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Abstract

We consider a puzzle such that a set of colored cubes is given as an instance. Each cube
has unit length on each edge and its surface is colored so that what we call the Surface Color
Condition is satisfied. Given a palette of six colors, the condition requires that each face
should have exactly one color and all faces should have different colors from each other. The
puzzle asks to compose a 2 X 2 X 2 cube that satisfies the Surface Color Condition from eight
suitable cubes in the instance. Note that cubes and solutions have 30 varieties respectively.
In this paper, we give answers to three problems on the puzzle: (i) For every subset of the
30 solutions, is there an instance that has the subset exactly as its solution set? (ii) Create
a maximum sized infeasible instance (i.e., one having no solution). (iii) Create a minimum
sized universal instance (i.e., one having all 30 solutions). We solve the problems with the
help of a computer search. We show that the answer to (i) is no. For (ii) and (iii), we show
examples of the required instances, where their sizes are 23 and 12, respectively. The answer
to (ii) solves one of the open problems that were raised in [E. Berkove et al., “An Analysis of
the (Colored Cubes)® Puzzle,” Discrete Mathematics, 308 (2008) pp. 1033-1045).

keywords: Combinatorial puzzle, MacMahon’s colored cube puzzle, Eight Blocks to Madness,
Computer-assisted proof

1 Introduction

Various kinds of mathematical puzzles have been invented, which provide us with not only
recreation but also interesting research problems. Many types of puzzles such as pencil puz-
zles [2, 10, 16, 20, 31] and even video games [1, 9, 29] have been shown to be NP-hard, which seems
to be a common property that attractive puzzles should have. Hearn and Demaine collected major
complexity results in [17].

Puzzle instance creation is one of the possible future research directions in mathematical puzzles.
Ordinary people do not have interest in computational complexity. They just like to play more
and more addictive and challenging puzzle instances. Hence it is meaningful to exploit how to
create puzzle instances that have desired properties. Nevertheless, fairly little literature deals with
puzzle instance creation (e.g., FUTOSHIKI [14] and BLOCKSUM [15]). This is due to its difficulty.
Creating a puzzle instance is harder than just solving it in general because creation process involves
solving. To create an instance, we need not only to check whether a candidate instance is solvable
but also to examine whether it has desired properties (e.g., solution uniqueness) or even to search
the instance space for better candidates.

With these in mind, we explore how to create an instance for simple puzzles. In this paper, we
take up a certain generalization of a classical puzzle called “Eight Blocks to Madness.” We present
a collection of our research results on this puzzle. Specifically, we give answers to three problems
named EXISTENCE, MAXINFEASIBLE, and MINUNIVERSAL that are described below.

In the puzzle that we consider, we deal with colored cubes. Suppose that a palette of six colors
is given. A puzzle solver is given a set of m colored cubes as an instance. Each cube has unit
length on each edge and the surface is colored so that the following Surface Color Condition is
satisfied.
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Surface Color Condition: Fach face has exactly one color and all faces have different colors
from face to face.

Hence, 30 wvarieties are possible for colored cubes. The instance may contain multiple cubes for
some varieties or may contain no cubes for other varieties. The puzzle asks to compose a 2 x 2 x 2
cube by using eight suitable cubes in the instance so that the 2 x 2 x 2 cube satisfies the Surface
Color Condition. We call a 2 x 2 x 2 cube whose surface is colored in that way a solid. Of course
there are 30 varieties of solids. Once an instance is given, the solids that can be constructed are
uniquely determined. Note that all the 30 varieties do not necessarily appear.

To create a puzzle instance, we fix the solution set at first and then search for an instance
that has this solution set, as has been done in creation of pencil puzzle instances [14, 15]. Let us
denote the set of all the 30 varieties by V) and an arbitrary subset of V1 by V. An instance is
V -generatable if a solid of any variety in V' can be composed and no solid of any variety out of
V' can be composed anyhow. In our creation process, we first decide a subset V of V,; and then
construct a V-generatable instance. We come up with the following problem.

