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Abstract A Latin square is a complete assignment of [r] = {1,...,n} to an » x n grid such that, in
each row and in each column, each value in [n] appears exactly once. A symmetric Latin square (SLS) is
a Latin square that is symmetric in the matrix sense. In what we call the constrained SLS construction
(CSLSC) problem, we are given a subset F of [n]3 and are asked to construct an SLS so that, whenever
(i,4,k) € F, the symbol k is not assigned to the cell (¢,5). This paper has two contributions for this
problem. One is proposal of an cfficient local search algorithm for the maximization version of the problem.
The maximization problem asks to fill as many cells with symbols as possible under the constraint on
F. In our local search, the neighborhood is defined by p-swap, i.e., dropping exactly p symbols and then
assigning any number of symbols to empty cells. For p € {1,2}, our neighborhood search algorithm finds
an improved solution or concludes that no such solution exists in O(nP*!) time. The other contribution is
to show its practical value for the CSLSC problem. For randomly generated instances, our iterated local
search algorithm frequently constructs a larger partial SLS than state-of-the-art solvers such as IBM ILOG
CPLEX, LOCALSOLVER and WCSP.
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1. Introduction

We address the constrained symmetric Latin square construction (CSLSC') problem. Let
n > 2 be an integer. We denote [n] = {1,...,n}. Consider assigning given n symbols to
an n x n grid of cells. We represent the symbols by n integers of [n]. For any ,j € [n], we
denote the cell in the row % and in the column j by (4, j). We represent a partial assignment
of [n] to the grid by a subset S of [n]?, where the membership (4, j, k) € S indicates that the
symbol k is assigned to the cell (i, j). We assume (3, 7) # (¢, §') for any (4,5, k), (¢, 5, k') € S
in order to prevent a duplicate assignment. Accordingly |S| < n? holds. We call S a partial
Latin square (LS) if what we call the Latin square condition is satisfied; the condition
requires that, in each row and in each column, every symbol should appear at most once.
In other words, for any (z,7,k), (i,5', k") € S, at least two of i # ¢', j # j' and k # Kk’ hold.
The S is a partial symmetric Latin square (SLS) if it is symmetric in the matrix sense, i.e.,
(1,3,k) € S implies (j,4,k) € S. In particular, partial LS and SLS are called complete LS
and SLS respectively if they are complete assignments.

Now we are ready to formulate the CSLSC problem.

Problem CSLSC
Input: An integer n > 2 and a subset F of [n]3.

Output: Decide whether there exists a complete SLS S such that SN EF = 0. If yes,
provide such S.
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We call F a forbidden set and each entry (i,7,k) in F' a forbidden entry. It prohibits us
from assigning the symbol & to the cell (¢, ). The CSLSC problem is NP-hard in general [6]
and has strong applications in sports scheduling, as we mention in Section 2. In this paper
we mainly consider the maximization version of the problem. We call it the MazCSLSC
problem, which is summarized as follows.

Problem MaxCSLSC
Input: An integer n > 2 and a subset F' of [n]?
Output: A partial SLS S of the maximum cardinality such that SN F = (.

We have two contributions in this paper. One is an algorithmic result, that is pro-
posal of an efficient local search for the MaxCSLSC problem. The other contribution is
a computational result that shows the practical value of the local search for the CSLSC
problem.

Local search is a well-known framework of approximation algorithms for hard combina-
torial problems (1, 13, 30]. It is regarded as repetition of a neighborhood search algorithm;
given a solution S, the algorithm outputs an improved solution in the neighborhood if one
exists or concludes that no improved solution exists. The neighborhood of S in general is
defined as the set of solutions that are obtained by performing “slight” modification on S.
For this slight modification, we take up p-swap, which is an operation of dropping exactly p
elements from S and then adding any number of elements to S. We call the neighborhood
defined by p-swap the p-neighborhood. For p € {1,2}, we propose a p-neighborhood search
algorithm that runs in O(nP*!) time. The data structure is based on Andrade et al.’s local
search for the maximum independent set problem [3]. We emphasize that, however, our
work should not be its simple application.

We develop a metaheuristic algorithm based on the iterated local search that exploits
the proposed efficient local search. The iterated local search is a metaheuristic framework
that attempts to find good solutions by repeating a local search (possibly) many times. For
randomly generated instances, our metaheuristic algorithm frequently constructs a larger
partial SLS than exact IP and CP solvers from IBM ILOG CPLEX [21] and heuristic solvers
LOCALSOLVER [29] and WCSP [32], within the same time limit.

This paper is organized as follows. We describe the background of the research in
Section 2. After preparing terminologies and notations in Section 3, we explain the local
search algorithm in Section 4, mainly on the p-neighborhood search algorithms. Then we
present experimental results in Section 5 and conclude the paper in Section 6.

2. Background

We start the research on local search for LS completion-type problems, motivated by
constant-factor approximation algorithms for the partial LS extension (PLSE) problem
that were studied in [11, 15, 27]. This problem asks for a largest extension of a given partial
LS and is summarized as follows.

Problem PLSE
Input: An n x n partial LS L, represented by a subset of [n]3.
Output: A partial LS S of the maximum cardinality such that S O L.

Hajirasouliha et al. [15] showed that the local search based on p-swap is a (2/3 — ¢€)-
approximation algorithm, using a classical result on local search for the k-set packing prob-
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lem [20]. In [17], for p € {1, 2,3}, the author proposed a neighborhood search algorithm that
runs in O(nP™!) time. He also invented a generalization of 2-swap operation, Trellis-swap,
and proposed a neighborhood search algorithm that runs in O(n®®) time.

The MaxCSLSC problem is different from the PLSE problem in two points; the solution
should be symmetric, and the constraint is given by means of the forbidden set F', which
is an arbitrary subset of [n]?. As was done for the PLSE problem in [17], we reduce the
MaxCSLSC problem to the maximum independent set problem and utilize efficient local
search that is developed by Andrade et al. [3].

The problem of scheduling a single round robin tournament (SRRT'), which is a funda-
mental but indispensable issue in sports scheduling, is among the most significant applica-
tions of the CSLSC problem. Suppose that n is even. In SRRT, there are n teams, and
each team meets every other team exactly once; so it plays n — 1 games in all. The games
should be held in n — 1 time slots one by one. A typical SRRT scheduling problem asks for
an SRRT under such constraints as game constraints and home-away table [33]. many of
which prohibit us from making the match between teams ¢ and j in time slot k& for various
collections of (i, j, k).

An SRRT is represented by an n x n complete SLS. For each non-diagonal cell (z, )
(i.e., © # j), assign the symbol k to (7, 7) if teams ¢ and j meet in time slot k, and for each
diagonal cell (7,17), assign the symbol n to (4,7). In other words, we fill up the n x n grid
with symbols so that the symbol assigned to (4, j) indicates the time slot when teams 7 and j
play, while the symbol n in diagonal cells represents a dummy slot. Clearly it is a complete
SLS. Hence the SRRT scheduling problem is regarded as the CSLSC problem for a certain
forbidden set F'.

