Supplement to the paper "Accurate distributions of Mallows' $\mathrm{C} p$ and its unbiased modifications with applications to shrinkage estimation"

Haruhiko Ogasawara

This article supplements Ogasawara (2017).

Proof of Theorem 1

Since

$$
\begin{gather*}
\mathrm{C}_{p q}=\left(n-p_{\Omega}\right) \operatorname{tr}\left(\mathbf{U}_{\Omega}^{-1} \mathbf{U}\right)-n q+2 p q \\
=\left(n-p_{\Omega}\right) \operatorname{tr}\left(\mathbf{I}_{(q)}+\mathbf{U}_{\Omega}^{-1} \mathbf{U}_{p \mid \Omega}\right)-n q+2 p q \\
\text { and } \mathrm{E}\left(\boldsymbol{\Sigma}_{0}^{1 / 2} \mathbf{U}_{\Omega}^{-1} \mathbf{U}_{p \mid \Omega} \boldsymbol{\Sigma}_{0}^{-1 / 2} \mid \mathbf{\Lambda}=\mathbf{O}\right)=\frac{p_{\Omega}-p}{n-p_{\Omega}-q-1} \mathbf{I}_{(q)} \tag{A.1}
\end{gather*}
$$

(see e.g. Siotani, Hayakawa \& Fujikoshi, 1985, Equation (2.4.11)), we have

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{C}_{p q} \mid \boldsymbol{\Lambda}=\mathbf{O}\right)=\left(n-p_{\Omega}\right)\left(1+\frac{p_{\Omega}-p}{n-p_{\Omega}-q-1}\right) q-n q+2 p q \\
& =-p_{\Omega} q+2 p q+\frac{\left(n-p_{\Omega}\right)\left(p_{\Omega}-p\right) q}{n-p_{\Omega}-q-1}=p q+\frac{q(q+1)\left(p_{\Omega}-p\right)}{n-p_{\Omega}-q-1} .
\end{aligned}
$$

When $\boldsymbol{\Lambda}=\mathbf{O}, \mathrm{E}\left(\mathrm{GD}_{p q}\right)=p q$, which gives from the above result

$$
\mathrm{E}\left(\overline{\mathrm{C}}_{p q}\right)-\mathrm{E}\left(\mathrm{GD}_{p q}\right)=\mathrm{E}\left(\mathrm{C}_{p q}\right)-\frac{q(q+1)\left(p_{\Omega}-p\right)}{n-p_{\Omega}-q-1}-p q=0
$$

Proof of Theorem 2

The expectations in (3.4) are given by (2.2), (2.4), (2.5) and (2.6) for $\boldsymbol{\Lambda}=\mathbf{O}$. For the variances of (3.4), noting that under normality \mathbf{U}_{Ω}^{-1} and $\mathbf{U}_{p \mid \Omega}$ are independent, the following result will be used when X_{i} is independent of $Y_{j}(i, j=1,2)$:

$$
\begin{align*}
& \operatorname{cov}\left(X_{1} Y_{1}, X_{2} Y_{2}\right)=\mathrm{E}\left(X_{1} Y_{1} X_{2} Y_{2}\right)-\mathrm{E}\left(X_{1} Y_{1}\right) \mathrm{E}\left(X_{2} Y_{2}\right) \\
= & \mathrm{E}\left(X_{1} X_{2}\right) \mathrm{E}\left(Y_{1} Y_{2}\right)-\mathrm{E}\left(X_{1}\right) \mathrm{E}\left(Y_{1}\right) \mathrm{E}\left(X_{2}\right) \mathrm{E}\left(Y_{2}\right) \\
= & \left\{\operatorname{cov}\left(X_{1}, X_{2}\right)+\mathrm{E}\left(X_{1}\right) \mathrm{E}\left(X_{2}\right)\right\}\left\{\operatorname{cov}\left(Y_{1}, Y_{2}\right)+\mathrm{E}\left(Y_{1}\right) \mathrm{E}\left(Y_{2}\right)\right\} \\
& -\mathrm{E}\left(X_{1}\right) \mathrm{E}\left(X_{2}\right) \mathrm{E}\left(Y_{1}\right) \mathrm{E}\left(Y_{2}\right) \tag{A.2}\\
= & \operatorname{cov}\left(X_{1}, X_{2}\right) \operatorname{cov}\left(Y_{1}, Y_{2}\right)+\mathrm{E}\left(X_{1}\right) \mathrm{E}\left(X_{2}\right) \operatorname{cov}\left(Y_{1}, Y_{2}\right) \\
& +\operatorname{cov}\left(X_{1}, X_{2}\right) \mathrm{E}\left(Y_{1}\right) \mathrm{E}\left(Y_{2}\right)
\end{align*}
$$

