
Journal of the Operations Research Society of Japan
Vol. 60, No目 4, October 2017, pp. 439 460

© The Operations Research Soci巴ty of Japan

AN EFFICIENT LOCAL SEARCH FOR THE CONSTRAINED
SYMMETRIC LATIN SQUARE CONSTRUCTION PROBLEM

Kazuya Haraguchi
Otαru University of Commerce

(Received April 11, 2016; Revised :tviarch 29, 2017)

Abstract A Latin squαre is a complete assignment of [n] = {1, ... , n} to anη× n grid such tl凶，in
each row and in each column, each value in [n] appears exactly once. A symmetric Lαtin squαre (SLS) is
a Latin square that is symmetric in the matrix sense. In what we call the constrained SLS construction
(CSLSC) proble瓜we are gi刊n a subset F of [n]3 and are asked to construct an SLS so tl国，whenever
(i,j, k） ε F, the symbol k is not assigned to the cell (i,j). This paper has two co山・ibutions for this
prob！巴m. One is proposal of an efficient local search algorithm for the maximization version of the problem.
The maximization problem asks to fill as many cells with symbols as possible under the constraint on
F. In our local search, the neighborhood is defined by p-swap, i.e., dropping exactly p symbols and then
assigni時any nuq1ber of symbols to empty cells. For pε｛1, 2}, our neighborhood se紅ch algo出hm finds
an improved solution or concludes that no such solution exists in 0（が+1) time. The other contribution is
to show its practical value for the CSLSC problem. For randomly generated instances, our iterated local
search algorithm frequently constructs a larger partial SLS than state-of-the-art solvers such as IBM ILOG
CPLEX, LOCALSOLVER and WCSP.

Keywords: Algorithm, combinatorial optimization, Latin square, local search, scheduling

1. Introduction

We address the constrained symmetric Lαtin squαre canst門1,ction (CSLSC) problem. Let
η三2 be 剖1 integer. We denote [n] = {1 ， ，η｝ • Consider assigning given n symbols to
an n ×ηgrid of cells. We represent the symbols byηintegers of [n]. For any i, j ε ［n], we
denote the cell in the row i and in the column j by (i,j). We represent a partial assignment
of ［吋to the grid by a subset S of [n]3, where the membership (i,j, k） εS indicates that the
symbol k is assigned to the cell (i,j). We assume (i,j） ヂ （i',j') for any (i,j, k), (i',j', k＇） εs
in order to prevent a duplicate assignment. Accordingly ISi三ポholds. We call S a pq,rtial
Latin sq仰向 （LS) if what we call the Lαtin sq仰向 cond似on is satisfied；七he condition
requires that, in each row and in each column, every symbol should appear at most once.
In other words, for any (i,j, k), (i',j', k＇） ε S , at least two of zヂi', j チ j' a凶 k f k' hold.
The S is a partial symmetric Lαtin sq仰向 （SLS) if it is symmetric in the matrix sense, i.e.,
(i,j, k） εS implies (j,i,k） εS In particular, partial LS and SLS are called complete LS
αnd SLS respectively if they are complete assignments.

Now we are ready to formulate the CSLSC problem.

Problem CSLSC
Input: An integer n 三2 and a subset F of [n]3.
Output: Decide whether there exists a complete SLS S such that Sn F ＝日. If yes,

provide such S.

439

440 K. Haraguchi

We call Fa forbidden set and each entry (i,j, k) in Fa forbidden entry. It prohibits us
from 回signing the symbol k to the cell (i, j). The CSLSC problem is NP-hard in general [6]
and has strong applications in sports scheduling, as we mention in Section 2. In this paper
we mainly consider the maximization version of the problem. We call it the MαxCSLSC
problem, which is summarized as follows.

Problem MaxCSLSC
Input: An integer η 三2 and a subset F of [n]3

Output: A partial SLS S of the maximum cardinality such that Sn F二日．

We have two contributions in this paper. One is an algorithmic result, that is pro­
posal of an efficient local search for the MaxCSLSC problem. The other contribution is
a computational result that shows the prac七ical value of the local search for the CSLSC
problem.

Local search is a well-known framework of appro泊mation algorithms for hard combina­
torial problems [1, 13, 30]. It is regarded as repetition of a neighborhood search αlgo付thm;
given a solution S, the algorithm outputs an improved solution in the neighborhood if one
exists or concludes that no improved solution exists. The neighborhood of S in general is
defined 回 the set of solutions that are obtained by performing “slight" modification on S.
For this slight modification, we七ake up p-swα.p, which is an operation of dropping exactly p
elements from S and then adding any number of elements七o S. We call the neighborhood
defined by p-swap the p-neighborhood. For pε｛1, 2}, we propose a p-neighborhood sea凶1

algo出hm that runs in O(nP+l) time. The data structure is based on Andrade et al. ’s local
search for the maximum independent set problem [3]. We emphasize that, however, our
work should not be its simple application.

We develop a metaheuristic algorithm based on the iterated local search that exploits
the proposed efficient local search. The iterated local search is a metaheuristic framework
that attempts to find good solutions by repeating a local search (possibly) many times. For
randomly generated instances, our metaheuristic algorithm frequently constructs a larger
partial SLS than exact IP a吋CP solvers from IBIVI ILOG CPLEX [21] and heuristic solvers
LOCALSOLVER [29] and WCSP [32], within the same time limit.

This paper is organized as follows. We describe the background of the research in
Section 2. After preparing terminologies and notations in Section 3, we explain the local
search algorithm in Section 4, mainly on the p-neighborhood search algorithms. Then we
present experimental results in Section 5 and conclude the paper in Section 6.

2. Background

We start the research on local search for LS completion-type problems, motivated by
constant-factor app
that were studied in [11, 15’27]. Tl由is problem asks for a largest extension of a given partial
LS and is summarized as follows.

Problem PLSE
Input: An n×n parti叫LS L, represented by a subset of [n]3.
Output: A partial LS S of the maximum cardinality such that S] L.

Hajiraso凶ha et al. [15] showed that the local search based on p-swap is a (2/3 － ε）－
approximation algorithm, using a classical result on local search for the k-set packing prob-

Local Sea，℃hfor Symmetric Latin Square 441

lem [20]. In [17], for pε｛1, 2, 3}, the author proposed a neighborhood search alga此hm that
runs in O(nP+l) time. He also invented a generalization of 2-swap operation, Trellis-sw叩 ？

and proposed a neighbo出ood search algo此hm that runs in O(n3 ·5) time.

The Max:CSLSC problem is different from 七he PLSE problem in two points; the solution
should be symmetric, and the constraint is given by means of the forbidden set F, which
is an arbitrary subset of [n]3. As was done for the PLSE problem in [17], we reduce the
Max:CSLSC problem to the maximum independent set problem and utilize e伍dent local
search that is developed by Andrade et al. [3].

The problem of scheduling a single round robin tournαment (SRRT), which is a funda­
mental bu七 indispensable issue in sports scheduling, is among 七he most signi白can七 applica­
tions of the CSLSC problem. Suppose that n is even. In SRRT, there are n teams, and
each team meets every other team exactly once; so it plays η－ 1 games in all. The games
should be held inη－ 1 time slots one by one. A typical SRRT scheduling problem asks for
an SRRT under such constrain
which pr、ohibit us from making the match between teams i and j in time slot k for various
collections of (i, j, k).

An SRRT is represented by an η×ηcomplete SLS. For each non-diagonal cell (i, j)
(i.e., i チ j), assign the symbol k to (i, j) if teams i and j meet in time slot k, and for each
diagonal cell (i, i), assign the symbol n to (i, i). In other words, we臼l up the n × n grid
with symbols so that the symbol assigned to (i,j) indicates the time slot when teams i and j
play, while the symbol n in diagonal cells represents a dummy slot. Clearly it is a complete
SLS. Hence the SRRT scheduling problem is regarded as the CSLSC problem for a certain
forbidden set F.

We dare to say that de Werra is among ones who started mathematical studies of
sports scheduli時problems, back to the 1980s (e.g., [7]). Concerning the constrained SRRT
scheduling proble瓜constraint programming (CP) approach [18] and integer programming
(IP) approach [36] were examined in the自rst half of the 2000s. The problem itself is rather

、

fundamental, and many variants and extensions have· been studied so far; e.g., carry-over
e百ect (COE) minimization [14, 35], hor:ne-away table (HAT) feasibility [5, 19, 31], double
round robin tournament problems such as traveling tournament problem (TTP) [8-10, 22].
There are some nice reviews for this research field [24, 33, 34].