We dare to say that de Werra is among ones who started mathematical studies of
sports scheduling problems, back to the 1980s (e.g., [7]). Concerning the constrained SRRT
scheduling problem, constraint programming (CP) approach [18] and integer programming
(IP) approach [36] were examined in the first half of the 2000s. The problem itself is rather
fundamental, and many variants and extensions have been studied so far; e.g., carry-over
effect (COE) minimization [14, 35], home-away table (HAT) feasibility [5, 19, 31], double
round robin tournament problems such as traveling tournament problem (TTP) [8-10, 22].
There are some nice reviews for this research field [24, 33, 34].

In this paper we consider the MaxCSLSC problem, the maximization version of the
CSLSC problem. Since many applications require a complete SLS, it appears vain efforts to
find an approximate solution (i.e., a partial SLS) by local search. In fact, in the literature
of SRRT scheduling, constructive algorithms have been avoided since they may fall into a
locally maximal solution (called a “mature set” in [33]).

Even so, we claim that effective and efficient heuristic algorithms should be practically
meaningful due to the following two reasons. First, such an algorithm can serve as an initial
solution generator for exact solvers based on IP/CP. When we encounter a large and/or
hard instance of combinatorial optimization problems, it must be reasonable to try exact
solvers at first as their performance has become so high these days. The computation time
could be too long, but may be reduced if a better initial solution is input to the solvers [26].
Second, even though there is no guarantee that a heuristic algorithm delivers a complete
SLS, it may do so for some hard instances much faster than modern exact solvers. Therefore,
given a hard instance, there is some merit in trying a heuristic algorithm before running an
exact solver for a longer time. With these in mind, we develop efficient local search for the
MaxCSLSC problem.
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3. Preliminaries

Since we consider a partial symmetric assignment, we restrict our attention to the lower
triangular part of the n x n grid. Let U = {(3,,k) € [n]*: 4 > j}. We assume a forbidden
set F' to be a subset of U and consider constructing a solution among U \ F'.

We reduce the MaxCSLSC problem to the mazimum strong independent set (MazSIS)
problem and utilize the local search in [3]. A hypergraph, denoted by H = (V, E), consists of
a set V of vertices and a collection F of hyperedges, where each hyperedge in E' is a subset
of V. For two vertices v and w (v # w), v is a neighbor of w, or equivalently, v and w are
adjacent (to each other) if there exists a hyperedge e € E such that v,w € e. We denote
by N(v) the set of all neighbors of v. A strong independent set (SIS) in a hypergraph is a
subset of vertices that intersects any hyperedge in at most one element [4]; in other words,
no two vertices are adjacent to each other. The MaxSIS problem asks for a largest SIS in a
given hypergraph.

Given a forbidden set F', we construct a hypergraph H = (V, E) as follows. We set
the vertex set to V = U \ F. Note that each vertex (vi,vs,v3) in V is regarded as an
integral point in the 3D space. We define a hyperedge as a maximal subset of vertices such
that any two of them cannot belong to an SLS simultaneously. Specifically, the collection
E of hyperedges consists of what we call vertical edges (v-edges for short) and what we
call horizontal edges (h-edges for short). The term “vertical” or “horizontal” indicates the
direction in which the hyperedge stretches in the 3D space. Denoting by E¥®* and E"" the
collections of v-edges and h-edges respectively, we define E = EV** U E"*, For any i, € [n]
with ¢ > j, we denote by e¥* (4, j) the v-edge that contains all vertices (vy, vo, v3) with vy = ¢
and vy = j, that is,

e¥ (3,7) = {(v1,v2,v3) € Vi (01 =9) A (vg =)}

On the other hand, for any i,k € [n|, we denote by e"(i|k) the h-edge that contains all
vertices (v1, v2,v3) such that at least one of v; = ¢ and v, = 4 holds and v3 = k, that is,

e (ilk) = {(v1,v2,v5) € V1 (v =) V (v2 = 1)) A (vs = k) }.

We illustrate how vertices and hyperedges are distributed in the 3D space in Figure 1.
We see that there are 11 vertices, which are indicated by circles. H-edges are indicated by
polylines (e.g., a bold real line indicates an h-edge €"*(1|v3)), while v-edges are not depicted
to prevent the figure from being mess. The v-edge e**"(2,1) contains black vertices (i.e.,
(2,1,1), (2,1,3) and (2,1,4)), while the h-edge €"(3|2) contains shadowed vertices (i.e.,
(3,1,2), (3,3,2) and (4, 3,2)).

Each vertex (v1,vq,v3) is included in at most three hyperedges, that is, e (vy, vg),
e (vy|vg) and e""(va|vs); if vy = vy, then the latter two are identical. The sets E¥*" and
E"or are defined as E¥ = {e"*'(4,j) : i,j € [n], i > j} and EMr = {e""(i|k) : i,k € [n]}.
Since |E¥®| < n(n + 1)/2 and |E™| < n? we have an upper bound on the number of
hyperedges; |E| < n(3n + 1)/2. Hence |V| = O(n®) and |E| = O(n?).

Obviously a subset S of U represents an SLS that does not intersect with F' iff it is
an SIS in the hypergraph H = (V, E). Hereafter we concentrate on solving the MaxSIS
problem on H = (V, E). Here we show some elementary properties of H which are almost
clear from Figure 2.

Proposition 1 Two h-edges e"*"(i|k) and e""(i'|k) (i # ') intersect with at most one
verter.
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Figure 1: How vertices and hyperedges are distributed in the 3D space (n = 4)
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Figure 2: Illustration of Propositions 1 to 4

Proof. Assuming i > 7, we have e (i|k) N e (¢'|k) C {(4,7, k)}. O

Proposition 2 A vertez (1,7, k) has at most two neighbors among any h-edge e"°"(j|k) such
that j ¢ {i,i'}.

Proof. The vertex (i, k) is included in at most two h-edges, e"*(i|k) and e (¢’|k). Each
intersects e"'(j|k) with at most one vertex from Proposition 1. The intersecting vertices

are the only possible vertices in e"**(j|k) that are adjacent to (i,7, k). d

Proposition 3 A vertez (4,7, k) has at most one neighbor among any h-edge e"°"(j|k') such
that k' # k.

Proof. Among vertices in the 2D plane of vz = k/, the only possible neighbor of (3,7, k) is
(i,7, k). O

Proposition 4 A vertez (4,7, k) has at most one neighbor among any v-edge e**"(j, j') such

that (i,7') # (4,7)-

Proof. The only possible neighbor is (7, j', k). O
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We introduce notations and terminologies on local search for the MaxSIS problem. We
call an SIS in H simply a solution. Given a solution S, we call a vertex in S a solution
vertex and a vertex out of S a non-solution vertex. Let v denote a non-solution vertex. A
solution vertex in N (v) is called a solution neighbor of v. The number of solution neighbors
of v (i.e., |[N(v) N S|) is called the tightness of v. Since a hyperedge includes at most one
solution vertex and v is included in at most three hyperedges, the tightness is at most
three. When the tightness is t, we call v t-tight. In particular, a 0-tight vertex is called
free. The set of t-tight vertices is denoted by V;(S). The vertex set V' is partitioned into
V=SUW(S)uU - UVa(S). A t-tight neighbor of a solution vertex z is a t-tight vertex in
N(z).