When $\boldsymbol{\Lambda}=\mathbf{O}$ ，since $\mathbf{U}_{p \mid \Omega}^{*} \equiv \boldsymbol{\Sigma}_{0}^{-1 / 2} \mathbf{U}_{p \mid \Omega} \boldsymbol{\Sigma}_{0}^{-1 / 2} \quad$ is Wishart－distributed with the covariance matrix $\mathbf{I}_{(n)}$ and $p_{\Omega}-p$ degrees of freedom，which is denoted by $\mathrm{W}\left(\mathbf{I}_{(n)}, p_{\Omega}-p\right)$ ，we have

$$
\operatorname{cov}\left\{\left(\mathbf{U}_{p \mid \Omega}^{*}\right)_{i j},\left(\mathbf{U}_{p \mid \Omega}^{*}\right)_{k l}\right\}=\left(p_{\Omega}-p\right)\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right)(i, j, k, l=1, \ldots, q),
$$

where $(\cdot)_{i j}$ indicates the (i, j) th element of a matrix and $\delta_{i k}$ is the Kronecker delta．On the other hand， $\mathbf{U}_{\Omega}^{*-1} \equiv \boldsymbol{\Sigma}_{0}^{1 / 2} \mathbf{U}_{\Omega}^{-1} \boldsymbol{\Sigma}_{0}^{1 / 2}$ is inverse－Wishart distributed as $\mathrm{W}^{-1}\left(\mathbf{I}_{(n)}, n-p_{\Omega}\right)$ and

$$
\begin{aligned}
& \operatorname{cov}\left\{\left(\mathbf{U}_{\Omega}^{*-1}\right)_{i j},\left(\mathbf{U}_{\Omega}^{*-1}\right)_{k l}\right\}=\frac{2 \delta_{i j} \delta_{k l}+\left(n-p_{\Omega}-q-1\right)\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right)}{\left(n-p_{\Omega}-q\right)\left(n-p_{\Omega}-q-1\right)^{2}\left(n-p_{\Omega}-q-3\right)} \\
& \quad(i, j, k, l=1, \ldots, q)
\end{aligned}
$$

（see e．g．Siotani et al．，1985，Equation（2．4．12））．
From（A．2），

$$
\begin{aligned}
& \operatorname{var}\left\{\operatorname{tr}\left(\mathbf{U}_{\Omega}^{-1} \mathbf{U}_{p \mid \Omega}\right)\right\}=\operatorname{var}\left\{\operatorname{tr}\left(\mathbf{U}_{\Omega}^{*-1} \mathbf{U}_{p \mid \Omega}^{*}\right)\right\} \\
& =\left(p_{\Omega}-p\right)^{2} \operatorname{var}\left\{\sum_{i=1}^{q}\left(\mathbf{U}_{\Omega}^{*-1}\right)_{i i}\right\}+\left(n-p_{\Omega}-q-1\right)^{-2} \operatorname{var}\left\{\sum_{i=1}^{q}\left(\mathbf{U}_{p \mid \Omega}^{*}\right)_{i i}\right\} \\
& +\sum_{i, j, k, l=1}^{q} \operatorname{cov}\left\{\left(\mathbf{U}_{\Omega}^{*-1}\right)_{i j},\left(\mathbf{U}_{\Omega}^{*-1}\right)_{k l}\right\} \operatorname{cov}\left\{\left(\mathbf{U}_{p \mid \Omega}^{*}\right)_{i j},\left(\mathbf{U}_{p \mid \Omega}^{*}\right)_{k l}\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
& \operatorname{cov}\left\{\left(\mathbf{U}_{\Omega}^{*-1}\right)_{i i},\left(\mathbf{U}_{\Omega}^{*-1}\right)_{j j}\right\}=\frac{2+2\left(n-p_{\Omega}-q-1\right) \delta_{i j}}{\left(n-p_{\Omega}-q\right)\left(n-p_{\Omega}-q-1\right)^{2}\left(n-p_{\Omega}-q-3\right)}, \\
& \operatorname{cov}\left\{\left(\mathbf{U}_{p \mid \Omega}^{*}\right)_{i i},\left(\mathbf{U}_{p \mid \Omega}^{*}\right)_{j j}\right\}=2\left(p_{\Omega}-p\right) \delta_{i j}(i, j=1, \ldots, q) .
\end{aligned}
$$