In this paper we consider the MaxCSLSC problem, the maximization version of the
CSLSC problem. Since many applications require a complete SLS, it appears vain e百orts to
find an approximate solution (i.e., a partial SLS) by local search. In fact, in the literature
of SRRT scheduling, constructive algorithms have been avoided since they may fall into a
locally maximal solution (called a “mature set” in [33]).

Even so, we claim that e百ective and e伍cient heuristic algorithms should be practically
meaningful due to the following two reasons. First, such an algorithm can serve as an initial
solution generator for exact solvers based on IP /CP. When we encounter a large and/or
hard instance of combinatorial optimization problems, it must be reasonable to try exact
solvers at first as their performance has become so high these days. The computation time
could be too long, but may be reduced if a better initial solution is input to the solvers [26].
Second, even though there is no guarantee that a heuristic algorithm delivers a complete
SLS, it may do so for some hard instances much faster than modern exact solvers. Therefore,
given a hard instance, there is some merit in trying a heuristic algorithm before running an
exact solver for a longer time. ·with these in mind, we develop e血cient local search for the
MaxCSLSC problem.

442 K. Haraguchi

3. Preliminaries

Since we consider a partial symmetric assignment, we restrict our attention to the lower
triangular part of 七he η × η grid. Let U = {(i,j, k） ε［η]3 : i三j}. We assume a forbidden
set F to be a subset of U and consider constructing a solution among U \ F.

We reduce the Max:CSLSC problem to the mαximum stro旬 independent set (M axSIS)
problem and utilize the local search in [3]. A hypergraph, denoted by H = (V, E), consists of
a set V of vertices and a collection E of hyperedges, where each hyperedge in E is a subset
of V. For two ve削ces v and w (v ヂ w),v is a neighbor of w, or equivalently, v and w are
adjαcent (to each other) if there exists a hyperedge eεE such that v, w εe We denote
by N(v) the set of 叫l neighbors of v. A strong independent set (SIS) in a hypergraph is a
subset of vertices that intersects any hype閃dge in at most one element [4]; in other words,
no two vertices are adjacent to each other. The Max:SIS problem asks for a largest SIS in a
given hypergraph.

Given a forbidden set F, we construct a hypergraph H = (V, E） 出 follows. We set
the vertex set to V = U \ F. Note that each vertex (v1パ弘 v3) in V is regarded as an
integral point in the 3D space. We define a hyperedge as a maximal subset of vertices such
that any two of them cannot belong to an SLS simultaneously. Specifically, the collection
E of hyperedges consists of what we call vertical edges (v-edges for short) and what we
call h orizontal edges (h-edges for short). The term “vertical" or “horizontal" indicates the
direction in which the hyperedge stretches in the 3D space. Denoting by Ever and E1101· the
collections of v-edges and h-edges 悶pectively, we de自I E 二 Ever u Ehor For any i, jε［ηl
with t三j, we denote by ev町（i, j) the v-edge that contains all ve出ces (vi , v2, v3) with v1 = i
and v2 = j, that is,

ev
四（i,j) = {(v1, V2, V3）εV: (v1 = i）八（v2 = j)}.

On the other hand, for any i, k ε［n], we denote by eh0r(ilk) the h-edge that contains all
vertices (v1, v2 , v3) such that at least one of v1 = i and v2 = i holds and v3 = k, that is,

ehor(ilk) = {(v1 ， υ2, V3 ） εV : ((V1 = i) V (V2 ニ i)) /\ (v3 ニ k)}.

We illustrate how vertices and hyperedges are distributed in the 3D space in Figure 1.
We see that there are 11 vertices, which are indicated by circles. H-edges are indicated by
poly lines (e.g., a bold real line indicates an h-edge e110r (11町）) , while v-edges are not depicted
to prevent the figure from being mess. The v-edge evペ2, 1) contains black vertices (i.e.,
(2, 1, 1), (2, 1, 3) and (2, 1, 4)), while the h-edge e110r(3l2) contains shadowed ve出ces (i.e.,
(3, 1, 2), (3, 3, 2) and (4, 3, 2)).

Each vertex （υ1, V2 ’v3) is inch ed in at most three hyperedges, that is, evペV1，り2),
e110

Ehor are de五I d 邸 Ever = {evペt ’ j) : i,j ε［η］， iミj} and Ehor = {ehor(ilk): i,k ε［n]}.
Since IEverl三η（η＋ 1)/2 and IEhorl：三η2, we have an upper bound on the number of
hypere社ges; IEI三 n(3η＋ 1)/2. Hence IVI = O(n3) and IEI = 0（η2).

Obviously a subset S of U represents 剖1 SLS that does not intersect with F iff it is
an SIS in the hypergraph H = (V, E). Hereafter we concentrate on solving the MaxSIS
problem on H = (V, E). Here we show some elementary properties of H which are almost
clear from F igure 2.

Proposition 1 Two h-edges ehぺilk）αnd eh肘（i'lk) (iチi') intersect withαt most one
vertex.

443 Local Sea，℃hfor Symmetric Latin Square

(v3 = 4)

(v3 = 2)

(v3 = 1)

(v3 = 3)

メだ：：

メ�

d三三
uム

品4夜
Figure 1: How vertices and hyperedges are distributed in the 3D space （η＝ 4)

一ーーー一·· /er (i, i')）
 円。U

－
zJ（

rO
 ob

．

－

－

一一一－

）

 no
nu

s－z（

rO

LH
 一一一一－ /or(ilv3)

(v3 = k)
(i , i.：�7
ム．／

i'
'.i !'c川）

(i, i', k）イ
i' / i

(v
3

= k) J 一一一一一－；－－7

Z一一一一一一ーで’Fーで J

�
·

I

(i, i', k)/ /
.
i' j

(v3 = k) ／

: ./ …ィ／

z’

(v
3

= k)

(Proposition 4) (Proposition 3) (Proposition 2) (Proposition 1)

Figure 2: Illustration of Propositions 1 to 4

口

Proposition 2 A t貯tex (i, i', k) hαsαt most two neighbors αmoηgαny h-edge eh肘(jik) such
that jザ｛i,i'}.

Proof. Assuming i > iヘwe have eh0r (ilk) n eh0r (i'lk）三｛(i, i' l k)}.

Proof. The ve巾x (i, i', k) is included in at most two h-edges, ehor (ilk) and ehor (i'lk). Each
i凶ersects ehペjlk) with at most one vertex from Proposition 1. The intersecti時vertices
are the only possible vertices in ehor (jlk) that are adjacent to (i, i', k）. 口

Proposition 3 A vertex (i, iヘ k) has αt most one neighbor αmong αny h-edge eh
併(jlk') such

thαt k＇ ヲI:. k.

Proof. Amo時 vertices in the 2D plane of v3 = kヘthe only possible neighbor of (i, i', k) is
(i, i' l ど） 口

Proposition 4 A vertex (i, i', k) has at most one neゆbor αmongαny v-edge ever(j, j') such
thαt (i,i＇）ヂ (j, j').

口Proof. The only possible neighbor is (j, j', k).

444 K. Haraguchi

We introduce notations and terminologies on local search for the MaxSIS problem. We
call an SIS in H simply a solution. Given a solution S, we call a vertex in S a solution
vertex and a ver七ex out of S a non-solution vertex. Let v denote a non-solution vertex. A
solution vertex in N(v) is called a solution neighbor of v. The number of solution neighbors
of v (i.e., JN(v) n SJ) is called the tightness of り. Since a hyper、edge inch es at most one
solution vertex andυ is included in at most three hyperedges, the tightness is at most
three. When the tightness is t, we call v tイight. In par七icular, a 0-tight vertex is called
free. The set oft-tight vertices is denoted by Vi(S). The vertex set V is partitioned into
V=SU 九 （S) U · U Vii(S). At-tight neighbor of α solution vertex x is at-tight vertex in
N(x).

For an i凶eger p 三0, p-sw叩 refers to an operation of dropping a subset D of S (JDJ = p)
from S and adding any number of free vertices (with respect to S \ D) to S \ D so that the
resulting set continues to be a solution. The p-neighborhood of S is a set of all solutions
that are obtained by performing a p-swap on S. A solution S is called p-mαximαl if the
p neighborhood contains no improved solution S' such that JS' I > J SJ. In particular, we call
a 0-maximal solution simply amαximal solution.