For an integer p > 0, p-swap refers to an operation of dropping a subset D of S (|D| = p)
from S and adding any number of free vertices (with respect to S\ D) to S\ D so that the
resulting set continues to be a solution. The p-neighborhood of S is a set of all solutions
that are obtained by performing a p-swap on S. A solution S is called p-mazimal if the
p-neighborhood contains no improved solution S’ such that |\S’| > |S|. In particular, we call
a 0-maximal solution simply a mazimal solution.

4. Local Search

In this section, we present the main component algorithm of the local search, a p-neighborhood
search algorithm. Given a solution S, it computes an improved solution in the p-neighborhood
or concludes that no such solution exists. Once a p-neighborhood search algorithm is es-
tablished, it is immediate to design a local search algorithm that computes a p-maximal
solution; starting with an appropriate initial solution, we repeat moving to an improved
solution as long as the p-neighborhood search algorithm delivers one.

We present p-neighborhood search algorithms for p € {1,2} and show that the running
times are O(|S|) = O(+?) and O(|V|) = O(n®), respectively. The basic idea is borrowed
from Andrade et al.’s local search for the maximum independent set problem for an ordinary
graph [3]. However, our work is not merely a simple application of their work. They deal
with local search based on just (p,p + 1)-swap, that is, the operation of dropping p vertices
from the solution and adding p + 1 vertices to the solution, whereas the number of added
vertices is unbounded in our p-swap. Furthermore, if we applied their methodology as is,
then the time bound of the (p, p+1)-neighborhood search algorithm would be up to O(n?*?).

The strategy is more or less similar to [17] in which the author developed efficient p-
neighborhood search algorithms for the PLSE problem. For the MaxCSLSC problem, we
need trickier arguments to achieve the time bounds above.

We introduce the data structure in Section 4.1 and present p-neighborhood search algo-
rithms in Section 4.2.

4.1. Data structure

The data structure mainly consists of a 3D array of vertices and an ordering of vertices.
The notion of the latter is first introduced by Andrade et al. [3].

The 3D array is used to store the hypergraph H = (V, E). We denote a 3D array by C.
For each triple (vy, v2,vs) € U, if (v1,vq,v3) € V, then we let C[v1][v2][vs] have a pointer to
the vertex object, and otherwise (i.e., (vy, v, v3) ¢ V), we let it have a null value. We can
access the vertex in specified coordinates if it exists or decide that no such vertex exists in
O(1) time. The 3D array stores the hyperedge set E implicitly; the neighbors of (vy, vz, v3)
are among C'[v}][v2][vs)’-s, Clvy][vg][vs]-s and Clvy][ve] [vh] -s.

The ordering of vertices enables us to scan vertices of a particular type (e.g., solution
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vertices, free vertices) in linear time with respect to the number. We denote the ordering by
a bijection 7 : V' — [|V|]. In 7, every solution vertex is ordered ahead of all the non-solution
vertices, and the non-solution vertices are ordered in the non-decreasing order of tightness.
In each of the five sections (i.e., solution vertices and ¢-tight vertices for each t € {0, 1,2, 3}),
the vertices are ordered arbitrarily. We maintain not only 7 but also the inverse function
7! so that the i-th vertex, i.e., 771(4), can be accessed in O(1) time.

We maintain the following parameters during the execution of the local search.
Counters of numbers:

o #: the size of the current solution S.

e #,: the number of t-tight vertices with respect to S (¢t € {0,1,2,3}).

e #i(e): the number of 1-tight vertices in a hyperedge e € F.

e 7(v): the tightness of a non-solution vertex v ¢ S.

Pointers to vertices: If the corresponding vertex does not exist, then we let the pointer
have a null value.

e pso1(e): the pointer to the solution vertex in a hyperedge e € E.

e pi(e): the pointer to the “smallest” 1-tight vertex among a hyperedge e € F, with
respect to a fixed total order < on V. The total order < can be an arbitrary one
if we can search vertices in e in the ascending order in linear time. For example,
we can take the lexicographic order on coordinates. Note that < should be fixed
during the local search and is independent of the total order induced by .

Clearly the size of the data structure is O(n3). We can construct it in O(n®) time, as
preprocessing of local search. We show time complexities of some elementary operations.

(Maximality check) We can check whether the current solution is maximal or not in O(1)
time since it suffices to see whether #¢ = 0 or #¢ > 0.

(Scan of neighbors) We can scan all neighbors of a vertex in O(n) time by using the 3D
array C.

(Scan of solution vertices or t-tight vertices) We can scan all solution vertices or all
t-tight vertices in linear time with respect to their number by using the vertex ordering
and the parameters #;, and #;.

(Addition) We can add a free vertex v = (vq, v, v3) to the solution in O(n) time. Roughly,
we update 7 so that v falls into the solution vertex section. For each neighbor w, we
increase its tightness 7(w) by one and update 7 so that w falls into the appropriate
section. We also update the other parameters accordingly. The detail is described as
follows;

e Let u denote the first vertex in the section of free vertices in the current ordering,
that is, u = m 1(#s0 + 1). We update 7 by exchanging v and u, and let #so
#s0l + 1 and #g < #0 — 1. Now v falls into the section of solution vertices.

e For each hyperedge e € {e'* (v, vs),e ™ (v1|vs), €™ (va|v3)} that includes v, let
psol(€) ¢ v since v has become the only solution vertex among e. We search
all neighbors w € e (w # v) in the ascending order of <. Let w be t-tight. We
increase its tightness by one, that is, 7(w) + 7(w) + 1. We update the ordering
so that w falls into the section of (¢ + 1)-tight vertices, and let #; < #; — 1 an"

#i+1 < #e4a + 1. Furthermore, if 7(w) has become either one or two, then we do
the followings;

Case of 7(w) = 1: We let #,(e) < #1(e) + 1. If pi(e) is null or if w < p;(e), then
we let py(e) +— w.
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Case of 7(w) = 2: We let #;(e) + #1(e) — 1. If pi(e) = w, then we let p;(e) have
a null value.

(Drop) We can drop a solution vertex from the solution in O(n) time in the similar way
to the addition above.

4.2. p-Neighborhood search algorithms

Let us describe the key idea on how to achieve efficiency in p-neighborhood search. Assume
that a (p — 1)-maximal solution S is given. Hereafter we do not consider a p-swap such that
a dropped vertex is immediately returned to the solution since such a swap is degenerated
into a (p — 1)-swap, which is in vain; S is already (p — 1)-maximal.