Consequently,

$$
\begin{align*}
& \operatorname{var}\left\{\operatorname{tr}\left(\mathbf{U}_{\Omega}^{-1} \mathbf{U}_{p \backslash \Omega}\right)\right\} \\
& =\left(p_{\Omega}-p\right)^{2} \sum_{i, j=1}^{q} \frac{2+2\left(n-p_{\Omega}-q-1\right) \delta_{i j}}{\left(n-p_{\Omega}-q\right)\left(n-p_{\Omega}-q-1\right)^{2}\left(n-p_{\Omega}-q-3\right)} \\
& +\left(n-p_{\Omega}-q-1\right)^{-2} \sum_{i, j=1}^{q} 2\left(p_{\Omega}-p\right) \delta_{i j} \\
& +\sum_{i, j, k, l=1}^{q}\left(p_{\Omega}-p\right)\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right) \frac{2 \delta_{i j} \delta_{k l}+\left(n-p_{\Omega}-q-1\right)\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right)}{\left(n-p_{\Omega}-q\right)\left(n-p_{\Omega}-q-1\right)^{2}\left(n-p_{\Omega}-q-3\right)} \\
& =\frac{2\left(p_{\Omega}-p\right)^{2}\left\{q^{2}+q\left(n-p_{\Omega}-q-1\right)\right\}}{\left(n-p_{\Omega}-q\right)\left(n-p_{\Omega}-q-1\right)^{2}\left(n-p_{\Omega}-q-3\right)}+\frac{2\left(p_{\Omega}-p\right) q}{\left(n-p_{\Omega}-q-1\right)^{2}} \\
& +\frac{\left(p_{\Omega}-p\right)\left\{4 q+2\left(n-p_{\Omega}-q-1\right)\left(q^{2}+q\right)\right\}}{\left(n-p_{\Omega}-q\right)\left(n-p_{\Omega}-q-1\right)^{2}\left(n-p_{\Omega}-q-3\right)}, \tag{A.4}
\end{align*}
$$

which gives the variances in (3.4). Equation (A.4) is partially justified in that when $q=1$, (A.4) with (3.3) gives the well-known variance

$$
\begin{equation*}
\operatorname{var}(F)=\frac{2\left(n-p_{\Omega}\right)^{2}(n-p-2)}{\left(p_{\Omega}-p\right)\left(n-p_{\Omega}-2\right)^{2}\left(n-p_{\Omega}-4\right)} \tag{A.5}
\end{equation*}
$$

of the central F distribution with $p_{\Omega}-p$ and $n-p_{\Omega}$ degrees of freedom.

Proof of Corollary 2

From (3.2) when $q=1$,

$$
\begin{align*}
& \mathrm{C}_{p}=\left(n-p_{\Omega}\right)\left(1+\frac{p_{\Omega}-p}{n-p_{\Omega}} F^{*}\right)-n+2 p=\left(p_{\Omega}-p\right) F^{*}+2 p-p_{\Omega}, \\
& \overline{\mathrm{C}}_{p}=\mathrm{C}_{p}-\frac{2\left(p_{\Omega}-p\right)}{n-p_{\Omega}-2}=\left(p_{\Omega}-p\right) F^{*}+2 p-p_{\Omega}-\frac{2\left(p_{\Omega}-p\right)}{n-p_{\Omega}-2}, \\
& \mathrm{MC}_{p q}=\left(p_{\Omega}-p\right) \frac{n-p_{\Omega}-2}{n-p_{\Omega}} F^{*}+2 p-p_{\Omega} \tag{A.6}\\
& \quad\left(=\overline{\mathrm{C}}_{p}+2\left(p_{\Omega}-p\right)\left(\frac{1}{n-p_{\Omega}-2}-\frac{F^{*}}{n-p_{\Omega}}\right)\right),
\end{align*}
$$

which yield the results of Corollary 2.