4. Local Search

In this section, we present the main component algorithm of the local search, a p-neighborhood
seαrch αlgorithm. Given a solution S, it computes an improved solution in the p-neighborhood
or concludes that no such solution exists. Once a p-neighborhood search algorithm is es­
tablished, it is immediate to design a local search algorithm that computes a p-maximal
solution; starting with an appropriate initial solution, we repeat moving to an improved
solution as long 回 the p-neighborhood search algorithm delivers one.

We present p-neighbo巾od search algorithms for pε｛ 1, 2} and show that the running
times are O(JSJ) = 0（η2) and O(JVJ) = O(n3), respectively. The basic idea is borrowed
from Andrade et al. ’s local search for the maximum independent set problem for an ordinary
graph [3]. However, our work is not merely a simple application of their wo此They deal
with local sea叫1 based on just (p, p + l）引μαp, that is, the operation of droppi時 p vertices
from the solution and adding p + l vertices to the solution, whereas the number of added
vertices is unbounded in our p-swap. Furthermore, if we applied their methodology as is,
then the time bound of the (p, p+ 1)-r ghbor ood sea凶1 algor

The strategy is more or less similar to [17] in which the a凶hor developed e伍cient p­
neighborhood search algorithms for the PLSE problem. For the MaxCSLSC problem, we
need trickier arguments to achieve the time bounds above.

We introduce the data structure in Section 4.1 and present p--neighborhood search algo­
rithms in Section 4.2.

4.1. Data structure

The data structure mainly consists of a 3D array of vertices and an ordering of vertices.
The notion of the latter is first introduced by Andrade et al. [3].

The 3D array is used to store the hypergraph H = (V, E). We denote a 3D array by C.
For each t均le (vi, v2, v3）εU, if (V1 , V2 , V3）εV, then we let C[v1] [v2] [v3] have a pointer to
the ver x object, and other se (i.e., （υ1，υ2, v3) ff. V), we let it ha司re a null value. We can
access the vertex in speci白ed coor唱dinates if it exists or decide that no such vertex exists in
0(1) time. The 3D array stores the hyperedge set E implicitly; the neighbors of (v1, v2, v3)
are amo時 C[v�］[v2] [v3］ ＇叫C[v1］［叫］［v3]'-s and C[v1][v2][v�］＇－s.

The o吋eri時 of vertices enables us to scan vertices of a particular type (e.g., solution

Local Sea，℃hfor Symmetric Latin Square 445

vertices, free vertices) in linear time.with respect to the number. We denote the ordering by
a b討ectionπ：V→［IVI]. In π， every solution ve巾x is ordered ahead of all the non-solution
vertices, and the non-solution vertices are ordered in the non-decreasing order of tightness.
In each of the five sections (i.e., solution vertices and t-tight vertices for each tε｛O, 1, 2, 3}),
the vertices are ordered arbitrarily. We maintain not only πbut also the inverse function

π－1 so that the i-th vertex, i.e.，作一1 (i), can be accessed in 0(1) time.
We maintain the following parameters during the execution of the local search.

Counters of numbers:
・＃s01: the size of the current solution S.

・＃t: the number of t-tight ver廿ces with respect to S (tε｛O, 1, 2, 3}).

• #1 (e): the number of 1-tight vertices in a hyperedge eεE

・ T(v): the tightness of a non-solution ve巾X v 1 S.

Pointers to vertices: If the corresponding vertex does not exist, then we let the pointer
have a null value.

• Pso1(e): the pointer to the solution vertex in a hype問dge eεE.

• Pi (e): the pointer to the “smallest” 1-tight vertex among a hyperedge eεE, with
respect七o a fixed to七al orderζon V. The total orderζGan be an arbitrary one
if we can search vertices in e in the ascending order in linear time. For example,
we can take the lexicographic order on coordinates. Note that ζshould be fixed
during the local search and is independent of the total order induced by π．

Clearly the size of the data structure is 0（η3). We can construct it in 0（η3) time, as
preprocessing of local search. We show time complexities of some elementary operations.

(Maximality check) We can check whether the cur ..
time since it su伍ces to see whethe1了＃o 二 0 or #o > 0.

(Scan of neighbors) We can scan all neighbors of a vertex in 0（吋time by using the 3D
array C.

(Scan of solution vertices or t-tight vertices) We can scan all solution vertices or all
t-tight vertices in linear time with respect to their number by using the vertex ordering
and the parameters ＃叫and #t·

(Addition) We can add a free vertex v = (v1, vわり3) to the solution in O(n) time. Rouglの7

we update πso that v falls into the solution vertex section. For each neighbor w, we
increase its tightness ァ（w) by one and update πso that w falls into the appropriate
section. We also update the other parameters accordingly. The detail is described as
follows;

• Let u denote七he first vertex in the section of free vertices in the current ordering,
that is, u 二「 1 （＃叫＋ 1). We updateπby exchanging v and u, and let #sol ←
#sol+ 1 and ＃。←＃。 － 1. Now v falls into the section of solution vertices.

• For each hyperedge e ε ｛ evペVi, v2), e110r(v1lv3), eh0r(v2lv3)} that includes v, let

Psol (e） ← υsince v has become the only solution vertex among e. We search
all neighbors w ε e (w チ v) in the ascending order ofζLet w be t-tight. We
increase its tightness by one, that is, T(w） ←T(w) + 1. We update the ordering
so that w falls into the section of (t + 1)-tight vertices, and let #t ←＃t

一 1 an
#t+l ←＃件1 + 1. Furthermor、e, if T(w) has become either one or two, then we do
the followings;

Case of T(w) = 1: We let #1 (e）←＃1 (e) + 1. If ρ1 (e) is null or if wζρ1 (e), then
we let ρ1 (e）← ω

446 K. Haraguchi

Case of T(w) = 2: We let #1 (e）←払（e) 1. If ρ1(e) ＝肌then we letρ1(e) have
a null value.

(Drop) We can drop a solution ve吋ex from the solution in 0（η） time in the similar way
to the addition above.

4.2. p-Neighborhood search algorithms
Let us describe the key idea on how to achieve e伍ciency in p-neighborhood search. Assume
that a (p 1)-maximal solution Sis given. Hereafter we do not consider a p-swap such that
a dropped vertex is immediately returned to the solution since such a swap is degenerated
into a (p - 1)-swap, which is in vain; S is already (p - 1)-maximal.

Let D denote an arbitrary subset of S. Dropping D from S makes some vertices free.
Using our notation, they are vertices of lも（S \ D). This set consists of vertices of D a吋non­
solution vertices (with respect to S) whose solution neighbors are completely inch ed in
D. We denote the set of vertices in the latter type by F(D). Hence Vo(S\D) is partitioned
into 九 （S \ D) =DU F(D). We denote by H(D) the subgraph of H induced by F(D). A
set of ve出ces that are added to S \ D should be an SIS in H(D). This motivates us to
consider the MaxSIS problem on the subgraph H(D).

Let α（ H (D)) denote the (stror叫 independence numl貯 of H(D), that is, the cardil1ality
of a MaxSIS in H(D). The point is that, for every searched subset D, we can determin
the independence numberα（H(D)) in 0(1) time and construct a IviaxSIS in H(D) in 0（η）
time.

The p-neighborhood search algorithm runs in the following way; it searches subsets D
of the cur
algorithm constr、ucts a肘faxSIS I ar halts. By this, we have an improved solution (S\D)UI.
If no such D is found, then the algorithm concludes that Sis p-maximal. The running time
is linear‘ with respect to the number of searched subsets D since a 1\/IaxSIS I is constructed
for at most one subset and we can add I to S \ D in 0（η） time as III is bounded by a
constant, as we will observe later.

In the remainder of this section, we explain how to computeα（H(D)) in 0(1) tin an
to construct a 1\/IaxSIS in H (D) in O （η） time. We also me凶on how to search D e伍ciently.
4.2.1. Case of p = l
Let S be a maximal solution. When p = l, the dropped subset D is a singleton D = { x}
of a solution vertex x in S. Let us abbreviate F({x}) into F(x) for simplicity. The subset
F(x) consists of 1-tight neighbors of x. Let us denote x = (x1, x2, x3). Since xis included in
at most three hype問dges, F(x) is par itio問d into at most thr e subsets according to which
hyperedge each uε F(x) belo時S to;

F(x） 二九（e
110r (x1 lx3)) U T1(e

110r(x2lx3)) U T1 (e
v吋X1 ,X2)),

where Tt(e) denotes the set oft-tight vertices in a hyperedge e (i.e.，巧（e) = Vt(S） 什 e). For
convenience, while we consider the case of p = l, we represent the hyperedges by e1, e 2 and
e 3 as follows;

[(e
110r (x1 lx3), e110r(x2lx3), e、，er

(e1 , e2 ’ e 3) = � L (e
110r(x1lx3),0,e

v
ペX1,X2)) if X1 ニ X2 , 、、．a，，，寸lム，，，EE‘、

When e ＝仇we assume T1 (e) ＝日，＃1 (e) = 0 and ρ1 (e) = NULL for convenience.
Consider the subgraph H(x) of H that is induced by F(x). The independence number

α（ H (x)) is at most three since at most one vertex can be picked up from each of the thr

Local Search for Symmetric Latin Square 447

subsets, T1(e1), T1(e2) and T1(e 3). A Max:SIS should include a ve巾x from T1 (e 3) regardless
of which vertices in T1 (e1) U T1 (e2) are included, due to the following lemma.