Let D denote an arbitrary subset of S. Dropping D from S makes some vertices free.
Using our notation, they are vertices of V4(S\ D). This set consists of vertices of D and non-
solution vertices (with respect to S) whose solution neighbors are completely inclt ed in
D. We denote the set of vertices in the latter type by F'(D). Hence V5(S\ D) is partitioned
into V5(S'\ D) = DU F(D). We denote by H(D) the subgraph of H induced by F(D). A
set of vertices that are added to S\ D should be an SIS in H(D). This motivates us to
consider the MaxSIS problem on the subgraph H (D).

Let a(H (D)) denote the (strong) independence number of H(D), that is, the cardinality
of a MaxSIS in H(D). The point is that, for every searched subset D, we can determine
the independence number a( H(D)) in O(1) time and construct a MaxSIS in H(D) in O(n)
time.

The p-neighborhood search algorithm runs in the following way; it searches subsets D
of the current solution S such that |D| = p. If D with a(H (D)) > p is found, then the
algorithm constructs a MaxSIS I and halts. By this, we have an improved solution (S\D)UI.
If no such D is found, then the algorithm concludes that S is p-maximal. The running time
is linear with respect to the number of searched subsets D since a MaxSIS I is constructed
for at most one subset and we can add I to S\ D in O(n) time as |I| is bounded by a
constant, as we will observe later.

In the remainder of this section, we explain how to compute a( H(D)) in O(1) time and
to construct a MaxSIS in H(D) in O(n) time. We also mention how to search D efficiently.
4.2.1. Caseofp=1
Let S be a maximal solution. When p = 1, the dropped subset D is a singleton D = {z}
of a solution vertex x in S. Let us abbreviate F({z}) into F'(x) for simplicity. The subset
F(x) consists of 1-tight neighbors of z. Let us denote & = (zy, T2, z3). Since z is included in
at most three hyperedges, F'(x) is partitioned into at most three subsets according to which
hyperedge each u € F(x) belongs to;

F(z) = Ti(e" (z1]w3)) U T (e (22l23)) U T1(e* (w1, 72)),

where T;(e) denotes the set of ¢-tight vertices in a hyperedge e (i.e., Ty(e) = Vi(S) Ne). For
convenience, while we consider the case of p = 1, we represent the hyperedges by e;, e2 and
e3 as follows;

_ [ (" (z1|wa), " (zo|w3), € (w1, 22)) if 1 # @,
(61, €2, 63) - { (ellol‘($1|$3), (B’ ever(ml’ TZ)) if T = To. (1)
€)

When e = 0}, we assume Tj(e) = 0, #1(e) = 0 and p;(e) = NULL for convenience.
Consider the subgraph H(z) of H that is induced by F(z). The independence number
a(H(zx)) is at most three since at most one vertex can be picked up from each of the three
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subsets, T1(e1), T1(e2) and T1(e3). A MaxSIS should include a vertex from T} (e3) regardless
of which vertices in Ti(e;) U T1(e2) are included, due to the following lemma.

Lemma 1 A MazSIS in H(z) includes exactly one vertex from Ti(es) iff Ti(es) is non-
empty.

Proof. As mentioned above, an SIS I includes at most one vertex from a hyperedge, so
|I NTi(ez)| < 1. The necessity is obvious. For the sufficiency, each vertex in Ti(e;) U Ti(ez)
has at most one neighbor in e3, and the only possible neighbor is = (Proposition 4). Since
x ¢ Ti(es), no vertex in Ty(e;) U Ti(ez) is adjacent to one in Ti(e3). If an SIS I is a subset
of T1(e1) UTi(e2), then I is not maximal since we can add any vertex in T} (e3) to I. O

Next, we consider how many vertices in T;(e;) U Ti(ez) are included in a MaxSIS. The
number is at most two. Clearly it is zero iff both T3(e;) and Tj(e2) are empty. Whether it
is one or two is completely characterized by the following Lemma 2.

Lemma 2 Let my = |Ty(e1)| and my = |Ti(e)|. A MazSIS in H(z) includes exactly one
vertez from Ty(e1) U Ti(eq) iff one of the followin g conditions holds:
e max{mi, ma} > 1 and min{mi,my} = 0.

e m; = mgy = 1 and the only vertices in Ty(e;) an dTy(ez) are adjacent to each other.

Proof. The sufficiency is obvious. For the necessity, at least one of T1(e;) and Tj(eq) should
be non-empty, that is, m; and/or my should be larger than zero. If one is non-zero and
the other is zero, then we are done. Suppose that both are larger than zero and that
my > mo > 1 without loss of generality.

We show m; = my = 1 by contradiction. Suppose m; > 1. Let v denote any vertex in
Ti(ez). We claim that, in Tj(e;), there should be a vertex that is not adjacent to v; From
Proposition 2, v has at most two neighbors in e;. The z is one of them, and thus v has
at most one neighbor in Tj(e;). Since m; —1 > 1, there is a vertex in Tj(e;) that is not
adjacent to v, say w. Then there exists a MaxSIS I in H(z) such that {v,w} C I, which is
contradiction.

In this way, we have m; = my = 1. The only vertices should be adjacent to each other,
since otherwise there would be an SIS of size two. 1

Corollary 1 A MaxzSIS in H(z) includes exactly two vertices from Ti(ey) U Ti(e2) iff one
of the following conditions holds:

e max{m,my} > 2 and min{m,, me} > 1.

e m; =mgy = 1 and the only vertices in Ti(e;) andTi(e2) are not adjacent to each other.

Lemma 3 For z € S, we can determine the independence number a(H(z)) in O(1) time
an d construct a MazSIS in H(z) in O(n) time.

Proof. We present a constant-time algorithm to determine o(H(z)) in Algorithm 1. Recall
that the cardinality |7} (e)| is maintained by the counter #;(e). The p;(e) is the pointer to
the smallest 1-tight vertex in e in the sense of <. In particular, if #;(e) = 1, then p;(e)
should point to the only 1-tight vertex in e.

We can construct a MaxSIS in H(z) in O(n ) time; Starting with I = (), we add vertices
to I according to how Algorithm 1 flows. Specifically, when we pass Lines 3, 7, 9 and 11,
we decide the vertex to be added in the following way.

Line 3: We add any 1-tight vertex in T}(e3) to I.
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Algorithm 1 A constant-time algorithm to determine a(H (z))
1: a+ 0
2: if #(e3) > 0 then
3: a+—a+l > Lemma 1
4: end if

5: if max{#i(e1),#1(ez)} > 1 then

6.

7

8

9

if min{#(e1), #1(e2)} =0 then

a+—a+1 > 1st condition in Lemma 2
else if #;(e1) = #1(e2) =1 and py(e;) and p,(eq) are adjacent then
: a+—a+1l > 2nd condition in Lemma 2
10. else
11: aé—a+2
12: end if
13: end if

14: return o

Line 7: We add any 1-tight vertex in e € {ej, ez} to I such that 7j(e) is non-empty (i.e.,
#1 (6) > 0)

Line 9: We add either p;(e1) or py(e2) to I.