Problem EXISTENCE Is there a V-generatable instance for all possible V' C V1?7

We show that, unfortunately, the answer is no. This suggests that a puzzle creator should choose
the solution set V' appropriately so that a V-generatable instance exists.

Next, we observe two extreme cases: V = () and V = V1. Let us call an #-generatable instance
infeasible and a V,j-generatable instance universal. It is easy to construct examples of these types
of instances. For example, an instance containing seven or fewer cubes is infeasible. An instance
that contains eight or greater cubes for all the 30 varieties is universal. It is interesting to explore
a larger infeasible instance and a smaller universal instance since, intuitively, the more cubes and
the more varieties an instance contains, the more varieties of solids are expected to be composable.
The following problems arise.

Problem MAXINFEASIBLE Create an infeasible instance of the maximum size.

Problem MINUNIVERSAL Create a universal instance of the minimum size.

We give answers to these problems by showing examples of a maximum infeasible instance and
a minimum universal instance, where their sizes are 23 and 12, respectively. We emphasize that
MAXINFEASIBLE solves one of the open problems in [6].

To tackle these problems, we utilize the power of a computer search. Our approach can be
regarded as “computer-assisted proof,” which has been used to solve various significant problems
in discrete mathematics; e.g., Four color theorem [3, 4, 5], Sudoku critical set [25]. We formulate
the problems by Constraint Programming (CP) or by Integer Programming (IP). Once the models
are established, we may be able to solve the problems by using state-of-the-art computational
softwares.

The paper is organized as follows. We review previous work related to the puzzle in Section 2
and prepare terminologies and notations in Section 3. We present the answers to the three problems
in Section 4, along with their CP or IP formulations. We conclude the paper in Section 5, describing
open problems.

2 Related Work

The original version of “Eight Blocks to Madness” was invented by Irishman Eric Cross in 1960’s
and was issued by Austin Enterprises of Ohio [26]. The puzzle instance has exactly eight cubes
that are of different varieties from each other. Thus a solver has only to arrange the eight given
cubes into a solid. Kahan [19] showed that the solid variety composable from this original instance
is unique. Sobezyk [27] studied a slight generalization of the original puzzle so that an instance can
be a set of any eight cubes, repetition of the same variety cubes being allowed. He showed that at
most six varieties of solids are composable from such an instance. Our puzzle is a generalization
of these previous puzzles in the sense that an instance is a set of any m cubes.



Berkove et al. [6] already studied a further generalization. In their puzzle, which they call
“(Colored Cubes)?® Puzzle,” a puzzle solver is given a set of m cubes as an instance and is asked
to compose an n X n x n solid, where m > n? is assumed. They prove that a solid is always
composable when n > 3. The scenario of the proof is described as follows: they show that, when
n >3, ann X n X n solid is composable iff the instance contains such a subset of eight cubes that
can be arranged into a 2 x 2 x 2 solid. They show that every instance of no less than 3% = 27 cubes
has such a subset. Such a subset is significant because, to compose an n X n X n solid, it is most
“difficult” to find eight cubes from the instance that are assigned to the corners of the solid; these
cubes form a 2 x 2 x 2 solid. We use the term “difficult” to mean that cubes that can be assigned
to corners are most restricted since the three faces are exposed to the outside. On the other hand,
it is comparatively easy to find cubes to be assigned to other parts of the solid. For example, we
can assign any cube to the inside since no face is exposed to the outside. Thus, the n = 2 case
plays a significant role in the analysis of the n > 3 case. This is why we concentrate on the n = 2
case.