Proof of Corollary 3

The properties of the noncentral F distribution are well documented（e．g．， Johnson，Kotz \＆Balakrishnan，1994，Chapter 30）．The expectation when $n>p_{\Omega}+2$ and variance when $n>p_{\Omega}+4$ for the noncentral F distribution denoted by F^{*} in Corollary 2 are

$$
\begin{align*}
& \mathrm{E}\left(F^{*}\right)=\frac{\left(p_{\Omega}-p+\lambda\right)\left(n-p_{\Omega}\right)}{\left(p_{\Omega}-p\right)\left(n-p_{\Omega}-2\right)} \\
& \operatorname{var}\left(F^{*}\right)=2\left(\frac{n-p_{\Omega}}{p_{\Omega}-p}\right)^{2} \frac{\left(p_{\Omega}-p+\lambda\right)^{2}+\left(p_{\Omega}-p+2 \lambda\right)\left(n-p_{\Omega}-2\right)}{\left(n-p_{\Omega}-2\right)^{2}\left(n-p_{\Omega}-4\right)} \tag{A.7}
\end{align*}
$$

respectively．Then，when $\lambda=O(n)$ ，

$$
\begin{aligned}
& \begin{aligned}
& \mathrm{E}\left(\mathrm{C}_{p}\right)=\left(p_{\Omega}-p\right) \mathrm{E}\left(F^{*}\right)+2 p-p_{\Omega} \\
&= \frac{\left(p_{\Omega}-p+\lambda\right)\left(n-p_{\Omega}\right)}{n-p_{\Omega}-2}+2 p-p_{\Omega}=\lambda+O(1), \\
& \mathrm{E}\left(\overline{\mathrm{C}}_{p}\right)=\left(p_{\Omega}-p\right) \mathrm{E}\left(F^{*}\right)+2 p-p_{\Omega}-\frac{2\left(p_{\Omega}-p\right)}{n-p_{\Omega}-2} \\
&= \frac{\left(p_{\Omega}-p+\lambda\right)\left(n-p_{\Omega}\right)}{n-p_{\Omega}-2}+2 p-p_{\Omega}-\frac{2\left(p_{\Omega}-p\right)}{n-p_{\Omega}-2}=\lambda+O(1), \\
& \mathrm{E}\left(\mathrm{MC}_{p q}\right)=\left(p_{\Omega}-p\right) \frac{n-p_{\Omega}-2}{n-p_{\Omega}} \mathrm{E}\left(F^{*}\right)+2 p-p_{\Omega} \\
& \quad=\left(p_{\Omega}-p+\lambda\right)+\left(2 p-p_{\Omega}\right)=p+\lambda=\lambda+O(1),
\end{aligned}
\end{aligned}
$$

which give（3．7）．
Using（A．7），

$$
\begin{equation*}
\operatorname{var}\left(F^{*}\right)=\frac{2\left(\lambda^{2}+2 \lambda n\right)}{\left(p_{\Omega}-p\right)^{2} n}+O(1)=O(n) \tag{A.8}
\end{equation*}
$$

follows．Equation（A．8）gives（3．8）．From the unbiased property of $\mathrm{MC}_{p q}$ and the definitions of C_{p} and $\overline{\mathrm{C}}_{p}$ ，we have the results of（3．9）except its last inequality $\operatorname{MSE}\left(\overline{\mathrm{C}}_{p}\right)<\operatorname{MSE}\left(\mathrm{C}_{p}\right)$ ，which is given by

$$
\begin{aligned}
\left\{\mathrm{E}\left(\mathrm{C}_{p}\right)-(p+\lambda)\right\}^{2} & =\left\{\frac{\left(p_{\Omega}-p+\lambda\right)\left(n-p_{\Omega}\right)}{n-p_{\Omega}-2}+p-\lambda-p_{\Omega}\right\}^{2} \\
& =\frac{4\left(p_{\Omega}-p+\lambda\right)^{2}}{\left(n-p_{\Omega}-2\right)^{2}}, \\
\left\{\mathrm{E}\left(\overline{\mathrm{C}}_{p}\right)-(p+\lambda)\right\}^{2} & \left.=\frac{1}{\left(n-p_{\Omega}-2\right)^{2}}\left\{-2\left(p-\lambda-p_{\Omega}\right)-2\left(p_{\Omega}-p\right)\right)\right\}^{2} \\
& =\frac{4 \lambda^{2}}{\left(n-p_{\Omega}-2\right)^{2}}<\left\{\mathrm{E}\left(\mathrm{C}_{p}\right)-(p+\lambda)\right\}^{2}
\end{aligned}
$$

(recall the assumption $p_{\Omega}>p$ in Section 1) and $\operatorname{var}\left(\mathrm{C}_{p}\right)=\operatorname{var}\left(\overline{\mathrm{C}}_{p}\right)$.

