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Abstract

We consider the system F4(a, b, c) of differential equations annihilating Appell’s hy-
pergeometric series F4(a, b, c;x). We find the integral representations for four linearly
independent solutions expressed by the hypergeometric series F4. By using the inter-
section forms of twisted (co)homology groups associated with them, we provide the
monodromy representation of F4(a, b, c) and the twisted period relations for the fun-
damental systems of solutions of F4.

1. Introduction

Appell’s hypergeometric series F4(a, b, c;x) of variables x = (x1, x2) with complex parameters
a, b, c = (c1, c2) is defined by

F4(a, b, c;x) =
∑

(n1,n2)∈N2

(a, n1 + n2)(b, n1 + n2)

(c1, n1)(c2, n2)(1, n1)(1, n2)
xn1
1 xn2

2 ,

where c1, c2 /∈ −N = {0,−1,−2, . . . } and (c1, n1) = c1(c1+1) · · · (c1+n−1) = Γ (c1+n1)/Γ (c1).
This series converges in the set

D = {x ∈ C2 |
√

|x1|+
√

|x2| < 1},

satisfies

F4(a, b, c;x) = F4(b, a, c;x),

and admits the integral representations (2.3), (2.4), and (2.5). The system F4(a, b, c) of differential
equations annihilating Appell’s hypergeometric series F4(a, b, c;x) is a holonomic system of rank
4 with the singular locus S given in (2.1). A fundamental system of solutions of F4(a, b, c) in a
simply connected domain U in D− S is expressed in terms of Appell’s hypergeometric series F4

with different parameters; see (2.2) for their explicit forms.

In this paper, we find the twisted cycles associated with the integrand in (2.3) which cor-
respond to the solutions (2.2). We evaluate the intersection numbers of several twisted cycles.
By using the intersection numbers, as in [M13] and [MY14], we provide the monodromy repre-
sentation of F4(a, b, c); see Theorem 4.1. We provide a basis for the twisted cohomology group
associated with the integrand in (2.3), and evaluate the intersection matrix for this basis; see
Theorem 5.1. By the compatibility of the parings of twisted (co)homology groups, we have the
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identity (6.1) for the intersection matrices and the period matrices for our bases of twisted
(co)homology groups; for details, refer to Theorem 6.1. This identity implies twisted period rela-
tions, which are quadratic relations between a fundamental system of solutions of F4 and those
of F4 with different parameters. We present some examples in Corollary 6.1.

There have been several studies of monodromy representations of the system F4(a, b, c) under
the condition

c1, c2, a, a− c1, a− c2, a− c1 − c2, b, b− c1, b− c2, b− c1 − c2 /∈ Z;

see [HU08], [Kan81], and [T80]. It is determined in [Kat94] that representation matrices are valid
even when c1, c2 are positive integers, and that the system F4(a, b, c) is irreducible if and only
if c1, c2 /∈ Z are removed from the above. Our expression of the monodromy representation is
independent of the choice of fundamental systems of solutions of F4(a, b, c), and it is valid even
in the case c1, c2 ∈ Z. We represent circuit transforms as matrices by assigning fundamental
systems of solutions of F4(a, b, c); see Corollary 4.1 and Remark 4.4.

Twisted period relations for Lauricella’s system FD and Appell’s system F2, F3 are studied in
[CM95] and [M98]. We can obtain an explicit form of that for F4 by evaluating the intersection
matrix for the basis of the twisted cohomology group. We show that the intersection matrix
H of twisted cycles corresponding to the fundamental system of solutions of F4(a, b, c) in U is
diagonal. This fact is a key to obtaining several simple formulas for F4(a, b, c;x) that arise from
the identity (6.1). There is another application of the intersection form of twisted cohomology
groups; we have a Pfaffian system of F4(a, b, c) using it as in [M1x]. For this, we refer the reader
to the forthcoming paper [GKM1x].