Lemma 1 A MaxSIS in H(x) includes exactly one 閃rtex from T i (e 3) iff T i (e 3) is non­
empty.

Proof. As mentioned above, an SIS I includes at most one vertex from a hyperedge, so
II円Ti(e 3)I三 1. The necessity is obvious. For the su伍ciency, each ver七ex in T i(e i） υ T i (e2)
has at most one neighbor in e 3 , and the only possible neighoor is x (Proposition 4). Since
x (j. Ti(e 3), no vertex in T i(e i) U T i(e2) is adjacent to one in Ti(e 3). If an SIS I is a subset
of T i(ei) U Ti(e2), then I is not maximal since we can add any vertex in T i(e 3) to I 口

Next, we consider how many vertices in Ti(ei) U Ti(e2) are included in a MaxSIS. The
number is at most two. Clearly it is zero i百both T i (ei) and T i (e2) are empty. Whether it
is one or two is completely characterized by the following Lemma 2.

Lemma 2 Let m i = IT i(e i)I and m2 = IT i(e2)I. A MaxSIS in H(x) includes exαctly oηe
vertex from T i(e i) U T i(e2) iff one of the followi ηg conditions holds.・

• max{m i , m2｝と1 and min{m i , m2} = 0.

・mi =:=m2 = 1αnd the only vertices in T i (ei）αηd T i (e2）α陀αdjαcent to each otl町．

Proof. The su伍ciency is obvious. For the necessity, at least one of T i(e i) and T i(e2) should
be non-empty, that is, mi and/or m2 should be larger than zero. If one is non-zero and
the other is zero, then we are done. Suppose that both are larger than zero and that

m i三m2三1 without loss of generality.
We show mi = m2 = 1 by contradiction. Suppose mi > 1. Let v denote any vertex in

Ti(e2). We claim that, in T i(ei), there should be a vertex that is not adjacent to v; From
Proposition 2, v has at most two neighbors in ei・ The x is one of them, and thus v has

at most one neighbor in Ti(e i), Since mi - 1三1, there is a vertex in T i (ei) that is not
adjacent to v, say w. Then there exists a MaxSIS I in H (x) such that { v, w} ι I, which is
contradiction.

In this way, we have mi = m2 = 1. The only vertices should be adjacent to each other,
since otherwise there would be an SIS of size two. 口

Corollary 1 A MαxSIS in H (x) includes exαctly two vertices from T i (ei) U T i (e2) iff one
of the following conditions holds:

• max{mi , m2｝三 2 and min{mi , m2｝三 1.

・m i
ニm2 = 1αnd the only vertices in T i (e i）αηd T i (e2）α何 η otαdjαcent to eαch other.

Lemma 3 For Zε S, we cαn determine the independence number α（H(x)) in 0(1) time
αηd constructαMaxSIS in H(x） 仇 O(n) time.

Proof. We present a constant-time algorithm to determine α（H(x)) in Algorithm 1. Recall
th叫the cardinality I九（e) I is maintained by the counter # i (e). The Pi (e) is the pointer to
the smallest 1-tight ve巾x in e in the sense of ζ. In particular, if #i(e) = 1, then ρi(e)
should point to the only 1-tight vertex in e.

We can construct a Max:SIS in H(x) in 0（η） time; Starting with I二日， we add vertices
to I according to how Algorithm 1 flows. Specifically, when we pass Lines 3, 7, 9 and 11,
we decide the vertex to be added in the following way.

Line 3: We add any 1-tight vertex in Ti(e 3) to I.

448 K. Haraguchi

Algorithm 1 A constant-time algorithm to determineα（H(x))

1：α ← 0
2: if #1 (e3) > 0 then
3： α ←α十1
4: end if
5: if max{#1 (e1),# 1(e2）｝三1 then
6: if min{# 1(e1), # 1 (e2)} = 0 then

1> Lemma 1

7： α ←α十1 l> 1st condition in Lemma 2
8: else if #1 (e1) = # 1 (e2) = 1 剖1d P1 (e1) and ρ1 (e2) are adjacent then
9： α ←α＋ 1 l> 2nd condition in Lemma 2

10 ：目 else
11 ： α ←α十2
12: end if
13: end if
14: return α

Line 7: We add any 1-tight ve凶ex in eε ｛ e1 , e2} to I such that T1 (e) is non-empty (i.e.,
#1 (e) > 0).

Line 9: We add either p1 (e1) or ρ1 (e2) to I.

Line 11: The construction is analogous to the proof of Lemma 2. Let us assume #1 (e1）三
#1 (e2）三1 without loss of generality. First, we pick upαny 1-tight vertex v in T1 (e2).
In T1 (e1), there is at least one 1-tight vertex, say w, that is not adjacent to v. We add
{v, w} to J.

The constructed I is a MaxSIS. The construction can be done in O （η） time since a
hyperedge e contains at most n ve出ces and thus it takes 。（η） time to choose a vertex to
be added from e. 口

Theorem 1 Givenα maximal solution S, we cαηβndαη improved solution in the 1-
neighborhood or conclude thαt Sis 1-mαximαl in O(n2) time.

Proof. We see ISi三η（η＋ 1)/2. We can scan all solution vertices in O(n2) time. For each
zε S, the independence numberα（H(x)) of the subgraph H(x) is decided in 0(1) time,
and ifα（H(x））三2, then we construct a MaxSIS in O(n) time from Lemma 3, by which we
have an improved solution. To update the solution S, it takes 0（吋 time to drop x from S,

and 0（η） time to add the vertices in the lVIaxSIS to S \ { x} since the size is at most three.
The overall time complexity is 0（ポ） 口

Before going to the case of p = 2, we give a necessary condition of 1-maximality.

Theorem 2 Let S be α 1mαximal solution. Forαny solution vertex (x1 , x2, x3) in S, let

e1 , e2 αnd e3 be the hyperedges defined by Equation (1), m1 = IT1 (e1)I，問2
ニ IT1 (e2)I an

m3 = IT1 (e3)1. Then we have the following:
• Either m1 + m2 = 0 or m3 = 0 holds 目

• If m1 + m2 > 0, then either mro中九m2｝三 1 or min{m1 , m2} = 0 holds. Furthermore,
if m1 = m2 = 1, then the only vertices in T1 (e1) and T1 (e2) are adjacent to each other.

Proof. If they do not hold, then we would have an improved solution by 1-swap; the first
condition is due to Lemma 1 and the second condition is from Corollary 1. 口

Local SeαF℃hfor Symmetric Latin Square 449

4.2.2. Case of p = 2
Let S be a 1-maximal solution. There are (l�I) = 0（ポ） pairs of solution ve出ces that are
candidates to be dropped. Nevertheless, we have only to search certain 0（η3) pairs among
them due to the following lemma, which provides a necessary condition on the existence of
an improved solution.
Lemma 4 (Implications of Lemmas 1 to 4 in [3]) Let x ， ν ， u, v, w be 閃rtices such thα t
x,y εSαndu,v,w (/_ S. If(S\{x,y})u｛匂 ， v,w} isα salt on, then we hα閃 the followi gs:

(1) u ， υαηdwα陀 ηatαdjαceηt to Oηeαnother;
(2) one in { u, v, w} is 2-tight αndαdjαcent to both zαn.d Y,
(3）αnot｝ぽ in { u, v, w} isαdjαceηt to x, mαybe to y, αnd to ηo otl町 vertex in S;
(4) the otl町 in {u,v,w} isαdjαcent to y, mαybe to x ， αnd to no otl昨 vertex in S.

By (2), it SU伍ces to search such pairs of solution ve出ces that have the same 2-tight neighbor
in common. The number of the pairs is O(n3) since the number of 2-tight ve凶ces is 0（η3).
Furthermore, we can scan ali the pairs in linear time with respect to the number of 2-tight
vertices, using the vertex ordering of the data structure.