Line 11: The construction is analogous to the proof of Lemma 2. Let us assume #i(e;) >
#1(e2) > 1 without loss of generality. First, we pick up any 1-tight vertex v in 7 (ep).
In Ti(e;1), there is at least one 1-tight vertex, say w, that is not adjacent to v. We add
{v,w} to I.

The constructed I is a MaxSIS. The construction can be done in O(n) time since a
hyperedge e contains at most n vertices and thus it takes O(n) time to choose a vertex to
be added from e. O

Theorem 1 Given a mazimal solution S, we can find an improved solution in the 1-
neighborhood or conclude that S is 1-mazimal in O(n?) time.

Proof. We see |S| < n(n + 1)/2. We can scan all solution vertices in O(n?) time. For each
x € S, the independence number a(H (z)) of the subgraph H(z) is decided in O(1) time,
and if a(H (z)) > 2, then we construct a MaxSIS in O(n) time from Lemma 3, by which we
have an improved solution. To update the solution S, it takes O(n) time to drop z from S,
and O(n) time to add the vertices in the MaxSIS to S\ {z} since the size is at most three.
The overall time complexity is O(n?). O

Before going to the case of p = 2, we give a necessary condition of 1-maximality.

Theorem 2 Let S be a 1 mazimal solution. For any solution vertezx (z1, T2, z3) in S, let

e1, ey and es be the hyperedges defined by Equation (1), mi = |Ti(e1)|, me = |T1(ez)| and

ms = |T1(e3)|. Then we have the following;

e KEither m; +my = 0 or ms = 0 holds.

e If m; + my > 0, then either max{mj, ms} < 1 or min{m;, my} = 0 holds. Furthermore,
if m; = my = 1, then the only vertices in T3 (e;) and 7}(e;) are adjacent to each other.

Proof. If they do not hold, then we would have an improved solution by 1-swap; the first
condition is due to Lemma 1 and the second condition is from Corollary 1. d
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4.2.2. Case of p=2

Let S be a 1-maximal solution. There are (lgl) = O(n*) pairs of solution vertices that are
candidates to be dropped. Nevertheless, we have only to search certain O(n?®) pairs among
them due to the following lemma, which provides a necessary condition on the existence of
an improved solution.

Lemma 4 (Implications of Lemmas 1 to 4 in [3]) Let z,y,u,v, w be vertices such that
z,y € S andu,v,w ¢ S. If (S\ {z,y})U{u,v,w} is a solution, then we have the followings:
(1) u, v and w are not adjacent to one another;

(2) one in {u,v,w} is 2-tight and adjacent to both x and y,

(3) another in {u,v,w} is adjacent to T, maybe to y, and to no other vertex in S;

(4) the other in {u,v,w} is adjacent toy, maybe to x, and to no other vertex in S.

By (2), it suffices to search such pairs of solution vertices that have the same 2-tight neighbor
in common. The number of the pairs is O(n?) since the number of 2-tight vertices is O(n?).
Furthermore, we can scan all the pairs in linear time with respect to the number of 2-tight
vertices, using the vertex ordering of the data structure.

As in Lemma 4, we denote solution vertices by x and y, and non-solution vertices by u,
v and w. We assume that u is 2-tight and is adjacent to both z and y. The 2-tight vertex
u should be included in an improved solution. The tightness of v and w is either one or
two, and neither of them should belong to {u} U N(u); they should be among the vertex
set ', which is defined as F' = F(z,y) \ ({u} U N(u)). We illustrate in Figure 3 where the
vertices in F” are distributed in the 3D space. (The definitions of the two vertices v’ and v’
will be given later.) The vertices in F” are among hyperedges that are represented by bold
real polylines. We denote by e, and €}, (resp., e, and e;) the two hyperedges that include z
(vesp., y) and that are represented by bold real polylines. We give their formal defin  ns
as follows.

(Case of 3 = Y3)

the h-edge e such that = € e and u ¢ e if z; # @,

® 0 if 21 = 2y,
el = e"(x1, T2),
. the h-edge e such that y € e and u ¢ e if y; # ys,
Y 0 if y1 =y2,
e; = CVEF(yla yz)-

(Case of z3 # y3) Without loss of generality, we assume that z and u are connected by a
v-edge and that y and u are connected by an h-edge. We denote the latter h-edge by €'.
The e, is defined as the h-edge that includes @ and that is parallel (not skew) to e’.

, { the h-edge e such that = € e and e # e, if 21 # T3,
€y =

(D if Ty = T2,
€y = ever(yla y?)a
o = the h-edge e such that y € e and u ¢ e if Y1 # yo,
v 0 if Y1 = ya.

One can easily verify that u is included in none of {e,, €}, ey, e;}. It is possible that one

hyperedge in {es, e} and one in {e,, e} intersect. When in this case, it is e, and e, that
intersect.
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A/IU ! U 'f\
€x 7 x T /

(333 = ys) (z3 # ya)

Figure 3: How the 2-tight vertices v and «' and two solution vertices  and y are distributed
in the 3D space

We denote by H' the subgraph induced by F’. The problem of finding an improved
solution is reduced to the MaxSIS problem on H’. If there is an SIS I with |I| > 2, then we
have an improved solution (S'\ {z,y}) U (I U {u}).

First, we observe that F” includes at most one 2-tight vertex; hence, F” consists of 1-tight
vertices and at most one 2-tight vertex.

Lemma 5 There is at most one 2-tight vertex among F”.

Proof. Any 2-tight vertex in F’ should be at the intersection point of a hyperedge from
{ez, ez} and a hyperedge from {e,, e;}. The only pair of hyperedges that can intersect is
{ex, ey} O

Lemma 6 Whether F' includes a 2-tight vertez or not can be decided in O(1) time.

Proof. The coordinates of the unique candidate u’ are decided in O(1) time. We can conclude
W e F ifu eV and 7(u) =2 O

Suppose that F' includes a 2-tight vertex u’. The vertex set F” is partitioned into subsets
as follows; F' = T'(e;) UTi(e;) UTi(e,) UTi(e,) U {u'}. When we count the independence
number «(H’), we take u’ into account only when it is included in all MaxSISs. Whether
we are in the case or not is characterized by the following Lemmas 7 and 8.

Lemma 7 Suppose x3 = y3 and that there is a 2-tight vertez v’ in the subgraph H'. The v’
is included in all MazSISs in H' iff Ti(es) = Ti(ey) = 0.

Proof. For the necessity, if one of T(e,) and Ti(e,) is non-empty and includes a 1-tight
vertex v, then we would have a MaxSIS that does not include u'; Let I denote a MaxSIS
that includes u’. We see that (I \ {u'}) U {v} is also a MaxSIS. The sufficiency is obvious.

a

Lemma 8 Suppose x5 # ys and that there is a 2-tight vertez u' in the subgraph H'. The v’
is included in all MazSISs in H' iff T1(e,) = O and either (i) or (ii) holds:

(i) Ti(ex) =0, Tu(el,) # 0, and T1(€l,) includes a vertex that is not adjacent to u'.