Appell’s system F4(a, b, c) is generalized to Lauricella’s system FC(a, b, c) of rank 2m with m-
variables. A fundamental system of solutions of FC(a, b, c) near the origin is expressed in terms of
Lauricella’s hypergeometric series FC(a, b, c;x). Their integral representations have been given
in [G13]; here, 2m twisted cycles corresponding to them are constructed and the intersection
numbers of these twisted cycles are evaluated. These results together with some intersection
numbers of twisted closed m-forms imply that there are twisted period relations for the funda-
mental systems of FC . Similar results for Lauricella’s system FA(a, b, c) have been obtained in
[G1x].

2. Appell’s system F4(a, b, c)

In this section, we collect some facts about Appell’s system F4(a, b, c) of hypergeometric differ-
ential equations annihilating F4(a, b, c;x).

Let ∂i (i = 1, 2) be the partial differential operator with respect to xi. The function F4(a, b, c;x)
satisfies differential equations[

x1(1− x1)∂
2
1 − x22∂

2
2 − 2x1x2∂1∂2 + {c1 − (a+ b+ 1)x1}∂1 − (a+ b+ 1)x2∂2 − ab

]
f(x) = 0,[

x2(1− x2)∂
2
2 − x21∂

2
1 − 2x1x2∂1∂2 + {c2 − (a+ b+ 1)x2}∂2 − (a+ b+ 1)x1∂1 − ab

]
f(x) = 0.

The system generated by them is called Appell’s hypergeometric system F4(a, b, c) of differential
equations. Though the function F4(a, b, c;x) is not defined for the case c1, c2 ∈ −N, the system
F4(a, b, c) is defined in this case, and it is a holonomic system of rank 4 with the singular locus

S = {(x1, x2) ∈ C2 | x1x2R(x) = 0} ∪ L∞, R(x) = x21 + x22 − 2x1x2 − 2x1 − 2x2 + 1, (2.1)
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where L∞ is the line at infinity in the projective plane P2. We set X = P2 − S. We denote by
F4(a, b, c;U) the vector space of solutions of F4(a, b, c) in a simply connected domain U ⊂ X∩D.

If c1, c2 /∈ Z, then F4(a, b, c;U) is spanned by

F4(a, b, c;x), (2.2)

x1−c1
1 F4(a+ 1− c1, b+ 1− c1, 2− c1, c2;x),

x1−c2
2 F4(a+ 1− c2, b+ 1− c2, c1, 2− c2;x),

x1−c1
1 x1−c2

2 F4(a+ 2− c1 − c2, b+ 2− c1 − c2, 2− c1, 2− c2;x).

Note that x1−c1
1 and x1−c2

2 are single-valued holomorphic functions in U .

For sufficiently small positive real numbers x1 and x2, F4(a, b, c;x) admits the following
integral representations:

G1

∫
∆1

t−c1
1 t−c2

2 (1−t1−t2)
c1+c2−a−2

(
1− x1

t1
− x2

t2
)−bdt1 ∧ dt2, (2.3)

c1, c2, a− c1 − c2 /∈ Z,

G2

∫
√
−1R2

x

t−c1
1 t−c2

2 (1−t1−t2)
c1+c2−a−2

(
1− x1

t1
− x2

t2
)−bdt1 ∧ dt2, (2.4)

Re(c1 − a) < 1, Re(c2 − a) < 1,

G3

∫
D
ta−1
1 tb−1

2 (1−t1+t1t2x2)
c1−a−1(1−t2+t1t2x1)

c2−b−1dt1 ∧ dt2, (2.5)

Re(c1) > Re(a) > 0, Re(c2) > Re(b) > 0.

Here

G1 =
Γ (1− a)

Γ (1− c1)Γ (1− c2)Γ (c1 + c2 − a− 1)
,

G2 =
Γ (c1)Γ (c2)Γ (a− c1 − c2 + 2)

(2π
√
−1)2Γ (a)

,

G3 =
Γ (c1)Γ (c2)

Γ (a)Γ (b)Γ (c1 − a)Γ (c2 − b)
,

∆1 is the formal sum

∆1 = △+
(⟲1 ×I1)

1− γ−1
1

+
(⟲2 ×I2)

1− γ−1
2

+
(⟲3 ×I3)

1− γ1γ2α−1

+
(⟲1 × ⟲2)

