A.4) with (3.3) gives the well-known variance

2(n— (n=p=2
var(F) = (1= po)"(n 2p ) (A5)
(po—P)n—py—=2)(n—p,—4) '
of the central F distribution with P —P and 7 — Pg degrees of freedom.

Proof of Corollary 2
From (3.2) when g =1,

C, =(n—pg)(l+%]:*j_n+2p=(pg—p)F* +2p—po,
Q

¢ —c _2pPa—p)

p P

. 2(pe —
=(po—PIF +2p—pg——(p“ p),
n—pg=2 n—pg =2

I’l— _2 *
MC,, =(pq —p)nf—QF +2p—pq

J49)

_ | F
=C,+2(py—p) - ,
n—po—2 n-pq

(A.6)
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which yield the results of Corollary 2.

Proof of Corollary 3
The properties of the noncentral F distribution are well documented (e.g.,
Johnson, Kotz & Balakrishnan, 1994, Chapter 30). The expectation when

n> po+2 and variance when 7> po + 4 for the noncentral F distribution
denoted by F~ in Corollary 2 are

p(Fy= Loz Pt )= po)
(Po —P)n—py—2)
var(F") :2(” —Pa jz (Po—P+2) +(pg 2—p +2A)(n — pg —2) , (A7)
Pa=P (n=pa=2)"(n=po—4)
respectively. Then, when A =0(n),
E(C,)=(p, - P)E(F")+2p-p,

n—pQ—z
_ ) o
E(C,)=(p, - p)E(F )+2p_pg_n(_17;_f?;
Q
:(pQ_p-l-l)(n—pQ)+2p—pg_m:l+0(l)’
n—pg,—2 n—py—2

I’l - - 2 *
E(MC,,) = (pq - p)—L2"ZE(F')+2p - p,
n—PpPqg
=(po—P+A)+(2p-py)=p+i=1+0(),
which give (3.7).
Using (A.7),

247 +24n)
2
(Pa=p)'n
follows. Equation (A.8) gives (3.8). From the unbiased property of MC,,~and

var(F") = +0(1)=0(n)

(A.8)

the definitions of C p and C » » we have the results of (3.9) except its last
inequality MSE(C ,) <MSE(C,) , which is given by
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(BC,)—(p+ D) :{@Q—pm)(n—pg)w_l_pg}
n—po—2
_4po-p+A)
(n-py-27°
(EC,)—(p+ A = 1 2(p-2 pa)—2pa-P)F
(n_pg _2)
__
(n_pg _2)2

(recall the assumption Pg > P in Section 1) and var(C,) = var (C ).

<{EC,)-(p+ 1)}’

Proof of Lemma 1
Since MSE(d0) = (d ~1)°6; +d’c;,, MSE(d6) is minimized
when d=d_, = 002 /(002 +692,,) =1/{1 +C\2/ (é)} . The minimized MSE is
6; ol _ MSE(®)
G to;, 1+a(0) 1+6(0)

0

Proof of Corollary 4
First, we obtain

MSE(MC,,)-MSE(d, .. C,.)

minC,,

2
_ (H—PQ—‘]_IJ _ _1 - Var((_lpq)
n-p, 1+var(C, )(pq) (A.9)

_(n—po—q- 1)’ {(pq)* +var(C,)} = (n = py)*(pg)’
(n=po)* {(pg)* +var(C,, )}
which can be positive or negative, as shown in the following examples. When ¢

= 1, the numerator of the first factor on the right-hand side of the last equation
of (A.9) is

var(C o )s
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(n—po—2)*{p* +var(C,)} —(n— p,)’ p’

2(po —p)n—py)’(n—p—2)
n—p,—4 (A.10)

=—4(n—py)p* +4p” +

=—|0(n)|+|0() |+|0(n*)),

where for Var((_j p) , (3.2) and (A.5) are used.
When n is sufficiently large, (A.10) is positive, demonstrating that in this

case, MSEMC pq) > MSE(dmmcqu pq) . However, when # is relatively small,
we define 71— Pg =a >4 (see a condition for (A.3))and po—p=b>0
(recall the assumption Pq > P in Section 1). Then, (A.10) becomes

~dap® +4p* +2ba’(a+b—2)/(a—4), which is negative when

p2 > baz(a +b-2)/{2(a—1)(a—4)} . For instance, when a =5 and b = 1,

the last inequality holds when P = 4. From this result, we have the central
inequality min{-} <max{-} in (4.2). The remaining inequalities are given by

the unbiased property of MC »q and the definitions of C pg and C pq -

Proof of Theorem 4
From (A.6) and (A.7), we have

var(MC,) = (p, ~ p)’ (wj var(F")
— Pa

:2(pg—p+l)2+(pQ—p+2/1)(n—pQ—2) (A-11)
n—p,—4
Substituting (A.11) for the first equation of (4.3) given by Lemma 1, the second
equation of (4.3) follows.

Results associated with Theorem 4 when 1 =0(1) and A =0
When A=0(), from (A.11) we have

varMC, ) =2(p, —p+24)+ on™),

. (p+A)

d . = o(n™). (A.12)
MG (p+ A +2(pg — p+2A) =)
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Note that when A =0, (3.2) and (A.7) yield
var(C,) = var(C,) = (p, — p)’ var(F,

PQ‘P,"—pQ)

_2(po—p)n—py)’(n-p-2) :( n—pg T var(MC.. ) (A.13)
(n—pQ—2)2(n—pQ—4) n—Pqo— "
" n—pg—4
var(C) = Var(ép) =2(p, —p)+0(n™"),
var(MC,,) =2(p, — p) +O(n™"),

2

2

p _ p _ p'(n—py—4)
minMC,, — -
Yo pP4var(MC,,)  pr(n—po—4)+2(p, — p)n—p-2)

2
- L Lo
P +2(po—p)
(see (4.1)). From (A.12) and (A.13), when A =0(1), itis seen that (A.12) is

given from the last two sets of results of (A.13) by replacing Po —P and P ’

with Po—P+24 and (p+ 3«)2 , respectively. However, as described
carlier, generally A =0(n) , giving (A.8).
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