Colored cube puzzles appear to have been introduced to recreational mathematics by
P.A. MacMahon in 1920’s [23, 24]. He invented the first puzzle that deals with colored cubes.
In his puzzle, a puzzle solver is given a set of 29 cubes of different varieties except a certain variety,
say v. The solver is asked to compose a 2 X 2 x 2 solid of the variety v so that the Domino Condi-
tion is satisfied, i.e., in the inside of the solid, two faces touching each other should have the same
color. The research history of this puzzle is summarized in M. Gardner’s famous “Fractal Music,
Hypercards and More...” [12]. The most outstanding way to solve the puzzle was developed by
J.H. Conway. He arranged the 30 varieties of cubes in the non-diagonal entries of a 6 x 6 grid, as in
Figure 1. When v is the variety in the row ¢ and in the column j, we can compose the desired solid
from eight cubes, one each of the varieties in row j and column 7, not including the (7, 7)-variety.

Our puzzle is different from MacMahon’s in three points: in our puzzle, an instance is a multi-
set of m cubes, the solid variety to be constructed is not specified to the solver, and the Domino
Condition is not imposed on the inside of the solid. Nevertheless, we will use Conway’s table in the
analysis of our puzzle since it has interesting properties that let us understand the analysis more
easily.

Among other types of colored cube puzzles, Instant Insanity’ must be the most well-known
puzzle. Recently Demaine et al. analyzed the computational complexity of its variations in [8],
where the research history is well-covered.

3 Preliminaries

3.1 Our Puzzle

A cube has six faces, 12 edges and eight corners. The variety of a cube is specified by how the six
colors are assigned to its faces. We index the 30 varieties by means of Conway’s table in Figure 1.
We denote the variety in the row ¢ and in the column j by (i, 7). For a natural number n, let [n] =
{1,2,...,n}. We denote the set of all the 30 varieties by Vau, i.e., Van = {(¢,7) € [6] x [6] | i # j}.
We call a cube of variety (4, 7) an (i, )-cube.

In order to explain the properties of Conway’s table, we introduce the notion of corner triple.
For each corner of cube, we define a corner triple as an ordered triple of three colors around the
corner such that the head element is set to the color of the lexicographically smallest letter among
them and the colors are taken in the clockwise order around the corner. A cube (and thus a variety)
has eight corner triples. We denote the set of eight corner triples of variety (¢,7) by T; ;. We show
examples as follows.

T1,2 :{(p7Q7t)7 (p7 S?“)? (p,ﬂ 3)7 (p7u7Q>7 (q7r7 t)? (q7u7T)7 (T, Svt)7 (nu, S)}7
To1 ={(p,t,q), (0, u,s),(p,s,t), (p,q,u),(¢,t,7), (g, 7, u), (rt,s),(r,s,u)}.

L«Instant Insanity” was originally trademarked by Parker Brothers in 1967. The trademark is now owned by
Winning Moves, Inc.



Figure 1: Conway’s table of the 30 cube varieties. Each variety is represented by how the 6 colors
are assigned to the development of a cube. The six colors are denoted by p, q,7, s, t, u.

Observe that 40 corner triples are possible in all. Two corner triples are the mirror images of each
other if both contain the same three colors but are different ordered triples. For example, (p,q,t)
and (p,t,q) are the mirror images of each other. Two varieties (¢,7) and (i/,5’) are the mirror
varieties of each other if, for each triple in 7 ;, its mirror image belongs to 7T}/ j». For example,
(1,2) and (2, 1) are the mirror varieties of each other.

We say that two different varieties are compatible (resp., incompatible) with each other if they
share at least one corner triple (resp., no corner triple). For convenience, we may say that two cubes
are compatible (resp., incompatible) when their varieties are compatible (resp., incompatible) with
each other. For a variety (i,7), let V;; (resp., Vi ;) denote the set of varieties compatible (resp.,
incompatible) with (i,7). Note that neither V;; nor V; ; contains the variety (i,7) itself. Every
variety in V; ; can be obtained by changing the color assignment of (i,j) by either the “swap”
operation or the “rotation” operation [6]. By the swap operation, we mean the exchange of two
colors of adjacent faces that share one edge with each other. By the rotation operation, we mean
the rotation of colors of the three faces around a corner so that the corresponding corner triple is
unchanged. The former yields 12 varieties distinct from (i, j) and the latter yields eight varieties
distinet from (i, j). The variety set V; ; consists of the mirror variety of (i,j) and the mirrors of
the eight varieties that are generated by performing the rotation operation on (i, 7).