As in Lemma 4, we denote solution vertices by x and y, and non-solution vertices by u,
v and w. We assume that u is 2-tight and is adjacent to both x and y. The 2-tight vertex
u should be included in an improved solution. The tightness of v and w is either one or
two, and neither of them should belong to {u} U N(u); they should be among the vertex
set F', which is defined as F＇

ニ F(x, y) \ ({ u} U N(u)). We illustrate in F igure 3 where the
vertices in F' are distributed in the 3D space. (The definitions of the two ve出ces u' and v'

will be given later.) The ve出ces in F' are among hyperedges that are represented by bold
real polylines. We denote by ex and eレ (resp., e

y
and eし） the two hyperedges that include x

(resp., y) and that are represented by bold real polylines. We give their formal de五n
as follows.

(Case of x 3
二 泊）

e
-1 the h－叫e e such that zεe ar山t{- e if X1内2 ,

X - 1 日 if X1 ニ X2 ,

ι ＝ evペX1, X2),

e
_ f the h-edge e such that uεe ar山1, (/_ e ぜY1内2,

y l 日 if Y1 = Y2 ,

eし = ev行Yi, Y2).

(Case of x 3 ヂ y3) Without loss of generalit）ら we assume that x and u are connected by a
v-edge and that y and u are connected by an h-edge. We denote the latter h-edge by e'.
The ex is de五回d 回 the h-edge th抗includes x and that is parallel (not skew) to e'.

e' - J七he h－叫e e s叫that zεe and 吋 ex if町内2,

X - 1 日 if X1 = X2 ぅ

匂＝ ev
ぺYi, Y2),

e' _ [the h-edge e such that uεe and uザe if Y1内2 ,
y - 1日 if Y1 = Y2,

One can easily ver r that u is included in none of { ex ’ e二 ， e
y
, eし｝. It is possible that one

hyperedge in { ex, eレ｝ and one in { e
y
, eし｝ intersect. When in this case, it is ex and e

y
that

intersect.

450

VI〆）＿v2

ex

e'
X

u - . o· - ----

ey _-
，

．

(x3 = y3)

I
e

y

K. Haraguchi

三叉！， ···u··l=
e,. /lγ 丁 てy

e�

， ’ ： . :··

ey －；『

バU

(x3ヂy3)

Figure 3: How the 2-tight vertices u and u' and two solution vertices x and y are distributed
in the 3D space

We denote by H' the subgraph induced by F'. The problem of finding an improved
solution is reduced to the MaxSIS problem on H'. If ther・e is an SIS I with III三2, then we
have an improved solution (S \ { x, y}) U (I U { u}).

First, we observe that F' includes at most one 2-tight vertex; hence, F' consists of 1-tight
vertices and at most one 2-tight vertex.

Lemma 5 There is at most one 2-tight vertex αmong F'.

Proof. Any 2-tight vertex in F' should be at the intersection point of a hyperedge from
{ex,eレ｝ a凶a hyperedge from { e

y
, eし｝－ The only pair of hype閃dges that can intersect is

{ ex , ey｝， 口

Lemma 6 Whether F' includes α 2-tight vertex or not cαη be decided in 0(1) time.

Proof. The coordinates of the unique candidate d町e decided in 0(1) time. We can conclude
dε F' if dεV and T(u') = 2. 口

Suppose that F' includes a 2-tight vertex u'. The vertex set F' is parti七ioned into subsets
as follows; F

＇ 二九（ι） U T1 (e�） U T1 （匂） U T1 (e�） U { u'}. When we count the independence
numberα（H'), we take u' into account only when it is included in all MaxSISs. Whether
we are in the case or not is characterized by the following Lemmas 7 and 8.

Lemma 7 Suppose x3 = y3 and that there is α 2-tight ve吋ex u' in the subgraph H'. The u'

is included mαll MαxSISs in r ぽ T1(ex) ＝九（匂）＝白

Proof. For the necessity, if one of T1 （ι） and T1 （匂） is non-empty and includes a 1-tight
vertex v, then we would have a MaxSIS that does not include u'; Let I denote a MaxSIS
that includes u'. We see that (I\ {u'}) U ｛υ｝ is also a MaxSIS. The su血ciency is olコviou

口

Lemma 8 Suppose X3 1正ν3αηd thαt there is α 2-tight vertεZ u＇ 肌 the subgnαph H'. The u I

is included 叩αll MαxSISs tη H' iff T1 (e
y）二日 and either {i) or 戸り holds.・

(i) T1(ex) ＝日， T1.(eレ）チ臥αnd T1 (eレ） includes α vertex thαt is not αdjαcent to u'.
(ii) IT1 (ex)I = IT1(eレ）I = 0 or l.

Local Seαrchfor Symmetric Latin Squαre 451

Proof. Let us denote m 1 = IT1(ex)I and m 2 = I九（e�） 1 · From the necessary condition of
1-rnaximal solution in Theo閃m 2, we have max{m 1 , m 2} 壬 1 or min{m1, m2} = 0. We are
in one of the four cases with respect to m 1 and m 2: (a) m 1 ミ l and m 2 = 0, (b) m 1 = 0
and m 2 三1, (c) m1 = m 2 = 1, and (d) m1 = m 2

ニ O
For the necessity, T 1 (ey) should be empty since, if not so, we could constr・uct a MaxSIS

that does not include u' by exchanging u' and any vertex in T1 (ey). Among (a) to (d) above,
the c回e (a) is not possible due to the same reason. Thus we are in (b), (c) or (d). Suppose
that we are in (b). If m 2 ニ 1, then the only vertex in T 1 (eレ） should not be adjacent to u'
（回d in the right of Figu回 3) since otherwise we could construct a MaxSIS (I\ { u'}) U { v'}.
If m 2 > 1, then there is a vertex in T 1(e�） that is not adjacent to u' since at most two
ve出ces in eレ are adjacent to u' and one of them is x from Proposition 2. This observation
is summarized出（i). The C節目（c) and (d）町e summarized as (ii).

For the su伍cier
m 2 = 0, then it is obvious that u' is included in all MaxSISs. Suppose that we are in (ii)
and m1 = m 2 = 1. Let v (resp., w) be the only vertex in T1（ι） (resp., T 1 (e�））. From
Proposition 2, the vertex w has at most two neighbors among h ・ One of them is 民and
from Theorem 2, the other should be v. The vertices wand u' are not adjacent to each other.
We see that all MaxSISs include exactly two vertices from T1(ex) U T1(e�） U T1（匂） U {u'}
and that they should be u' and ω ． 口

Lemma 9 Forα 2-tight vertex u, let zαηd y be its solution neighbors. We cαn determine
the independence number α（H') in 0(1) time αnd constr叫α MαxSIS in H' in O(n) time.

Proof. We summarize a constant-time algo此hm to determine α （H') in Algorithm 2. In
Lines 3 and 21, it checks whether the conditions of Lemmas 7 and 8 are satisfied respectively.
The check be done in 0(1) time. When the conditions are satisfied, we do not take the
hyperedges ex and ey into accoun七any longer since no vertex there belongs to a MaxSIS.

Let I. denote a MaxSIS in H' The set I U { u} is a MaxSIS in H (x, y). We have
!JU {u}I ＝α （H') + 1三4. As we did for the case of p = 1, we can construct I in 0（η） time
according to how Algorithm 2 flows. We omit the detail as it would be too lengthy and is
not so di伍cult. 口

Theorem 3 Giveηα 1-mαximal solution S, we cαn find an improved solution in the 2-
neigl伽rhood or conclude that S is 2-mαximal in 0（η3) time.