(1− γ−1
1 )(1− γ−1

2 )
+

(⟲2 × ⟲3)

(1− γ−1
2 )(1− γ1γ2α−1)

+
(⟲3 × ⟲1)

(1− γ1γ2α−1)(1− γ−1
1 )

,

of 2-dimensional real surfaces, △ and its boundary components Ii (i = 1, 2, 3) are given in Figure
1, ⟲i (i = 1, 2) is a positively oriented circle in the ti-space starting from the projection of Ii to
this space and surrounding the divisors ti = 0, and Q(t, x) = t1t2 − t1x2 − t2x1 = 0 for t ∈ Ii,
⟲3 is a positively oriented circle with a small radius in the orthogonal complement of the divisor
L(t) = 1−t1−t2 = 0 starting from the projection of I3 to this space and surrounding the divisor,

α = e2π
√
−1a, β = e2π

√
−1b, γi = e2π

√
−1ci (i = 1, 2),

√
−1R2

x = {(
√
x1,

√
x2) + (s1, s2)

√
−1 | s1, s2 ∈ R} ⊂ C2, (

√
x1,

√
x2) ∈ △,

and D is the bounded connected component of

{(t1, t2) ∈ R2 | t1, t2, 1− t1 + t1t2x2, 1− t2 + t1t2x1 > 0};
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see Figure 1. The argument of each factor of the integrand of (2.3) at any point t = (t1, t2) ∈
△ is 0, that of (2.3) at the starting point of the circle ⟲i (i = 1, 2, 3) is 0, that of (2.4) at
(t1, t2) = (

√
x1,

√
x2) is 0, and that of (2.5) at any point t = (t1, t2) ∈ D is 0. For these integral

representations of F4(a, b, c;x), we refer the reader to [AoKi11], [O12], and [Cha54].
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Figure 1. Domains of the integrals

For x ∈ U , we set

fi(x) =

∫
∆i

t−c1
1 t−c2

2 (1− t1 − t2)
c1+c2−a−2

(
1− x1

t1
− x2

t2

)−b
dt1 ∧ dt2, (i = 1, . . . , 5), (2.6)

where ∆2, ∆3, and ∆5 are given in Figure 2, and ∆4 is the image of ∆1 under the involution

ı : (t1, t2) 7→ (
x1
t1

,
x2
t2

),

on

C2
x = {(t1, t2) ∈ C2 | t1t2(1− t1 − t2)(t1t2 − t1x2 − t2x1) ̸= 0}.

The conditions for their convergence are as follows.

f1 c1, c2, a− c1 − c2 /∈ Z
f2 Re(b− c1 + 1),Re(c1 + c2 − a− 1),Re(1− b),Re(a− c1 + 1) > 0

f3 Re(b− c2 + 1),Re(c1 + c2 − a− 1),Re(1− b),Re(a− c2 + 1) > 0

f4 c1, c2, b− c1 − c2 /∈ Z
f5 Re(c1 + c2 − a− 1),Re(1− b) > 0

Table 1. Convergence conditions
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t1

t2

∆

∆

∆

The arguments of the factors of the integrand

t1 t2 1− t1 − t2 1− x1
t1

− x2
t2

∆2 0 0 −π −π

∆3 0 0 −π −π

∆5 0 0 0 0

Figure 2. Domains of integrals

Lemma 2.1. We have

f1(x) =
Γ (1− c1)Γ (1− c2)Γ (c1 + c2 − a− 1)

Γ (1− a)
F4(a, b, c1, c2;x),

f2(x) =
Γ (a+ 1− c1)Γ (b+ 1− c1)Γ (1− b)Γ (c1 + c2 − a− 1)

Γ (2− c1)Γ (c2)

×e−π
√
−1(c1+c2−a−b)x1−c1

1 F4(a+ 1− c1, b+ 1− c1, 2− c1, c2;x),

f3(x) =
Γ (a+ 1− c2)Γ (b+ 1− c2)Γ (1− b)Γ (c1 + c2 − a− 1)

Γ (c1)Γ (2− c2)