Proposition 1 (Proof of Lemma 2.7 in [6]) We have |V; ;| = 20 and |V; ;| = 9 for any variety
(i,5)-
Moreover, whenever two varieties are compatible, they share exactly two corner triples.

Proposition 2 (Lemma 2.7 in [6]) Two different varieties share either zero or two corner triples
with each other.

Now we present the properties of Conway’s table as follows.
Property 1 The mirror variety of (i,j) is (j,4).

Property 2 The five varieties on the same row or on the same column are incompatible with each
other.

From |V; ;| = 9, we have

Vig ={(G 0 0{(,37) [ 5" € [\ {i, 3} U{(@".5) | i € [6]\ {i, 5} }-

This implies that, to compose a 2 x 2 x 2 cube of variety (i, j), we cannot use cubes of the mirror
variety (j,4) or cubes of the varieties on the row ¢ or on the column j, except (i, 7) itself.

An instance is a multi-set of colored cubes. We denote an instance by I. We represent the
distribution of varieties in I by a 6 x 6 matrix, which we denote by its calligraphic style Z. Each
value Z; ; in the matrix represents the number of (7, j)-cubes in the instance. Note that we let
Z;; =0 for any i € [6]. We call |I| the size of I. Clearly we have

= > I,

(4,7) € Van

A solid is a 2 x 2 x 2 cube that is composed of eight 1 x 1 x 1 cubes and that satisfies the
Surface Color Condition. We call a solid an (4, j)-solid when its variety is (¢,5). We say that an
(1, 7)-solid is composable from I if I contains a subset of eight cubes that can be arranged into an
(,7)-solid. An instance I is V-generatable if an (i, j)-solid is composable from I when and only
when (i,7) € V. An instance is universal if it is V,j-generatable. An instance is infeasible if it is
()-generatable.

3.2 Composability Conditions

We introduce two necessary and sufficient conditions for an (4, j)-solid to be composable from a
given instance I, using graph terminology. We also derive corollaries from these conditions, which
we will use to solve the three problems introduced in Section 1.

The first condition is rather straightforward. We consider a bipartite graph B; ; such that
nodes on one side are cubes in I and nodes on the other side are corner triples in T; ;. Since [ is
a multi-set, it may contain multiple cubes for a single variety, and all of them appear as distinct
nodes. A pair (¢, 7) in I x T; ; is joined by an edge whenever ¢ has corner triple 7. The existence
of edge (¢, 7) indicates that ¢ can be allocated to the corner having 7. Let the variety of ¢ be
v. From Proposition 2, the degree of ¢ is zero if v € V; ;, it is two if v € Vj;, and it is eight if
v = (i,7). A matching in a graph is a subset of edges such that no two edges in the subset have
an endpoint in common. A matching in B; ; represents admissible allocation of cubes to corners,
where each cube in [ is allocated to at most one corner, and each corner is assigned at most one
cube. Since |T; ;| = 8, we have the following condition.

Proposition 3 An (i, j)-solid is composable from an instance I iff there is an 8-size matching in
the bipartite graph B; ;.

Clearly, if an 8-size matching exists, then it is a maximum cardinality matching. For any subset T
of T; ;, let I(T') denote the subset of cube nodes that are adjacent to at least one node in T'. That
is, I(T') is the subset of cubes in I that have a corner triple in T'. From the Marriage Theorem [21],
the following corollary is immediate.



Corollary 1 An (i,7)-solid is composable from I iff |T| < |I(T)| holds for all possible subsets T
Of Ti,j~

The second condition is based on a certain multi-graph that is obtained by changing the struc-
ture of B;; as follows; remove all cube nodes of degrees 0 and 8 and the connecting edges, and
then shrink every cube node of degree 2 and its connecting edges into a new edge. As a result,
only T; ; remains as the node set. Each edge is associated with a cube compatible with (4, j) and
multi-edges may appear. We denote this multi-graph by G; ; = (T}, Ei ;). Since all compatible
cubes in I appear as edges, we have |E; ;| = Z(i’,j’)evi,j T ji.

