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Abstract: The Building puzzl巴（a.k.a., the Skyscrap巴r) is a Latin square completion-typ巴 puzzl巴 like Sudoku, KenK巴n
. and Futoshik.i. Recently, Iwamoto and Matsui showed th巴NP-complet巴ness of th巴 decision problem version of this 

puzzle, which asks whether a given instance has a solution or not. We provide a stronger result in the present paper; 
it is still NP-complete to decide whether we can complete a single line of the grid (i.e., a l×11 or an n×l subgrid) 
without violating the rule. 
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1. Introduction

Let us begin with the rule of the Building puzzle. We illus­
trate a puzzle instance in Fig. 1 (a). For a natui叫number 11 , let 
[11] = {l, . ,n). In this puzzl巴，we are given an n×n grid of cells,

along with some numbers in [n] written around the grid. We refer 
to a row and a column in the grid simply as a line. A line has two 
ends. A number around the grid is called a Building number. It is
placed next to an end of a line. We say that a line has a Building 
number b on its end if b is written next to the end. Since there 
創·e 2n lines and a line has two ends, there are at most 411 Building 
numbers. 

We are asked to fill all 11 2 cells with integers in [n] so that; 
• th巴 intege,s altogether form an n×n Latin square (i巴.， in each 

line, every integer in [n] appears exactly once), and that; 
• what we call the Building condition is satisfied. 

Let us explain what is the Building condition. Suppose that a 

building is constructed in every cell so that the number of floors 
is the integer assigned to the cell. Th巴 condition requiJes that, 
for every Building number b, one should see exactly b buildings 
when he or she looks ·up at th巴 buildings on the line from the 
end where b is placed. The point is that we cannot see any lower 
buildings behind a higher building. In Fig. l (b), we show a (com­
plete) solution to the instance of Fig. l (a). 

Recently, Iwamoto and Matsui [3] showed the NP­
completeness of th巴 decision problem version of the Building 
puzzle. In our terminology, the problem is summarized as 
follows. 

BUILDING PUZZLE 
Input: An n × n  Building puzzle instance and an n × n  

paJtial Latin square S. 
Question: Is there a solution to the instance that is an ex­

tension of S? 
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Fig. 1 (a) a 4×4 Building puzzle instance; (b) a solution to the instance. 

In the present paper, we provide a stronger r巴suit on the com­
plexity of the Building puzzle. Concentrating on one line that has 
a building number b on one of its ends, we consider the following 
question; can we complete all the empty cells in the line so that 
the Building condition with respect to b is satisfied? 

For the sake of simplicity, we take up the first row and assume 
that b is on the left end. We can ignore empty cells in the sec­
ond row to the 11-th row. This is b巴cause,if we could complete 
the empty cells in the first row anyhow, it could be accomplished 
without assigning any integ巴r to the 巴mpty cells in the second row 
to the 11-th row. 

We call the problem SINGLE LINED BUILDING PuzzLE (SLBP), 

which is summarized as follows. 

SINGLE LINED BUILD町G PuzzLE (SLBP) 

Input: An nxn partial Latin squ紅e S and a Building num­
ber b on the left end of the first row. 

Question: Is it possible to fill the empty cells in the first 
row with integers in [11] so that the following two con­
ditions are satisfied? 

• all-different condition; i.e., every integer in [n] appears
exactly once (along with S).

• Building condition with respect to b; i.e., exactly b

buildings a陀 seen from th唱left end. 

A solution to the SLBP instance (S, b) is a complete assignment 
of integers in [n] to the empty cells in the first row that satisfies 
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the above two conditions. 
The following theorem is th巴 main contribution of the paper. 

Theorem. The p,vb/em SLBP is NP-complete. 

The remainder of the paper is devoted to the proof. 
The theorem shows that it is computationally hard to complete 

even a single line, which is a stronger claim than [3]. It may 
also suggest the essential hardness of the Building puzzle, com­
pared with other Latin square completion-type puzzles, such as 
th巴 partial Latin square extension (PLSE) problem and Sudoku. 
Similarly to the Building puzzle, their decision problem versions 
require the decision as to whether a giv巴n partial solution can 
b巴 ext巴nded to a complete solution und巴r th巴ir own constraints, 
which are known to be NP-complete[l], [4]. However, as op­
posed to the Building puzzle, th巴ir single-lined versions can be 
solved in polynomial time by means of bipartite perfect match­
ing. The Building puzzle is NP-hard, even in the single-lined 
version. 

2. Proof of the Theorem

The Pfoblem SLBP is in NP sine巴 the size of a solution is at
most n and we can cJ:ieck in polynomial time whether it is feasト
ble or not. 