(ii) |Ti(es)| = |Ti(€e,)| =0 or 1.
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Proof. Let us denote m; = |Ti(e;)| and my = |Ti(e,)|. From the necessary condition of
l-maximal solution in Theorem 2, we have max{m;,my} <1 or min{m;, my} = 0. We are
in one of the four cases with respect to m; and my: (a) m; > 1 and my =0, (b) m; =0
and my > 1, (¢) my =mg =1, and (d) m; =m, =0.

For the necessity, T} (e,) should be empty since, if not so, we could construct a MaxSIS
that does not include «’ by exchanging v’ and any vertex in 73 (e,). Among (a) to (d) above,
the case (a) is not possible due to the same reason. Thus we are in (b), (c) or (d). Suppose
that we are in (b). If my = 1, then the only vertex in T;(e’,) should not be adjacent to u’
(as v’ in the right of Figure 3) since otherwise we could construct a MaxSIS (I\ {u'})U{v'}.
If my > 1, then there is a vertex in 7j(e},) that is not adjacent to «’ since at most two
vertices in e/ are adjacent to ©' and one of them is z from Proposition 2. This observation
is summarized as (i). The cases (c) and (d) are summarized as (ii).

For the sufficiency, suppose T)(e,) = 0. If we are in (i), or if we are in (ii) and m; =
my = 0, then it is obvious that u’ is included in all MaxSISs. Suppose that we are in (ii)
and m; = my = 1. Let v (resp., w) be the only vertex in Tj(e;) (resp., Ti(€})). From
Proposition 2, the vertex w has at most two neighbors among e;. One of them is z, and
from Theorem 2, the other should be v. The vertices w and « are not adjacent to each other.
We see that all MaxSISs include exactly two vertices from Ti(e;) U Ti(e) U Ti(ey) U {u'}
and that they should be v’ and w. A

Lemma 9 For a 2-tight vertez u, let z and y be its solution neighbors. We can determine
the independence number a(H') in O(1) time and construct a MazSIS in H' in O(n) time.

Proof. We summarize a constant-time algorithm to determine a(H’) in Algorithm 2. In
Lines 3 and 21, it checks whether the conditions of Lemmas 7 and 8 are satisfied respectively.
The check be done in O(1) time. When the conditions are satisfied, we do not take the
hyperedges e, and e, into account any longer since no vertex there belongs to a MaxSIS.
Let I denote a MaxSIS in H' The set I U {u} is a MaxSIS in H(z,y). We have
[TU{u}| = a(H')+1 < 4. As we did for the case of p =1, we can construct I in O(n) time
according to how Algorithm 2 flows. We omit the detail as it would be too lengthy and is
not so difficult. ]

Theorem 3 Given a 1-mazimal solution S, we can find an improved solution in the 2-
neighborhood or conclude that S is 2-mazimal in O(n®) time.

Proof. Since there are at most n® 2-tight vertices, we can scan all 2-tight vertices in O(n?)
time by using the vertex ordering. For each 2-tight vertex u, its solution neighbors z
and y can be decided in O(1) time by using pointers pg (e (u;|u3)), psor(€MF (ug|us)) and
Psol (€% (u1,u2)). The independence number a(H’) is decided in O(1) time by Lemma 9.
We have a(H(z,y)) = a(H')+ 1. If a(H(z,y)) > 3, then we construct a MaxSIS. This can
be done in O(n) time, also due to Lemma 9. It takes O(n) time to drop z and y from S,
and it takes O(n) time to add the vertices in the MaxSIS to S\ {z,y} since the size of the
MaxSIS is at most four. The overall time complexity is O(n?). ]

Before closing this section, we describe how to find a 2-maximal solution. Let S be
an arbitrary initial solution. If S is not maximal, then we construct a maximal solution
by adding free vertices to S repeatedly until no free vertex is left. If S is not 1-maximal,
then we construct a 1-maximal solution by conducting the 1-neighborhood search until S
becomes 1-maximal. We then construct a 2-maximal solution from S by performing the 2-
neighborhood search. During the search, if an improved solution is found, then we go back
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Algorithm 2 A constant-time algorithm to determine a(H’)

1:a+0
2: if x3 = y3 then
3 if the condition of Lemma 7 is satisfied then
4: aé—a+1
5. else if max{#(e,),#1(ey)} > 1 then
6: if min{#,(e.), #1(e,)} =0 then
7: a+—a+1
8: else if #;(e;) = #1(e,) = 1 and py(e;) and p;(e,) are adjacent then
9: a+—a+1
10: else
11: a+— a+2
12: end if
13: end if
14 if #i(e},) > 1 then
15: a+—a+1
16: end if
17: if #1(e;) > 1 then
18: a+—a+1
19: end if
20: else
21: if the condition of Lemma 8 is satisfied then
22: a+—a+1
23: if #i(e!) > 1 then
24: a+—atl
25: end if
26: else
27: if max{#i(e;),#1(e.)} > 1 then
28: a+—a+l > At most one vertex in 7T'(e;) U T1(e},) belongs to a MaxSIS
from Theorem 2
20: end if
30: if #,(e,) > 1 then
31 a—a+1
32: end if

33: end if

34: if py(e}) is not null and (#,(e,) > 2 or u and py(e;) are not adjacent) then

35: a a+1 v In the right of Figure 3, any 1-tight vertex except the white one
belongs to H'

36: end if

37 end if

38: return o

to the 1-neighborhood search since the improved solution may not be I-maximal. Otherwise,
the current solution is 2-maximal.
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5. Computational Studies

In this section, we demonstrate how practically meaningful the proposed local search is. For
this, we develop a metaheuristic algorithm based on iterated local search (ILS) [13]. This is
just a heuristic algorithm for the MaxCSLSC problem, but constructs a larger partial SLS
or even a complete SLS (i.e., an optimal solution) for random instances faster and more
frequently than exact IP and CP solvers from IBM ILOG CPLEX [21] and two general
heuristic solvers, LOCALSOLVER [29] and WCSP (32].

We describe the ILS algorithm in Section 5.1 and experimental settings in Section 5.2.
We then show computational results in Section 5.3.
5.1. TIterated local search

The ILS algorithm iterates our local search until a certain termination condition is satisfied.
It is sketched as follows.

1. Generate a maximal solution Sy. Let S* + Sy.

2. Compute a 2-maximal solution S by local search, using Sy as the initial solution.
3. If |S| > |S*|, then let S* + S.

4. If the termination condition is satisfied, then output S* and halt.

5. Generate a maximal solution Sy by “kicking” S*. Go to 2.

We give some remark to the algorithm. In 1, we generate Sy by a constructive algorithm
named G5 in [2], which is a “look-ahead” minimum-degree greedy algorithm for the maxi-
mum independent set problem for an ordinary graph. Regarding each hyperedge as a clique,
one can easily convert the hypergraph into an ordinary graph. We confirmed in [16] that
G5 is among the best constructive algorithms for the PLSE problem, which is a version of
the MaxCSLSC problem that does not require symmetry of Latin square. The S* denotes
the incumbent solution. In 4, we terminate the algorithm if the computation time exceeds
10 seconds; we observe that, in our preliminary experiments, most of the improvement is
achieved in 10 seconds.