Proposition 4 An (i, j)-solid is composable from an instance I iff Z; ; is no less than the number
of tree components in the graph G ;.

PRroor: For the necessity, let us denote the number of tree components by k. Suppose Z; ; < k.
We denote the set of all nodes in the k tree components by T and the set of all cubes appearing
in the components as edges by I’. We have |I'| = |T| — k. The set T of corner triples is a node
subset in the bipartite graph B; ;. We have I(T') = I’ U {(4, j)-cubes in I}, where the second cube
set in the right side may be a multi-set. It follows that:

()| =I'|+Ti; =TI =k +Ti; <|T|

By Corollary 1, we cannot compose an (4, j)-solid in any way.

For the sufficiency, if an (¢, j)-solid is not composable, then there is a subset T' of T; ; such that
|T| > |I(T)| = Z;; + |I'|, where I’ is the subset of compatible cubes in I that are adjacent to a
node in T'. Consider the subgraph of G; ; induced by T'. The number of edges in the subgraph is
equal to |I’|. Denoting the number of tree components in the subgraph by &, we have |I'| > |T|—k.
Since |T'| >Z; ; + |T| — k, we have k > Z; ;. O

We give an example of how Proposition 4 works. In Figure 2, we show graphs G2 and Ga 3
for the instance I with nine cubes that has the following matrix representation:

020000
0 000 01
0 00011
1= 0 0 00 0O (1)
0 0 00 0 2
0 00110

In the figure, a node (resp., an edge) is labeled with its corresponding corner triple (resp., cube
variety). We see that a (1,2)-solid is composable since there is only one tree component in G 2
(i.e., an isolated point (p,s,u)) and Z; 2 = 2. On the other hand, a (2, 3)-solid is not composable
since there is a tree component in G 3 but Zy 3 = 0.

As a corollary to Proposition 4, we derive a sufficient condition for an (i*,j*)-solid to be
composable from a given I. Let us consider composing an (i*,j*)-solid from only (i*,j*)-cubes
and cubes whose varieties are in a single row iy # ¢* (or a single column jy, # j* analogously) of
Conway’s table. In the row i, exactly four varieties are compatible with (i*, j*) from Property 2.
Observe a subgraph of G« j« such that the node set is T;- j« and the edge set is a subset of
those coming from cubes of the four varieties. Since the four varieties are pairwise incompatible
by Property 2, edges coming from different varieties do not touch with each other. Each tree
component in the subgraph is an isolated point or consists of two nodes connected by just one
edge. The number of tree components of the former kind is 2|{(i¢, j) € Vi» j» | Zi,,; = 0}] and that
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Figure 2: Graphs G712 and Gy 3 for the instance I of (1)

of the latter kind is |{(io,j) € Vi j+

Z;,,; = 1}|. Hence, the total number of tree components is:

2|{(ZO7]) € V;*J* Iio,j = O}| + |{(7’07.7) € Vvl,*J*
+ 0|{(%0,7) € Vix j= | Zio,; > 2}|
= Y (@2-min{Z,;2})

(i0,5) EVix j*

=8— > min{Z,; 2}

(i0,7) EVix j*

Ziy.j = 1}|

By Proposition 4, if Z;« ;- is no less than the above number, then we can compose an (i*, j*)-solid.
More generally, if Z;- j« + Z(io fevy. . min{Z;, ;,2} > 8 holds in at least one row ig # i*, or
B i*,7

analogously, if Z;- j= + 32, s yey,. . min{Z; j,,2} > 8 holds in at least one column jo # j*, then
we can compose an (i*, j*)-solid. We define f(i*,5*) as follows:

f(Z*m?*) = Ii*,j* + max{frow(i*7j*)7fcol(i*aj*>}7 (2)

where frow and feo are defined as:

Jrow (i, J%) = ~mnax { § min{zio,jv2}}v (3)
io€[6]\{s*} =
(30,5) E Vi j*

fea(i*,5%) = max { ) min{Z; j,,2}}. (4)
Jo€l6\{s*} = .
(4,40) EVyx =

Corollary 2 If f(i*,5*) > 8, then an (i*,j*)-solid is composable.