W巴 give a reduction針。m a variant of SAT, the problem called 
Cusic MoNOTONE NoT-ALL-EQUAL (2, 3)-SAT, which is known to 
be NP-complete [2]. 

2.1 Preliminaries 
We inu·oduce the problem CuBic MONOTONE NoT-ALL-EQUAL 

(2, 3)-SAT. Let X = {x1, ... , XN) denote a set of N Boolean V創卜
ables. For a variable x E X, xis call巴d the positive literal and xis 
called the negative literal. A clause is a subset of literals over X. 

A truth assignment for X is d巴noted by T: X →｛T,FトGiven a 
u·ue assignment T, if T(x) = T, then the positive literal x takes true 
and the negativ巴 literal l takes false. If T(v) = F, then x tak巴s false 
and x takes tru巴. A clause is called not-all-equal under T if there 
are two literals in the clause that take di仔erent u·uth values under 
T. The problem CuBic MoNOTONE NoT-ALL-EQuAL (2, 3）司SAT is 
defined as follows. 

CuBic MoNOTO阻 Nσr-ALL•EQUAL (2, 3)-SAT 
Input: A set X = {x 1 , . .. , XN) of N Boolean variables and 

a collection C = {C1 , C2, ... , CM) of M clauses over X
such that: 
(monotone) all literals over C加・e positive; 
( cubic) ' each variable appears as a literal in exactly 

thr田clauses;
(2,3) each clause Cb contains either two or three lit­

erals, i.e., ICbl E {2, 3). 
Question: ls there a truth assignment T 目 X→｛T,F} such 

that e�巴ry clause is not-all-equal under T? 

A SAT instance is NAE-satisfiable if there is a truth assignment 
under which every claus巴 is not-all-equal. We partition C into c<2> 

and C(J) SO that C(/,) (/i E {2, 31) is the subcolJ巴ction of Ii-clauses 
(i.e., those that contain h literals); c<h) = {Cb EC: ICbl = hト

Concerning the 11×n grid, we denote the cell in the i-th row 
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Fig. 2 Construclion of a partial solution S (11 = 6, N = 2）：・（a) the n×n 
partial Latin squa田 such that Ihe integer II is assigned to ( 1, 11 - N) 
and an arbitrary (11 1）×（11 1) Latin square; (b) the (11ー 1）×（11-l)
Latin square is sp問ad over shaded cells; (c) some integers are re­
moved, and small digits in the first row indicate the candidates that 
the empty ceUs have目

and in the )-th column by (i, )). For an empty cell (i, j) of a par­
tial Latin squat弘if an integer k appears neither in the row i nor in 
the column j, then we say that k is assignable to (i, )), or equiva­
l巴ntly, that (i, j) has k as a candidate.

An independent set in a graph is a subset of vertices such that 
no two of them are adjacent to each other. Th巴 largest cardinal­
ity is called the independence number, and an indep巴ndent set 
that achieves this number is called a mιximum independent set,

which we abbreviate into an MIS. 

2.2 Overview 
We ar巴 ready to transform a given SAT instance into an SLBP 

instance (S, b ). The SLBP instance is built on the n×n grid with 
n = l〔）IC(2)1 + 301C(3)1 + N + l ,  where the Building number b is set 
to b = s1c<2>1 + 16IC(3>1 + 1. Cleai·ly, the siz巴 of the SLBP instance 
is polynomial with respect to that of the SAT instance. 

羽／巴initialize the partial Latin square S as follows. 
• We assign n (i.e., a highest building) to (1, n - N). 

• We leave every ( 1, j) (j * n - N) and every (i, n - N) (i * I)
empty.

・ Taking an arbiu·ary (n 1）× （n - 1) Latin square that has
integers in [n - 1], we spread it over the second row to the 
n-th row, and the first column to the n-th column except th巴
(n -N）ーth column. 

Th巴 initialization is illustrated in Fig. 2 (a) and (b). 
At this point, no value is assignable to 巴very empty cell (1, )). 

We will make a certain k E [11 - 1] assignable to ( 1, )). To do this, 
we have only to remove k from the column j of S. Hence, we can 
let ( 1, j) have arbiu·ary int巴gers in [n 1] as the candidates, by 
removing values from the grid appropriately. 

We remov巴 integers from S so that the following conditions創·e
satisfied in the first row: 
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Fig.3 

(I) Each empty cell has either one or two candidates.
(II) Each integer in [11- 1] appe釦·s as a candidate either once or

twice over the first row. 
(III) If an int巴ger k appears as a candidate once, say in (I, j), 

then (1, j) has k as the only candidate. Otherwise, that is, if
k appears as a candidate twice, say in ( 1, j) and (1, j'), then
both cells have two candidates respectively. 