For “kicking” in 5, we employ the mechanism that the author used for the PLSE problem
in [17]. Let us review it briefly. Copying S* to Sy at first, we forcibly add £ non-solution
vertices into Sy, where the natural number & is chosen with probability 1/2%. Specifically,
we repeat the following steps k times; we pick up a non-solution vertex u, drop its solution
neighbors from Sy, and add u into the solution. After the addition, if there are free vertices,
then one is chosen at random and added into Sy repeatedly until Sy becomes maximal.

For i € {l,. ,k}, the i-th vertex to be added is chosen randomly from all the non-
solution vertices, except the case of ¢ = 1. The first vertex is chosen from P, which is
defined as the set of non-solution vertices such that there is a solution neighbor that has at
least one 1-tight neighbor;

P={ueV\Sy: Jz€ Nu)NSy, Je€E, zce, Ti(e) # 0}

Note that P can be empty.

When P # (), we pick up the first vertex from P as we would like to avoid trivial cycling.
Suppose adding a non-solution vertex u that is not in P. Before the addition, all solution
neighbors of u should be dropped, that is, the nodes in N(u) N Sp. As they do not have
1-tight neighbors, it is possible that u is the only vertex that becomes free. In such a case,
only u is added into the solution. A solution generated in this way faces higher risk of
cycling; we may have the solution Sy again by a subsequent 1-swap such that u is dropped
and the nodes in N(u) NSy are added.
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Based on this observation, when P # (), we pick up the first vertex to be inserted from
P. Furthermore, aiming at diversifying the search, we choose the one that has been outside
the solution for the longest time. This strategy is called soft-tabu and employed in the ILS
algorithm for the maximum independent set problem [3]. In the case of P = (), we use the
set of all non-solution vertices instead of P. We confirm that this strategy works effectively
in our preliminary experiments.
5.2. Experimental settings

We introduce two types of benchmark problems, which we call RAND and SLSWH. Recall
that a MaxCSLSC instance is given by a forbidden set F'. Since V = U \ F', deciding F is
equivalent to deciding the vertex set V.

RAND: An instance is given by a random vertex set V. We generate an instance by
choosing V randomly. Specifically, we choose |7|U|| vertices randomly from U, where r
is a parameter between 0 and 1.

SLSWH: It is an abbreviation of “symmetric Latin square with holes”. An SLSWH in-

stance is given by a partial SLS L that is generated by removing symbols from a complete
SLS L* that is arbitrarily taken. The problem asks to construct a complete SLS by filling
all “holes” (i.e., empty cells) with symbols.
To generate L, we construct L* by the polygon method [25] and then shuffle rows (along
with columns) and symbols. We then remove symbols from randomly chosen cells so
that there remain |(1 — v)n?| symbols, where 7 is a parameter between 0 and 1. Once
L is given, the forbidden set F'is automatically determined by:

F={(i,4,k) € U: 3,5, k) € L, {i,5} {5 H + [{k} 0 {K"}] > 2}

Since V = U \ F, it is expected that, the larger - is, the larger the vertex set V is.

An optimal solution of a RAND instance is not necessarily a complete SLS, whereas that
of an SLSWH instance is always a complete SLS. For each grid length n € {30, 40,50}, we
generate instances by changing the parameters r (for RAND) and v (for SLSWH). For a
fixed n, intuitively, an instance that has a large (resp., a small) portion of U as the vertex
set V should be under-constrained (resp., over-constrained) in the sense that the forbidden
set F' is small (resp., large). To grab this intuition, let us observe extreme two cases: when
V is the largest (i.e., V = U and F = (), any complete SLS is an optimal solution, and
when V is the smallest (i.e., V =0 and F' = U), no feasible solution exists. For RAND, an
instance generated by a large r must have a complete SLS as its optimal solution, whereas
one generated by a small r may not do so. As mentioned above, an optimal solution of an
SLSWH instance is a complete SLS, but hardness for finding it may change along with the
parameter . In other words, we may observe phase transition of hardness, as is observed
in other LS completion-type problems; e.g., the PLSE problem [12], the Sudoku completion
problem [28]. An instance generated by an intermediate 7 is expected to be harder than
one generated by a large v (i.e., under-constrained) or one generated by a small v (i.e.,
over-constrained)

We compare the performance of the ILS algorithm with two exact solvers and two heuris-
tic solvers. For the exact solvers, we employ IP and CP solvers from IBM ILOG CPLEX
(ver. 12.6) [21]. We denote the IP and CP solvers by CPX-IP and CPX-CP respectively.
We employ straightforward IP and CP formulations used in [12], except that, in CP, we
minimize the number of empty cells. In order to admit the CP solver to assign no symbol
to a cell (4,7), we set its domain to [n] U {¢;;}, where ¢;; is a peculiar value to (4, 7) and
represents that no symbol is assigned. For the heuristic solvers, we employ LOCALSOLVER
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Table 1: Results on RAND instances: how the solvers improve the initial solution Sy

n r=|V|/[U[] [So] | ILS LSSOL WCSP CPXIP CPX-CP
30 0.8 4505 | #14.5 133 144 0.7 145
0.7 448.9 | x16.1 145  14.1 1.4 16.1
0.6 446.0 | ¥19.0 165  14.0 2.3 15.9
0.5 4434 | ¥21.6 179 132 2.1 13.0
0.4 4387 | 26.0 205 125 3.0 11.0
0.3 4296 | 317 255 119 8.7 13.1
0.2 4104 | 38.6 326 132 21.9 19.3
40 0.8 7974 | x22.6 177 212 0.0 17.3
0.7 7959 | x24.1 183 198 0.0 12.8
0.6 7927 | ¥27.3 203 19.6 0.0 8.1
0.5 787.7| 32.3 235  18.8 0.0 5.4
0.4 780.8 | 38.5 281  15.0 0.0 4.3
0.3 7705 | 45.1 334  16.3 0.0 5.9
0.2 746.1| 58.1 455  17.2 0.0 10.9
50 0.8 12444 | +30.6  18.1  27.9 0.0 12.0
0.7 1241.7 | #33.3 190 275 0.0 4.4
0.6 1237.0 | ¥38.0 225 272 0.0 1.6
0.5 12315 | 434 257  18.3 0.0 0.6
0.4 12219 | 51.8 316 185 0.0 0.3
0.3 1207.8 | 61.5 404 194 0.0 0.4
0.2 11793 | 77.9 552 229 0.0 0.9

(ver. 6.0) [29] and WCSP (ver. 0.49) [32]. We denote LOCALSOLVER by LSSOL. LSSOL
is a solver for general discrete optimization problems and is based on local search. WCSP
is a solver for the weighted constrained satisfaction problem and is based on tabu search.
For LSSOL and WCSP, we use the same formulations as the ones used for CPX-IP and
CPX-CP, respectively.