4 Answers to EXISTENCE, MAXINFEASIBLE and MINUNIVERSAL

In this section, we present answers to the three problems, EXISTENCE, MAXINFEASIBLE and MI-
NUNIVERSAL. To draw the answers, we utilize the power of a computer search; we formulate the
problems by CP and IP and then solve them using computational packages.

Let us begin with description of CP and IP. The CP technique that we use is Constraint
Satisfaction Problem (CSP). In a general setting of CSP, we are given a set of wvariables, each
of which has its domain, and a set of constraints restricting the values that the variables can
simultaneously take. We are asked to assign a value from its domain to every variable, in such a way
that every constraint is satisfied. The Global Constraint Catalog [13] summarizes constraint types



that are typically used in CSP. The key techniques to solve CSP include backtracking, constraint
propagation, and so on [7].

Concerning IP, we employ Integer Linear Programming (ILP) among various models; given a
linear function of integer variables called an objective and a set of linear equalities and/or inequal-
ities representing constraints, we are asked to assign integers to the variables so that the objective
value is minimized (or maximized) and that, at the same time, all the constraints are satisfied. The
key techniques to solve ILP include linear programming, branch-and-bound, cutting plane, and so
on [30].

The software choice is significant since it has a great influence on computation time. For CSP,
we use SUGAR (ver. 2.2.1) [28] that solves a CSP model by means of solving a corresponding SAT
model. SUGAR transforms an input CSP model into an artificial one by preprocessing, encodes
it into a SAT model by a certain sophisticated algorithm, and then runs a SAT solver. We use
MINISAT (ver. 2.2.1) [11] as the SAT solver. For ILP, we utilize IBM ILOG CPLEX (ver. 12.6) [18].
Both are recognized as excellent software packages.

The computation was conducted on a workstation that carries Intel® CoreTM i7-4770 Processor
(up to 3.90GHz by means of Turbo Boost Technology) and 8GB main memory. The installed OS
is Ubuntu 14.04.1.

We formulate EXISTENCE and MAXINFEASIBLE by CSP and MINUNIVERSAL by ILP. CSP and
ILP are so robust that our three problems can be formulated by either model, but they have different
weak points from each other. For example, ILP is not very suitable for formulating disjunctive
constraints since we are possibly required to introduce a large number of artificial variables and
constraints. Problems EXISTENCE and MAXINFEASIBLE contain disjunctive constraints, and in
our preliminary study, ILP models for these two problems are not solved within 10* seconds;
CSP is more suitable for formulating them. On the other hand, MINUNIVERSAL does not contain
a disjunctive constraint, and the ILP model takes only a couple of seconds to find a minimum
universal instance, while the CSP model takes 4.5 x 103 seconds.

4.1 Problem EXISTENCE

To say no, it suffices to present a variety subset V of V) for which a V-generatable instance does
not exist. Based on our preliminary study, we conjecture that V consisting of five varieties in the
same row (or column) should be such a subset.

Let us set V = {(1,2),(1,3),(1,4),(1,5),(1,6)}. We formulate the problem of finding a V-
generatable instance by CSP, expecting the software SUGAR to say that such an instance does not
exist. In the CSP model, we have 30 non-negative integer variables, denoted by z12,213,..., %65,
that represent the distribution of cubes over the 30 varieties, that is, z; ; = Z; ;. The domain of
each x; ; is set as follows:

2 €{0,1,...,8} if (i,5) €V,
z;; €{0,1,2} otherwise.