Fig_ure 2 (c) illustrates these conditions. (I) We see that each 
empty cell has either one or two candidates. (II) The integers 
from 1 to 5 appear as candidates once or twice. (III) The integers 
3 and 4 appe創・only in (1,5) and (1,3), respectively. Th巴se two 
cells have exactly one candidate. On the other hand, the integers 
1, 2 and 5 appear twic巴 over the remaining empty cells, that is 
( 1, 1 ), ( 1, 2) and ( 1, 6). These cells have two candidates. 

We do not construct S explicitly. Instead, we construct a 
graph that represents all l;lppearing candidates, which we call the 
column-candidate graph (CC-graph). In the CC-graph, there is 
a vertex Vj,k whenever a cell ( l ,j) has a candidate k, and there is 
an edge b巴tween v i,k and vi' ,k’whenever they are “incompatible”； 
we say that two di仔er巴nt vertices Vj,k and vj',k’are incompatible
if we cannot assign k to the cell ( 1, j) and k' to the cell ( l ,  j') at 
the same time. This occurs when and only when eith巴r j = j’ 

or k = k’ holds. We also include the isolated vertex v11 N,11 in the 
graph, the vertex for the highest building at the cell ( 1, n - N). A 
vertex is regarded as an integral point on the 2D plane and an edge 
is drawn along with a grid line. In Fig. 3, we show the CC-graph 
that is constructed from the example of Fig. 2 (c). 

Due to the conditions (I) to (Ill), the degree of each vertex Vj,k
is either F巴ro or two. Hence, the CC-graph consists of isolated 
vertices and cycles. The length of every cycle is even since it 
consists of an alternation of horizontal and vertical edges. 
Claim 1. The independence number of the CC-graph is 11. 
ProoよFor every column j E [n], if there is only one vertex, then 
it is isolated, and it is included in every MIS. Otherwise，しe., if 
there are two vertices, they are included in an even cycle, and thus 
one of them is included in every MIS. Since exactly one vertex is 
chosen from a column and there are n columns, the independence 
number is n. ロ
Claim 2. Let l denote the collection of M/Ss in the CC-graph for 
a certain S，αnd A denote the collection of all-different assignabl e 

assignments of intege，古川 ［n] to the 11 cells in the J暗r
l and A have one-to-one correspondence. 
PmoよLet us denote an arbitrary MIS by {vi,k,, . .. , v川，）. Each 
ki (j E [n] \ {n - NJ) is assignable to an empty cell (I, j), whereas 
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Fig. 4 Overvie岬 of the CC-graph layout. 

Xp, 

-'p, 

-'p, -'p, 

Fig.5 The 5×5 component P(xp,, -'p, ). 

the integer k11_N = n is already assigned to ( l ,  n - N) by S. From 
the construction of S, ki does not appear in the second row to 
the 11-th row of the column j, and the integers k1, ... , k11 創·e all­
different. Hence, we have an all-di仔erent assignable assignment, 
by assigning k i to ( 1, j). The converse is immediate. 口

Following this claim, the remaining task is to show the way to 
construct the CC-graph from the given SAT instance so that the 
SAT instanc巴 is NAE-satisfiable i仔 th巴re is an MIS in the CC­
graph such that th巴Building condition is satisfied. 

2.3 Construction of the CC-Graph 
In Fig. 4, we overview how we lay out t_he CC-graph on the 

2D plane. We construct the CC-graph so that there are exactly N 
cycles, each of which is the “gadget” for a Boolean variable in 
the SAT instance. Two or three cycles cross each other intricately 
in a certain part of the 2D plane, which is the gadget for a 2- or 
3-clause. The clause gadgets are indicated by bold squares.

The cycle for a Boolean variable·xp passes a vertex at (11 N + 
p, p); see the lower-right p紅t of Fig. 4. It goes into and out of the 
clause gadgets that include Xp, with hor ontal and vertical edges 
being alt巴mat巴d.Figure 4 assumes that x1 appears in C 1, CM and 
a certain other clause. 

The M clause gadgets are allocated in a stair-like way, as in 
Fig. 4. The gadgets are different between 2-clauses and 3-clauses, 
but both of them are built by connecting copies of a certain com­
ponent. The component is a subgraph in a 5×5 subgrid, which is 
shown in Fig. 5. Denoted by P(xp,, xp,), the component contains 
a part of the cycle for xp , and a part of th巴 cycle for x，，，・ Note that 
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Fig. 6 The gadget for a 2-clause (x1,, ,-'p, }. 
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the lower-left vertex is isolated. 
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x,,, 

The gadget for a 2-clause (xp1, xp,) is a subgraph in a 10 × 10 

subgrid, which is constructed by connecting two copies of the 

component, P(xPI' xp,) and P(x,,,, Xp1 ), in the way of Fig. 6. 