All the experiments are conducted on a workstation that carries an Intel® Core’ " i7-4770
Processor (up to 3.90GHz by means of Turbo Boost Technology) and 8GB main memory.
The installed OS is Ubuntu 14.04.1. The ILS solver is implemented in C. Similarly to ILS,
the competitors start from an initial solution that is generated by G5 (2], and the time limit
of-computation time is set to 10 seconds. All the parameters of the competitors are set to
default values except that, in CPX-CP, DefaultInferenceLevel and Al11DiffInference
Level are set to extended.

5.3. Results

We generate 100 RAND instances for each (n,7) € {30,40,50} x {0.2, ..,0.8}. We run the
ILS solver 10 times for an instance, changing the random seed, while we run each competitor
once. We summarize the result in Table 1. The table shows how the solvers improve an
initial solution Sp. The averaged size of Sy is shown in the column “|Sp|.” The averaged
improved size is then shown in the rightmost columns for each solver. Boldface indicates
the largest improvement in each row. The asterisk * represents a case such that a complete
SLS is found for all trials.

Clearly, ILS outperforms the competitors in all tested (n,r). In particular, it founds a
complete SLS for all under-constrained instances with » > 0.6. Concerning the competitors,
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Table 2: Results on SLSWH instances: how often the solvers find optimal solutions

n  ~ |[V]/IU[] ILS LSSOL WCSP CPXIP CPX-CP
30 0.80| 0.53 | 100.0 66 100 4 100
0.70 |  0.37 | 100.0 53 97 2 100
0.60 |  0.25 | 100.0 32 40 53 100
050 |  0.15 | 100.0 9 6 96 100
040| 008| 87.7 1 0 99 99
033 | 005| 443 13 1 100 100
030 | 004 957 88 44 100 100
020| 002]100.0 100 100 100 100
10 080| 052 100.0 9 02 0 100
0.70 |  0.36 | 100.0 8 32 0 99
0.60 | 0.24 |100.0 11 2 0 92
050 |  0.14 | 100.0 1 0 0 46
040 | 0.08| 81.2 0 0 1 4
033 005| 82 0 0 19 0
030| 004| 638 0 0 75 25
020 | 001|100.0 100 99 100 100
50 0.80| 0.52|100.0 0 60 0 61
0.70 |  0.36 | 100.0 0 7 0 38
0.60 | 0.23|100.0 0 0 0 10
0.50 |  0.14 | 100.0 0 0 0 0
040 | 0.07| 80.9 0 0 0 0
033 005| 5.4 0 0 0 0
030 003| 00 0 0 0 0
0.20| 0.1 | 100.0 97 73 100 100

exact solvers perform worse when n is larger, while heuristic solvers work relatively well for
all n. WCSP and CPX-CP perform well especially for under-constrained instances, whereas
LSSOL and CPX-IP are good for over-constrained instances. This phenomenon can be
explained by the nature of the solver. For example, CPX-CP is good at under-constrained
instances since such instances must have many optimal solutions; the backtracking technique
of CPX-CP may be able to find one of them cuickly.

Next, we show the result on SLSWH instances in Table 2. This table shows how many
times the solver finds an optimal solution (i.e., a complete SLS) among 100 instances. The
value for ILS is fractional since it is the average over 10 random seeds. We see that each
solver performs relatively worse for a certain range of . Roughly speaking, all the solvers
except CPX-IP are not good at instances generated by 0.3 < v < 0.4; we see the phase
transition around this range. Exceptionally, CPX-IP performs well for these instances, but
it is by no means effective for under-constrained instances (e.g., v > 0.6).

We claim that ILS should have a higher scalability than the competitors since its per-
formance does not deteriorate comparatively along with the increase of n. It is true that
CPLEX solvers are more effective for “hard” instances with 0.3 < v < 0.4 when n = 30
or 40. When n = 50, however, ILS still finds optimal solutions for some instances while
CPLEX solvers do not. Furthermore, ILS finds optimal solutions for all under-constrained
instances with v > 0.5 and all over-constrained instances with v = 0.2, regardless of n,
while the competitors do not perform like this. The scalability must be supported by the
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efficient p-neighborhood search algorithms.

6. Concluding Remarks

In this paper, we have considered fast local search technique for the MaxCSLSC prob-
lem. Specifically, we proposed p-neighborhood search algorithms for p € {1,2} that run in
O(nP*1) time. For randomly generated instances, the ILS algorithm finds better solutions
more frequently than the exact solvers (i.e., IP and CP solvers from IBM ILOG CPLEX [21])
and the heuristic solvers (i.e., LOCALSOLVER [29] and WCSP [32]). We also observed that
the ILS algorithm has a higher scalability than the competitors.

We could develop a 3-neighborhood search algorithm that runs in O(n*) time, by ex-
tending the 3-neighborhood search algorithm for the PLSE problem [17]. The algorithm
takes into account the observation on Itoyanagi et al.’s 3-neighborhood search in the max-
imum independent set problem for an ordinary graph [23]. However, we do not go to this
direction as we do not expect its practical value. In the computational studies for the PLSE
problem in [17], the ILS algorithm with 3-neighborhood performs worst among the ILSs
with various types of neighborhoods, mainly due to its inefficiency. Furthermore, the proofs
would become too complicated.

Unfortunately, as the No Free Lunch Theorems go [37], the ILS algorithm does not nec-
essarily perform well on all possible instances. In our preliminary experiments, it performs
ill on the problem of constructing a complete SLS under a home-away table. This problem
arises in sports scheduling [5, 19, 31], and let us review it briefly. There are n teams, where
n is even, and each team has its own venue. We are given an n x (n — 1) table 7', where
each (p,q) element, denoted by T}, is either H (home) or A (away). If T, , = H (vesp., A),
then a team p should play at their own venue (resp., at the competitor’s venue) in a time
slot g. In other words, teams p and p’ should not play in a time slot ¢ whenever T, ; = Ty 4.
The problem asks for an SRRT (and thus a complete SLS) that satisfies this constraint.

For n € {20,22,...,28}, we generate all home-away tables that satisfy certain conditions
mentioned in [31] (i.e., those having minimum “breaks” and satisfying a necessary condition
for admitting a complete SLS). The ILS succeeds in constructing complete SLSs for 100%,
97%, 80%, 49% and 24% of the home-away tables for each n, respectively, while CPX-IP
and CPX-CP construct complete SLSs for all home-away tables.*

We claim that the result should not diminish the value of our achievement in this paper.
It just tells that the CPLEX solvers perform better than the ILS algorithm for the CSLSC
problem under a home-away table. On the other hand, as we observed in Section 5, the ILS
algorithm is better than the CPLEX solvers for RAND and SLSWH instances.

Based on these, we claim that the proposed efficient local search should be among the
valuable technique for the CSLSC problem.
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