(5)

We assume z; ; < 8 since a ninth cube is redundant. Furthermore, we assume z; ; < 2 for any
(i,7) ¢ V since (i,j)-cubes can be used to compose an (i*, j*)-solid ((i*,7*) € V) at most twice
and thus a third cube is unnecessary. The constraints include:

(I) The instance size is at least eight.
(IT) For each composable variety (i*,7*) € V, |T'| < |I(T')| holds for every subset T of Tj» j«.

(III) For each non-composable variety (i*,5*) ¢ V, |T'| > |I(T")| holds for at least one subset T" of
Tl* ,j* .

(IT) and (IIT) come from the composability condition of Corollary 1.
CSP deals with a constraint that is represented by a linear inequality of variables. (I) and (IT)
can be expressed by a set of linear inequalities; For (I),

(4,7)EVan



For (II),

V(i*,5%) € V, VT C T oy @i jo + Z x5 > [T, (7)
(1,)EVie ju: Ti ;NTHD

where the left side of the inequality is equal to |I(T")].
(IIT) is a disjunctive constraint. To express this, we employ OR constraint:

Vi) ¢V, (mie e+ > zij < |T)). (8)

TCTyx (4,§)EVyx j=: Ti jNT#D

Furthermore, to increase the computational efficiency, we reduce the search space by introducing
the following constraint that is derived from Corollary 2:

V(@5 ¢V, fE, %) <.

Observing (2) to (4), we express the constraint by a set of linear inequalities and MIN constraints
as follows:

Y(i*,5%) ¢ V, Vig € [6]\ {i*}, Tige+ > min{w;,2} <7, (9)
(i0,)EVix jx
V(i*,7°) & V, Yo € 6]\ {5*}, zie g+ > min{w .2} < 7. (10)

(4,50)EVyx j*

Finally, our primitive CSP model has 30 integer variables with domains in (5) and constraints
from (6) to (10). As a part of preprocessing, SUGAR transforms this nalve model into an artificial
one that has 4.5 x 10* integer variables, 6.3 x 10 Boolean variables and 7.5 x 10° constraints,
and then encodes it into a SAT model that has 5.9 x 10° variables and 1.1 x 107 clauses. After
1.6 x 103-second computation, MINISAT decides that the SAT model is not satisfiable, which means
that no V-generatable instance exists.

Theorem 1 There is a subset V' of Van such that a V-generatable instance does not exist.

The above argument implies that, if all five varieties in a row or a column of Conway’s table are
composable, then there is a composable variety outside the row or the column. So far, however,
we have not gained any insight into which variety it might be.

4.2 Problem MAXINFEASIBLE

It is Berkove et al. [6] who first studied MAXINFEASIBLE. They showed the maximum size of
infeasible instance to be at least 22, presenting a concrete example of a 22-size infeasible instance
as the certificate. They conjectured the maximum size to be 23, leaving it open.

We show by construction that a 23-size infeasible instance exists. We then show that no 24-size
infeasible instance exists by means of CSP. This answers Berkove et al.’s open problem.

Theorem 2 There is an infeasible instance of size 23.

PROOF: We show that the instance N with the following matrix representation is infeasible:

T

(11)

OO OO oo
OO O OO
OO O OO
OO OO O
OO OO o
OO OO O

The size of N is exactly 23. We show that no (7, j) satisfies the composability condition of Propo-
sition 4. Recall Properties 1 and 2 of Conway’s table. For every (1,7) with j € {2,...,6}, the



graph G ; consists of eight isolated points, while Nj ; is smaller than eight. Hence, a (1, j)-solid
is not composable.

For (i,j) = (2,1), the edges appearing in G2; come from the cubes of the varieties
(1,3),...,(1,6) since (1,2) is the mirror variety of (2,1). The edges from the same variety form
multi-edges, and those coming from different varieties do not touch with each other since they are
pairwise incompatible. There are four connected components in G, each of which consists of
two nodes. Among these, two connected components contain only one edge respectively, which are
tree components, but N has no (2, 1)-cube. Hence, a (2, 1)-solid is not composable. The remaining
cases can be shown in the same way. [

Lemma 1 There is no infeasible instance of size 24 or greater.