Proof. Since there a目前 most η3 2-tight vertices, we can scan all 2-tight vertices in 0（η3)
time by using the vertex ordering. For each 2-tight vertex u, its solution neighbors x
and y can be decided in 0(1) time by using pointers ρsol(ehor・（U1 iu3）），ρso1(e1町（u2 iu3)) and

ρ叫（evペu1 , u2)). The independence number α （H') is decided in 0(1) time by Lemma 9.
We have α （H(x, y)) ＝α （H') + 1. Ifα （H(x, y）） 三 3, then we construct a MaxSIS. This can
be done in 0（η） time, also due to Lemma 9. It takes 0（η） time to drop x and y from S,
and it takes 0(n) time to add the ve凶ces in the MaxSIS to S \ { x, y} since the size of the
MaxSIS is at most four. The overall time complexity is 0（η3）. 口

Before closing this section, we describe how to find a 2-maximal soluもion. Let S be
an arbitrary initial solution. If S is not maximal, then we construct a maximal solution
by adding free vertices to S repeatedly until no free vertex is left. If S is not 1-maximal,
then we construct a 1-maximal solution by conducting the 1-neighborhood search until S
becomes 1-maximal. We then construct a 2-maximal solution from S by performing the 2-
neighborhood se8trch. During the search, if an improved solution is found, then we go back

452 K. Haraguchi

Algorithm 2 A constant-time alga出hm to determine α（H')

1目 α←0
2: if x3 = y3 then
3: if the condition of Lemma 7 is satisfied then
4： α←α＋1
5: else if max{ #1 （丸山）， #1（匂）｝三1 then
6: if mi吋＃1(ex), #1(ey)} = 0 then
7： α←α＋1
8: else if #1(ex) = #1(ey) = 1 and ρ1(ex) andρ1(ey) are adjacent then
9 ： α←α＋1

10: else
11 ： α←α＋2
12: end if
13: end if
14: if #1(eレ）三1 then
15 ： α←α＋1
16: end if
17: if #1（弘）三1 then
18 ： α←α＋1
19: end if
20 ：・ else
21 ：・ if the condition of Lemma 8 is satisfied then
22： α←α＋1
23: if #1 (e�）と1 then
24 ： α←α＋1
25: end if
26：・ else
27: if max{ #1 （ι）， #1(e�）｝三1 then
28 ： α←α＋ 1 t> At most one vertex in T1(ex) U T1(e�） belongs to a NiaxSIS

from Theorem 2
29: end if
30: if #1（匂）と1 then
31 ： α←α＋1
32: end if
33: end if
34: ifρ1（弓） is not null and (#1 （弘）三2 or u and ρ1 (e�） are not adjacent) then
35： α←α 十 1 t> In the right of Figure 3, any 1-tight vertex except the white one

belongs to H'
36: end if
37: end if
38: return α

to the 1-neighborhood search since the improved solution may not be 1-maximal. Otherwise,
the current solution is 2-maximal.

Local Search.for S)mmetric Latin Square 453

5. Computational Studies
In this section, we demonstrate how practically meaningful the proposed local search is. For
this, we develop a metaheuristic algo此hm based on iterated lacαJ seαrch （ιS) [13]. This is
just a heuristic algorithm for the :tviax:CSLSC problem, but constructs a larger partial SLS
or even a complete SLS (i.e., an optimal solution) for rar
frequently than exact IP and CP solvers from IBM ILOG CPLEX [21] and two ge悶7

heur stic solvers, LOCALSOLVER [29] and WCSP [32].
We describe the ILS algorithm in Section 5.1 and experimental settings in Section 5.2.

We then show computational results in Section 5.3.
5.1. Iterated local search
The ILS algorithm iterates our local search until a certain termination condition is satisfied.
It is sketched as follows.

1. Generate a maximal solution S0 . 巴et S＊
← So ・

2. Compute a 2-maximal solution S by local search, using S0 as the initial solution.
3. If ISi三IS*I,then let F ← S
4. If the termination condition is satisfied，もhen output S* and halt.
5. Generate a maximal solution S0 by “kicking” S*. Go to 2.

We give some remark to the algorithm. In 1, we generate S0 by a constructive algori七hm
named G5 in [2], which is a “lool日head" minimum-degree greedy algorithm for the maxi­
nium independent set problem for an ordinary graph. Regarding each hyperedge as a clique,
one can easily convert the hypergraph into an ordinai·y graph. We confirmed in [16] that
G5 is among the best constructive algorithms for the PLSE problem, which is a version of
the Max:CSLSC problem that does not require symmetry of Latin square. The S* denotes
the incumbent solution. In 4, we terminate the algorithm if the computation time exceeds
10 seconds; we observe that, in our preliminary experiments, most of the improvement is
achieved in 10 seconds.

For “kicking” in 5, we employ the mechanism that the author used for the PLSE problem
in [17]. Let us review it briefly. Copying S* to S0 at first, we forcibly add k non-solution
vertices into S0 , where the natural number k is chosen with probability 1/2k . Speci五cally,
we repeat the following steps k times; we pick up a non-solution vertex u, drop its solution
neighbors from S0 , and add u into the solution. After the addition, if there are free vertices,
then one is chosen at random and added into S0 repeatedly until S0 becomes maximal.

For zε ｛1,. , k }, the i-th vertex to be added is chosen randomly from all the non­
solution vertices, except the case of i = 1. The 五rst vertex is chosen from P, which is
defined as 七he set of non-solution vertices such that there is a solution neighbor that has at
least one 1-tight neighbor;

P= {u ε V\So ：ヨZ ε N(u) n S0，ヨe ε E, X ε e, T1(e）ヂ日｝．

Note that P can be empty.
When P －／－ 日，we pick up the first vertex from P as we would like to avoid trivial cycling.

Suppose adding a non-solution vertex u that is not in P. Before the addition, all solution
neighbors of u should be dropped, that is, the nodes in N （吋円 S0 . As they do not have
1-tight neighbors, it is possible that u is the only vertex that becomes free. In such a case,
only u is added into the solution. A solution generated in this way faces higher risk of
cycling; we may have the solution S0 again by a subsequent 1-swap such that u is dropped
and the nodes in N (u） 円 S0 are added.

454 K目 Haraguchi

Based on this observation, when Pチ日， we pick up the first. vertex to be inserted from
P. Furthermore, aiming at diversifying the search, we choose the one that has been outside
the solution for the longest time. This strategy is called soft-tαbu and employed in the ILS
algorithm for the maximum independent set problem [3]. In 七he case of P二日， we use the
set of all non-solution vertices instead of P. We confirm that this strategy works effectively
in our preliminary experiments.
5.2. Experimental settings
We introduce two types of benchmark problems, which we call RAND and SLSWH. Recall
that a lVIaxCSLSC instance is given by a forbidden set F. Since V = U \ F, decidi時F is
equivalent to deciding the vertex set V.

RAND: An instance is given by a random vertex set V. We generate an instance by
choosing V rar
is a parameter betweerイ1 0 and 1. ．

SLSWH: It is an abbreviation of "symme七ric Latin square with holes". An SLSWH in­
stance is given by a partial 818 L that is generated by removing symbols from a complete
818 L * that is arbitrarily taken. The problem asks to construct a complete 818 by filling
all “holes” （i.e., empty cells) with symbols.
To generate L, we construct Lホ by the polygon method [25] and then shu血e rows (along
with columns) and symbols. We then remove symbols from randomly chosen cells so
that there remain L (1 －γ）η2 J symbols, whereγis a parameter between O and 1. Once
L is given, the forbidden set F is automatically determined by:

F = {(i,j, k）εU ：ヨ（i', j', k
＇
）εL, I { i, j} n { i', j'} I十l{k｝門｛ど｝｜三2}.

8ince V = U \ F, it is expected that, the largerγis, the larger the vertex set V is.

An optimal solution of a RAND instance is not necessarily a complete 818, whereas that
of an 818WH instance is always a complete 818. For each grid length nε｛30, 40, 50}, we
generate instances by changing the parameters r (for RAND) and γ（ for 818WH). For a
fixed n, intuitively, an instance that has a large (resp., a small) portion of U as the ve巾x
set V should be under-constrained (resp., over-constrained) in the sense that the forbidden
set F is small (resp., large). To grab this int凶ion, let us observe extreme two cases: when
V is the largest (i.e., V = U and F二日）, any complete 818 is an optimal solution, and
when Vis the smallest (i.e., V 二日and F = U), no feasible solution exists. For RAND, an
instance generated by a large r must have a complete 818 as its optimal solution う whereas
one generated by a small r may not do so. As mentioned above, an optimal solution of an
818WH instance is a complete 818, but hardness for finding it may change along with吐ie
parameterγ. In other words, we may observe phase transition of hardness, as is observed
in other 18 completion-type problems; e.g., the P18E problem [12], the 8udoku completion
problem [28]. An instance ge問

、ated by an intermediateγis expected to be harder than
one generated by a largeγ （i.e., under-constrained) or one generated by a small γ （i.e.,
over-constrained)

We compare the performance of the 118 algorithm with two exact solvers and two heuris­
tic solvers. For the exact solvers, we employ IP and CP solvers from IBM I10G CP1EX
(ver. 12.6) [21]. We denote the IP and CP solvers by CPX-IP and CPX-CP respectively.
We employ straightforward IP and CP formulations used in [12], except that, in CP, we
minimize the number of empty cells. In order to admit the CP solver to assign no symbol
to a cell (i, j), we set its domain to [n] U ｛仇j}, where仇j is a peculiar value to (i, j) and
represents that no symbol is assigned. For the heuristic solvers, we employ LOCALSOLVER