The gadget for a 3-clause (xPI' xp,, x1,,) is a subgraph in a 

30 × 30 subgrid, which is constructed as follows; First we deconi­

pose the clause into three 2-clauses, that is (xPI' Xp,l, (xPI' x,,,) 
and (xp,,Xp,}, Then we connect the gadgets for the three 2-

clauses in the way of Fig. 7. The resulting gadget is contained 

in a 30 × 30 subgrid as it is mad巴of three 2-clause gadgets. 

We see that the CC-graph is contained in the n × n grid, where 

11 = IOICC2l l + 301C(3)1 + N + I. 

Obviously, the partial Latin square S that corresponds to the 

CC-graph constructed in this way satisfies the conditions (I) to

(Ill). 

2.4 Connection between SAT and SLBP 

Let us establish one-to-one correspondence between a truth as­

signment and an MIS. An MIS is the union of MISs over the 
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(xp,, -'p,) = (F, F) (x,,,, x,,,) = (T, F) 

（λp， ，λp,) = (F,T) （λPE・λpュ）＝（T,T)

Fig. 8 Which buildings can be seen in the 5×5 component. 

connected components. An isolat巴d vert巴x belongs to every MIS. 

An even cycle has two MISs. A horizontal edg巴in the cycle is 

either on the upper or lower side of the rectilinear polygon that 

th巴cycle makes. For example, in Fig. 3, we see three horizontal 

edges. The edges (viムv2,2) and (v2,s, v6,s) are on the upper sid巴

of the polygon, while (v1,1, v6,1) is on the lower side. Concerning 

the MISs, one easily sees the following; 
・ One MIS consists of the left endpoints of the upper-sided

horizontal edges, and the right endpoints of the lower-sided

horizontal edges; in Fig. 3, it is (v1ムV2ふV6,i),
• The other MIS consists of th巴right endpoints of th巴upper­

sided horizontal edges, and the left endpoints of the lower­

sided horizontal edges; in Fig. 3, it is (v2,2 , V6ふV1,1}, 
Associating the MISs with the truth values, we call the former 

the true MIS, and the latter the false MIS. Since one of them 

belongs to an MIS of the entire CC-graph independently from cy­

cle to cycle, there are 2N MISs in the CC-graph, each of which 

corresponds to a truth assignment 目

The clause gadgets are composed of copies of the 5 × 5 com­

ponent of Fig. 5. The clause gadgets加·e allocated in a stair-like 

way, and within each gadge( copies of the component are allo­

cated also in a stair-like way. Observe that the “buildings” we can 

see from the left 巴nd制巴only ones in the clause gadgets and the 

high巴st building at ( 1, 11 - N). We cannot see any other building. 

For a component P(xp1, xp, ), Fig. 8 shows which buildings can 

be seen when we set (xPI' xp,) = (F, F), (T, F), (F, T) and (T, T), 

respectively. In each figure, the shade indicates v巴rtices in th巴

corresponding MISs. A vertex conesponds to a building. In p紅－

ticular, an upper vertex corresponds to a higher building. Recall 

that a building hides any lower buildings on the right side from a 

viewer on the left side. Buildings that can be seen by th巴viewer

創·e indicated in boldface. The point is that we see two buildings 

only when (xPI' Xp， ）ニ（T, F), and in the other cases, we se巴thre巴

buildings. 

Then in Table 1, we show the number of buildings that can 
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Table 1 The number of buil《lings that can be seen in a clause gadget. 
(2・clause) (3・clause)

x,, x,, Number x,, X ,, X >J Number 
F F 6 F F F 18 
F T· 5 F F T 16 
T F 5 F· T F 16 
T T 6 F T T 16 

T F F 16 
T F T 16 
T T F 16 
T T T 18 

be seen in a clause gadget for every truth assignment. At least 5 

( = 3 + 2) buildings are seen in a 2-clause gadget, and at least 16 

( = 5 + 5 + 6) buildings are seen in a 3-clause gadget. Observe that 

buildings of the smallest numb巴r are seen when and only when 

the clause is not-all-equal under the assignment. 

Over the first row, at least SIC(2)1+ 161CC3li+ 1 buildings are seen 

regardless of a truth assignment, where the last term is due to the 

highest building at (l , n - N). This lower bound is equal to b. It 

is tight and achi巴ved only by a truth assignment such that build­

ings of the smallest numb巴r are seen in the respective gadgets. 
Therefore, there is a solution to the SLBP instance i仔there is a 

truth assignment for the SAT instance und巴r which every clause 

is not-all-equal. 

To construct the SLBP instance, we hav巴 only to lay out the 
clause gadgets in th巴 manner of Fig. 4 and then to connect them 

by introducing the variable gadgets. The transformation time is 
clearly polynomial with respect to the size of the SAT instance. 
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