PROOF: Setting V = (), we show that a 24-size V-generatable instance does not exist by utilizing
CSP. Here we do not use the inequality constraint (6) that gives a lower bound on the instance
size but an equality constraint that fixes the size to 24:

> miy =24 (12)

(4,)€Van

The CSP model in this case has 30 integer variables with domains in (5) and constraints from (7)
to (10) and (12). We run SUGAR to solve the model; the preprocessed CSP model has 7.4 x 10%
integer variables, 7.7 x 103 Boolean variables, and 1.3 x 10° constraints. It is then encoded into a
SAT model that has 1.8 x 10° variables and 4.2 x 107 clauses. After 4.4 x 103-second computation,
MINISAT reports that no solution exists, meaning that no 24-size infeasible instance exists. Clearly,
any larger instance is not infeasible. [

Theorem 3 The mazimum size of infeasible instance is 23. The instance with the matrixz repre-
sentation in (11) is an example.

4.3 Problem MINUNIVERSAL

First, we give a lower bound on the size of universal instance. We then show that the bound is
tight by presenting a universal instance of that size.

Lemma 2 A universal instance should contain at least 12 cubes.

PROOF: Let U be a universal instance. For every variety (i,j) in Vuy, since an (i, j)-solid is
composable, the number |E; ;| +U; ; should be at least eight. The sum of this number over the 30
varieties is at least 30 x 8 = 240. On the other hand, by Proposition 1, each cube in U contributes
to the sum in exactly 21 varieties; denoting the variety of the cube by (¢, j'), once for Uy j,, and
20 times for an edge in G; ; such that (i, ') € V; ;. Hence we have |U| > 240/21 > 11. O

Theorem 4 The minimum size of universal instance is 12. The instance U with the following
matriz representation is an example:

011000
101 0 00
110 0 0 0
U= 0 00011
0 00101
0 001 1O
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PROOF: The size of U is exactly 12. One can verify the universality by checking that Proposition 3
or 4 holds for all the 30 varieties. [

We find the minimum universal instance above by solving the following ILP.

minimize Z(i,j)e‘/au T4 5
subject to (7) with respect to V = Vy
V(i,j) € Van, 0<z;; <8anduz;; €Z

This ILP model has 30 integer variables, z1 2,713, ..,%s5, and 7.7 x 103 inequality constraints,
and does not contain the disjunctive constraint (IIT). IBM ILOG CPLEX solves it within a couple
of seconds, providing U as output.

5 Concluding Remarks

We solved three problems on a generalization of “Eight Blocks to Madness” puzzle, i.e., EXISTENCE,
MAXINFEASIBLE and MINUNIVERSAL, with the help of a computer search. The answers are
summarized as Theorems 1, 3 and 4, respectively. In particular, MAXINFEASIBLE answers an open
problem in [6].

Smarter proofs are expected, especially for EXISTENCE and MAXINFEASIBLE, since the proofs
are computer-assisted; we admit that “computer-assisted proof” is a controversial proof tech-
nique [22].

We leave two open problems.

Open Problem 1 Characterize subsets V' of V) for which a V-generatable instance exists.

We have seen that a V-generatable instance exists if V' = () or V,y;, whereas it does not exist if V
is a set of five varieties in a single row (or column) of Conway’s table (Theorem 1). However, we
are not sure what discriminates variety subsets that have generatable instances and ones that do
not have generatable instances.

Open Problem 2 Characterize subsets V' of V, for which every V-generatable instance is finite.

This problem is restricted to V' for which a V-generatable instance exists. Here we do not restrict
Z;,; to be no more than eight but permit it to be infinite. When V' = (), all V-generatable instances
are finite because the sizes are no more than 23 (Theorem 3). On the other hand, when V = V)
or |V| =1, there exists a V-generatable instance of infinite size. It is interesting to explore what
determines the finiteness of V-generatable instance.

Although being quite simple and classical, colored cube puzzles still provide us with many
mathematical problems. We hope this paper forms a basis of additional research in recreational
mathematics.
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