Local Sea,℃hfor Symmetric Latin Square 455

Table 1: Results on RAND instances: how the solvers improve the initial solution S。

n r = IVI/\Ul [So[ILS LSSOL 1ヘTCSP CPX-IP CPX-CP
30 0.8 450.5 *14.5 13.3 14.4 0.7 *14.5

0.7 448.9 *16.1 14.5 14.1 1.4 16.1
0.6 446.0 *19.0 16.5 14.0 2.3 15.9
0.5 443.4 *21.6 17.9 13.2 2.1 13.0
0.4 438.7 26.0 20.5 12.5 3.0 11.0
0.3 429.6 31.7 25.5 11.9 8.7 13.1
0.2 410.4 38.6 32.6 13.2 21.9 19.3

40 0.8 797.4 *22.6 17.7 21.2 0.0 17.3
0.7 795.9 *24.1 18.3 19.8 0.0 12.8
0.6 792.7 *27.3 20.3 19.6 0.0 8.1
0.5 787.7 32.3 23.5 18.8 0.0 5.4
0.4 780.8 38.5 28.1 15.0 0.0 4.3
0.3 770.5 45.1 33.4 16.3 0.0 5.9
0.2 746.1 58.1 45.5 17.2 0.0 10.9

50 0.8 1244.4 *30.6 18.1 27.9 0.0 12.0
0.7 1241.7 *33.3 19.0 27.5 0.0 4.4
0.6 1237.0 *38.0 22.5 27.2 0.0 1.6
0.5 1231.5 43.4 25.7 18.3 0.0 0.6
0.4 1221.9 51.8 31.6 18.5 0.0 0.3
0.3 1207.8 61.5 40.4 19.4 0.0 0.4
0.2 1179.3 77.9 55.2 22.9 0.0 0.9

(ver. 6.0) [29] and WCSP (ver. 0.49) [32]. We denote LOCALSOLVER by LSSOL. LSSOL
is a solver for general discrete optimization problems and is based on local search. WCSP
is a solver for the weighted constrained satisfaction problem and is based on tabu search.
For LSSOL and WCSP, we use the same formulations as the ones used for CPX-IP and
CPX-CP, respectively.

All the experiments are conducted on a workstation that carries an Intel⑤Core TM i 7-4 770
Processor (up to 3.90GHz by means of Turbo Boost Technology) and 8GB main memory.
The installed OS is Ubuntu 14.04.1. The ILS solver is implemented in C. Similarly to ILS,
the competitors start from an initial solution that is generated by G5 [2], and the time limit
of· computation time is set to 10 seconds. All the parameters of the competitors are set to
default values except that, in CPX-CP, DefaultinferenceLevel and AllDiffinference
Level are set to extended.

5.3. Results

We generate 100 RAND instances for each (n, r） ε ｛30,40,50｝×｛0.2，・. , 0.8}. We run the
ILS solver 10 times for an instance, changing the random seed, while we run each competitor
once. We summarize the result in Table 1. The table shows how the solvers improve an
initial solution S0. The averaged size of S0 is shown in the column “［So［.” The averaged
improved size is then shown in the rightmost columns for each solver. Boldface indicates
the largest improvement in each row. The asterisk * represents a case such that a complete
SLS is found for all trials.

Clearly, ILS outperforms the competitors in all tested （η ， r). In partict山.r, it founds a
complete SLS for all under-constrained instances with r三0.6. Concerning the competitors,

456 cuoo

a日H

κ

Table 2: Results on SLSWH instances: how often the solvers find optimal solutions
n γ IVI/IUI ILS LSSOL WCSP CPX-IP CPX-CP
30 0.80 0.53 100.0 66 100 4 100

0.70 0.37 100.0 53 97 25 100
0.60 0.25 100.0 32 40 53 100
0.50 0.15 100.0 9 6 96 100
0.40 0.08 87.7 1 。 99 99
0.33 0.05 44.3 13 1 100 100
0.30 0.04 95.7 88 44 100 100
0.20 0.02 100.0 100 100 100 100

40 0.80 0.52 100.0 9 92 。 100
0.70 0.36 100.0 8 32 。 99
0.60 0.24 100.0 11 2 。 92
0.50 0.14 100.0 1 。 。 46
0.40 0.08 81.2 。 。 1 4
0.33 0.05 8.2 。 。 19 。

0.30 0.04 6.8 。 。 75 25
0.20 0.01 100.0 100 99 100 100

50 0.80 0.52 100.0 。 60 。 61
0.70 0.36 100.0 。 7 。 38
0.60 0.23 100.0 。 。 。 10
0.50 0.14 100.0 。 。 。 。

0.40 0.07 80.9 。 。 。 。

0.33 0.05 5.4 。 。 。 。

0.30 0.03 0.0 。 。 。 。

0.20 0.01 100.0 97 73 100 100

exact solvers perform worse whenη is larger, while heuristic solvers work relatively well for
all n. WCSP and CPX-CP perform well especially for under constrained instances, whereas
LSSOL and CPX-IP are good for over-constrained instances. This phenomenon can be
explained by the nature of the solver. For example, CPX-CP is good at under-constrained
instances since such instances must have many optimal solutions; the backtracking technique
of CPX-CP may be able to find one of them quickly.

Next, we show the result on SLSWH instances in Table 2. This table shows how many
times the solver finds an optimal solt山on (i.e., a complete SLS) among 100 insta即es. The
value for ILS is fractional since it is the average over 10 random seeds. We see that each
solver performs relatively worse for a certain range ofγ. Roughly speaking, all the solvers
except CPX-IP are not good at instances generated by 0.3 :s;γ:s; 0.4; we see the phase
transition around this range. Exceptionally, CPX-IP performs well for these instances, but
it is by no means effective for ur er-constr‘ained instar es (e.g.，γ三0.6).

We claim that ILS should have a higher scalability than the competitors since its per­
formance does not deteriorate comparatively along with the increase of η. It is true that
CPLEX solvers are more effective for “h町d” instances with 0.3 :s;γ:s; 0.4 when n = 30
or 40. W hen n = 50, however, ILS sもill finds optimal solutions for some instances while
CPLEX solvers do not. Furthermore, ILS finds optimal solutions for all under-constrained
instances with γ 三 0.5 and all over-constrained instances with γ＝ 0.2, regardless of n,
while the competitors do not perform like this. The scalability must be supported by the

Local Search for Symmetric Latin Square 457

e伍cient p-neighborhood search algorithms.

6. Concluding Remarks
In this paper, we have considered fast local search technique for the MaxCSLSC prob­
lem. Specifically, we proposed p-neighbo出ood search algorithms for pε｛1, 2} that run in
O(nP+l) time. For randomly generated insta恥es，七he ILS algorithm finds be抗er solutions
more freque凶y than the exact solvers (i.e., IP and CP solvers from IBM ILOG CPLEX [21])
and the heuristic solvers (i.e., LOCALSOLVER [29] and WCSP [32]). We also observed that
the ILS algorithm has a higher scalability七han the competitors.

We could develop a 3-neighborhood search algorithm that runs in 0（η4) time, by ex­
tending the 3-neighbo血ood search algo出hm for the PLSE problem [17]. The algo此hm
takes into account the observation on Itoyanagi et al.'s 3-neighborhood search in the max­
imum independent set problem for an ordinary gr叩h [23]. However, we do not go to this
direction as we do not expect its practical value. In the computational studies for the PLSE
problem in [17], the ILS algorithm with 3-neighbo出ood performs worst among the ILSs
with various types of neighborhoods, mainly due to its inefficiency. Furthermore, the proofs
would become too complicated.

U nfortunatel）
九

回 the No Free Lu凹h Theor ns go [37], the ILS algorithm does not nec­
essarily perform well on all possible instances. In our preliminary experiments, it performs
ill on the problem of constructing a complete SLS under a home-away table. This problem
arises in sports scheduling [5, 19, 31], and let us review it briefly. There are n teams, where
n is even, and each team has its own venue. We are given an n × （n - 1) table T, where
each (p, q) element, denoted by Tp

山 is either H (home) or A (away). If Tp,q = H (resp., A),
then a team p should play at their own venue (resp・， at the competitor's venue) in a time
slot q. In other words, teams p and p' should not play in a time slot q whenever Tp,q = Tp',q·
The problem asks for an SRRT (and thus a complete SLS) that satisfies this constraint.