Proof of Lemma 1

Since $\operatorname{MSE}(d \hat{\theta})=(d-1)^{2} \theta_{0}^{2}+d^{2} \sigma_{\theta n}^{2}, \operatorname{MSE}(d \hat{\theta})$ is minimized when $d=d_{\text {min }}=\theta_{0}^{2} /\left(\theta_{0}^{2}+\sigma_{\theta n}^{2}\right)=1 /\left\{1+c_{\mathrm{V}}^{2}(\hat{\theta})\right\}$. The minimized MSE is $\theta_{0}^{2}-\frac{\theta_{0}^{4}}{\theta_{0}^{2}+\sigma_{\theta n}^{2}}=\frac{\sigma_{\theta n}^{2}}{1+c_{\mathrm{V}}^{2}(\hat{\theta})}=\frac{\operatorname{MSE}(\hat{\theta})}{1+c_{\mathrm{V}}^{2}(\hat{\theta})}$.

Proof of Corollary 4

First, we obtain
$\operatorname{MSE}\left(\operatorname{MC}_{p q}\right)-\operatorname{MSE}\left(d_{\min \bar{C}_{p q}} \overline{\mathrm{C}}_{p q}\right)$

$$
\begin{align*}
& =\left\{\left(\frac{n-p_{\Omega}-q-1}{n-p_{\Omega}}\right)^{2}-\frac{1}{1+\operatorname{var}\left(\overline{\mathrm{C}}_{p q}\right)(p q)^{-2}}\right\} \operatorname{var}\left(\overline{\mathrm{C}}_{p q}\right) \tag{A.9}\\
& =\frac{\left(n-p_{\Omega}-q-1\right)^{2}\left\{(p q)^{2}+\operatorname{var}\left(\overline{\mathrm{C}}_{p q}\right)\right\}-\left(n-p_{\Omega}\right)^{2}(p q)^{2}}{\left(n-p_{\Omega}\right)^{2}\left\{(p q)^{2}+\operatorname{var}\left(\overline{\mathrm{C}}_{p q}\right)\right\}} \operatorname{var}\left(\overline{\mathrm{C}}_{p q}\right),
\end{align*}
$$

which can be positive or negative, as shown in the following examples. When q $=1$, the numerator of the first factor on the right-hand side of the last equation of (A.9) is

$$
\begin{align*}
& \left(n-p_{\Omega}-2\right)^{2}\left\{p^{2}+\operatorname{var}\left(\overline{\mathrm{C}}_{p}\right)\right\}-\left(n-p_{\Omega}\right)^{2} p^{2} \\
& =-4\left(n-p_{\Omega}\right) p^{2}+4 p^{2}+\frac{2\left(p_{\Omega}-p\right)\left(n-p_{\Omega}\right)^{2}(n-p-2)}{n-p_{\Omega}-4} \tag{A.10}\\
& =-|O(n)|+|O(1)|+\left|O\left(n^{2}\right)\right|,
\end{align*}
$$

where for $\operatorname{var}\left(\overline{\mathrm{C}}_{p}\right)$ ，（3．2）and（A．5）are used．
When n is sufficiently large，（A．10）is positive，demonstrating that in this case， $\operatorname{MSE}\left(\mathrm{MC}_{p q}\right)>\operatorname{MSE}\left(d_{\min \overline{\mathrm{C}}_{p q}} \overline{\mathrm{C}}_{p q}\right)$ ．However，when n is relatively small， we define $n-p_{\Omega}=a>4$（see a condition for（A．3））and $p_{\Omega}-p=b>0$ （recall the assumption $p_{\Omega}>p$ in Section 1）．Then，（A．10）becomes $-4 a p^{2}+4 p^{2}+2 b a^{2}(a+b-2) /(a-4)$ ，which is negative when $p^{2}>b a^{2}(a+b-2) /\{2(a-1)(a-4)\}$ ．For instance，when $a=5$ and $b=1$ ， the last inequality holds when $p \geq 4$ ．From this result，we have the central inequality $\min \{\cdot\} \leq \max \{\cdot\} \quad$ in（4．2）．The remaining inequalities are given by the unbiased property of $\mathrm{MC}_{p q}$ and the definitions of $\mathrm{C}_{p q}$ and $\overline{\mathrm{C}}_{p q}$ ．