Forηε｛20, 22, .. . , 28}, we generate all home-away tables that satisfy certain conditions
mentioned in [31] (i.e., those having minimum “breaks" and satisfying a necessary condition
for admitting a complete SLS). The ILS succeeds in constructing complete SLSs for 100%,
97%, 80%, 49% and 24% of the home-away tables for each n, respectively, while CPX-IP
and CPX-CP construct complete SLSs for all home-away tables.*

We claim that the result should not diminish the value of our achievement in this paper.
It just tells that the CPLEX solvers perform better than the ILS algorithm for the CSLSC
problem under a home-away table. On the other hand, as we observed in Section 5, the ILS
algorithm is better than the CPLEX solvers for RAND and SLSWH instances.

Based on these, we claim that七he proposed efficient local search should be among the
valuable technique for the CSLSC problem.

Acknowledgments
We gratefully acknowledge very careful and detailed comments given by anonymous review­
ers. This work is partially supported by JSPS KAKENHI Grant Number 25870661.

References
[1] E. Aarts and J.K. Lenstra (eds.): Local Search in Combinαto rial Optimization (John

Wiley & Sons, Inc., New York, 1997).

*For larger n, CPX”CP finds complete SLSs much faster than CPX-IP. vVe recommend those who are
interested in this issue to try a CP solver rather than an IP solver.

458 K. Haraguchi

[2] B. Alidaee’ G Koch lコer伊·
，

and H. Wang: Siロ1ple ar fast surrogate constraint
heuristics for the maximum independent set problem. Journal of Heuristics, 14 (2008),
571-585.

[3] D.V. Andrade, M.G.C. Resende, a吋 RF. Wemeck: Fast local search for the maximum
independent set problem. Journal of Heuristics, 18 (2012), 525-547.

[4] C. Berge: Hypergraphs: Combinαtorics of Finite Sets. volume 45 of North-Holland

Mαthematical Library (Elsevier, Amsterdam, 1989).

[5] D. Briskorn: Feasibility of home-away-pattern sets for round robin tournaments. Op­

er,αtions Research Letters, 36 (2008), 283 284.

[6] C.J. Colbourn: Embedding partial steiner triple systems is NP-complete. Journal of

Combinatorial Theory, Series A, 35 (1983), 100 105.

[7] D. de Werra: Scheduling in sports. Annαls of Discrete Mαthemαtics, 11 (1981), 381-
395.

[8] K. E回ton, G. Nemhauser, and NI.A.τ＇rick: The traveling tournament problem: de­
scription and benchmarks. In T. Walsh (ed.): Proceedings of CP'OJ, volume 2239 of
Lecture Notes in Computer Sc附ice (2001), 580 584.

[9] IVI. Goerigk, R. Hoshino, K. Kawarabayashi, and S. Westphal: Solving the traveling
tournament problem by packing three刊rtex paths. In C.E. Brodley and P. Stone (eds.):
Proceedings of 28th AAA! Conference on ArtificiαJ Intelligence (2014).

[10] IvI. Goerigk and S. Westphal: A combined local search and integer programming ap­
proach to the traveling tournament problem. In D. Kjenstad, A. Riise, T.E. I河ordlander’
B肘1cCollu山111

[11] （ コ P Gomes, R.G. Regis, and D.B. Shmo：）ぽs: An improved approximation algorithm for
the partial latin square extension problem. Operations Reseαrch Letters, 32-5 (2004),
479-484.

[12] C.P. Gomes and D.B. Shmoys: Completing quasigro叩s or latin squares: a structured
graph coloring problem. In Proceedings of ComputαtionαJ Symposium on Graph Color­

ing αnd Generalizαtions (2002).

[13] T.F. Gonzalez (ed.): H1αndbook of Approximαtioη Algorithr

(Chapman & Hall/CRC, 2007).

[14] A.C.B. Gued巳S an仁l C.C. Ribeir‘o: A heur
in rou凶robin tournaments. Journαl of Schεd包Zinηg’ 14 (2011), 655一667.

[15] I. Hajirasouliha, H. Jowhari, R. Kumar, and R. Sundaram: On completing latin
squares. In W . Thomas and P. Weil (eds.): Proceedings of STAGS 200ス volume 4393
of Lecture Notes in Co抑協T Science (2007), 524-535.

[16] K. Haraguchi: A constructive algo此hm for partial latin square extension problem that
solves hardest instances e百ectively. In S. Fidanova (ed.): Recent Ad叩ηces in Compu­

tαtionαJ Optimization: Results of WCO 2013 (2015), 67 84.

[17] K. Haraguchi: Iterated local search with trellis-neighbo巾ood for the pa凶al latin square
extension problem. Journal of Heuristics, 22-5 (2016), 727-757.

[18] M. Renz, T. Muller, and S. Thiel: Global constraints for round robin tournament
scheduli時 Europe仰 Journal of Operationαl Reseαrch, 185 (2004), 92 101.

[19] A. Horbach: A combinatorial property of the maximum round robin tournament prob­
lem. Operations Reseαrch Letters, 38 (2010), 121-122.

[20] C.A.J. Hurkens and A. Schr討ver: On the size of systems of sets every t of which have

Local Search for Symmetric Latin Square 459

an SDR, with an application to the worst-case ratio of heuristics for packing problems.
SIAM Journal on Discrete M atl問問tics, 2 (1989), 68一72.

[21] IBM ILOG CPLEX: h七tp://www-01. ibrr
cplex-optimizer/. accessed on April 2, 2016.

[22] S. Imahori, T. Matsui, and R. IVliyashir
constrained traveling tournament pr、oblem. Aηηαls of Oper，αtions Reseαrch’ 218 (2014)
237一247.．

[23] J. Itoyanagi, H. Hashirr

？

neighborhoods forもhe maximum weighted independent set problem. In Proceedings of

MIC 2011 (2011), 191-200.
[24] G. Kendall, S. Knust, C.C. Ribeiro, and S. Urrutia: Scheduling in sports: an annotated

bibliography. Co句協同 αnd Operations Reseαrch, 37 (2010), 1 19.
[25] T.P. Kirkman: On a problem in combinations. The Cαゆridge αnd Dublin Mαthemαt­

ical Journαl, 2 (1847), 191-204.
[26] E. Klotz and A.M. Ne京rn1剖1: Pr唱a.cti l guidelines for solv叫difficul

linear programs. Surveys in Operations Research and Manαgement Science, 18 (2013),
18-32.

[27] R. Kumar, A. Russel, and R. Sundaram: Approximating latin square extensions. Al­

go叫hmica, 24 (1999), 128-138.
[28] R. Lewis: Metaheuristics can solve sudoku puzzles. Journal of Heuristics, 13-4 (2007),

387 401.
[29] Loca1Solver: http://www. localsol ver. com/. accessed on April 2, 2016.
[30] W. Michiels, E. Aa山，and J. Korst: Theoretical Aspects of Local Search. Monographs

in Theoretical Computer Science, an EATCS Series (Springer-Verlag New Yo比，Inc.,
Secaucl

[31] R. Miyashir
minimum number of breaks. In E. Burke and P. de Causmaecker (eds.): Proceedings of

PATAT 2002, volume 2740 of Lecture Notes in Computer Science (2003), 78-99.
[32] K. Nonobe and T. Iba叫<i: An improved tabu search method for the weighted constraint

、 satisfaction problem. INFOR, 39 (2001), 131 151.
[33] R.V. Rasmussen and M.A. Trick: Round robin scheduling - a survey. Europeaη Journal

of Operational Research, 188 (2008), 617一636.
[34] C〕.C. Riberio: Sports scheduling: problen

in Openαtions Reseαrch’19 (2012), 201-226.
[35] KG. Russel: B仙1nci叫（＇. l弘rry-over e:ff，ピct，δin round ro bil守i 七ourna.rne

(1980), 127-131.
[36] M.A. Trick: Integer and constraint programming approaches for round-robin tourna­

ment scheduling. In E. Bu比e and P. de Causmaecker (eds.): Proceedings of PATAT

2002, volume 2740 of Lecture Notes in Computer Science (2003), 63-77.
[37] D.H. Wolpert and W.G. Macready: No free lunch theorems for op�imization. IEEE

肝ansαctions on Evolutiona叩 Computαtion, 1 (1997), 67-82.

460 K. Haraguchi

Kazuya Haraguchi
Faculty of Commerce
Otaru University of Commerce
Midori 3-5-21, Otaru, Hokkaido,
047-8501, JAPAN
E-mail: haraguchi©res. otaru-uc. ac. jp