Proof of Theorem 4

From（A．6）and（A．7），we have

$$
\begin{align*}
& \operatorname{var}\left(\mathrm{MC}_{p q}\right)=\left(p_{\Omega}-p\right)^{2}\left(\frac{n-p_{\Omega}-2}{n-p_{\Omega}}\right)^{2} \operatorname{var}\left(F^{*}\right) \\
& =2 \frac{\left(p_{\Omega}-p+\lambda\right)^{2}+\left(p_{\Omega}-p+2 \lambda\right)\left(n-p_{\Omega}-2\right)}{n-p_{\Omega}-4} \tag{A.11}
\end{align*}
$$

Substituting（A．11）for the first equation of（4．3）given by Lemma 1，the second equation of（4．3）follows．

Results associated with Theorem 4 when $\lambda=O(1)$ and $\lambda=0$
When $\lambda=O(1)$ ，from（A．11）we have

$$
\begin{align*}
& \operatorname{var}\left(\mathrm{MC}_{p q}\right)=2\left(p_{\Omega}-p+2 \lambda\right)+O\left(n^{-1}\right) \\
& d_{\min \mathrm{MC}_{p q}}^{*}=\frac{(p+\lambda)^{2}}{(p+\lambda)^{2}+2\left(p_{\Omega}-p+2 \lambda\right)}+O\left(n^{-1}\right) \tag{A.12}
\end{align*}
$$

Note that when $\lambda=0,(3.2)$ and (A.7) yield

$$
\begin{align*}
& \operatorname{var}\left(\mathrm{C}_{p}\right)=\operatorname{var}\left(\overline{\mathrm{C}}_{p}\right)=\left(p_{\Omega}-p\right)^{2} \operatorname{var}\left(F_{p_{\Omega}-p, n-p_{\Omega}}\right) \\
& =\frac{2\left(p_{\Omega}-p\right)\left(n-p_{\Omega}\right)^{2}(n-p-2)}{\left(n-p_{\Omega}-2\right)^{2}\left(n-p_{\Omega}-4\right)}=\left(\frac{n-p_{\Omega}}{n-p_{\Omega}-2}\right)^{2} \operatorname{var}\left(\mathrm{MC}_{p q}\right) \tag{A.13}\\
& >\operatorname{var}\left(\mathrm{MC}_{p q}\right)=\frac{2\left(p_{\Omega}-p\right)(n-p-2)}{n-p_{\Omega}-4}, \\
& \operatorname{var}\left(\mathrm{C}_{p}\right)=\operatorname{var}\left(\overline{\mathrm{C}}_{p}\right)=2\left(p_{\Omega}-p\right)+O\left(n^{-1}\right), \\
& \operatorname{var}\left(\mathrm{MC}_{p q}\right)=2\left(p_{\Omega}-p\right)+O\left(n^{-1}\right), \\
& d_{\min \mathrm{MC}_{p q}}=\frac{p^{2}}{p^{2}+\operatorname{var}\left(\mathrm{MC}_{p q}\right)}=\frac{p^{2}\left(n-p_{\Omega}-4\right)}{p^{2}\left(n-p_{\Omega}-4\right)+2\left(p_{\Omega}-p\right)(n-p-2)} \\
& \quad=\frac{p^{2}}{p^{2}+2\left(p_{\Omega}-p\right)}+O\left(n^{-1}\right)
\end{align*}
$$

(see (4.1)). From (A.12) and (A.13), when $\lambda=O(1)$, it is seen that (A.12) is given from the last two sets of results of (A.13) by replacing $p_{\Omega}-p$ and p^{2} with $p_{\Omega}-p+2 \lambda$ and $(p+\lambda)^{2}$, respectively. However, as described earlier, generally $\lambda=O(n)$, giving (A.8).

References

Johnson, N. L., Kotz, S., \& Balakrishnan, N. (1994). Continuous univariate distributions Vol. 2 (2nd ed.). New York: Wiley.
Ogasawara, H. (2017). Accurate distributions of Mallows' C_{p} and its unbiased modifications with applications to shrinkage estimation. Journal of Statistical Planning and Inference, 184, 105-116.
Siotani, M., Hayakawa, T., \& Fujikoshi, Y. (1985). Modern multivariate statistical analysis: A graduate course and handbook. Columbus, OH : American Sciences Press.