×e−π
√
−1(c1+c2−a−b)x1−c2

2 F4(a+ 1− c2, b+ 1− c2, c1, 2− c2;x),

f4(x) =
Γ (c1 − 1)Γ (c2 − 1)Γ (1− b)

Γ (c1 + c2 − b− 1)
x1−c1
1 x1−c2

2 F4(a+2−c1−c2, b+2−c1−c2, 2−c1, 2−c2;x).

Proof. Note that the first equality is nothing but the integral representation (2.3). We will show
the last equality. The transformation ı satisfies ı = ı−1, and it implies

f4 = x1−c1
1 x1−c2

2

∫
∆1

tc1−2
1 tc2−2

2

(
1− x1

t1
− x2

t2

)c1+c2−a−2
(1− t1 − t2)

−bdt1 ∧ dt2

= x1−c1
1 x1−c2

2

Γ (c1 − 1)Γ (c2 − 1)Γ (1− b)

Γ (c1 + c2 − b− 1)
F4(b+2−c1−c2, a+2−c1−c2, 2−c1, 2−c2;x).

To obtain the second equality, we use an orientation-reversing transformation

(s1, s2) 7→ (t1, t2) =
(
x1s1,

1

s2

)
,
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which sends the domain D to ∆2. This transformation leads to

f2 = −x1−c1
1

∫
−D

s−c1
1 sc2−2

2

(
1−x1s1−

1

s2

)c1+c2−a−2(1− 1

s1
−s2x2

)−b
ds1 ∧ ds2

= x1−c1
1

∫
D
sb−c1
1 sa−c12 (s2−x1s1s2−1)c1+c2−a−2(s1−1− x2s1s2)

−bds1 ∧ ds2

= e−π
√
−1(c1+c2−a−b)x1−c1

1

Γ (b+ 1− c1)Γ (a+ 1− c1)Γ (1− b)Γ (c1 + c2 − a− 1)

Γ (2− c1)Γ (c2)

×F4(b+1−c1, a+1−c1, 2−c1, c2;x)

by (2.5). We can obtain the third equality in a similar way.

3. Twisted homology group

Below, we will regard the parameters a, b, c1, and c2 as indeterminants, and we will assume that

a, a− c1, a− c2, a− c1 − c2, b, b− c1, b− c2, b− c1 − c2, c1, c2 /∈ Z, (3.1)

when we assign them to complex numbers. Set

λ1 = b− c1 + 1, λ2 = b− c2 + 1, λ3 = c1 + c2 − a− 1, λ4 = −b,

and let C(µ) be the rational function field of µ1 = e2π
√
−1λ1 , . . . , µ4 = e2π

√
−1λ4 over C.

We define a subset X in (P1 × P1)× P2 by

X = {(t, x) ∈ C2 ×X | t1t2L(t)Q(t, x) ̸= 0}, L(t) = 1− t1 − t2, Q(t, x) = t1t2 − t2x1 − t1x2.

There is a natural projection

pr : X ∋ (t, x) 7→ x ∈ X;

note that C2
x = pr−1(x) for a fixed x ∈ X. Let

u = u(t, x) = tλ1
1 tλ2

2 L(t)λ3Q(t, x)λ4 = tb+1−c1
1 tb+1−c2

2 L(t)c1+c2−a−1Q(t, x)−b

be a function of (t, x) in a simply connected neighborhood of (ṫ, ẋ) = 1
8(
√
2,
√
2, 1, 1) ∈ X. Along

any path in X starting with (ṫ, ẋ), we can make the analytic continuation of u. Though this
continuation depends on the path, it is single valued and holomorphic around the end point of
the path.

Let σ be a k-chain in C2
x for a fixed x ∈ X. We define a twisted k-chain σu by σ loading a

branch of u on it. We denote the C(µ)-vector space of finite sums of twisted k-chains by Ck(C2
x, u).

We define the boundary operator ∂u : Ck(C2
x, u) → Ck−1(C2

x, u) by

σu 7→ ∂(σ)u|∂(σ) ,

where ∂ is the usual boundary operator and u|∂(σ) is the restriction of u to ∂(σ). We have a
complex

C•(C2
x, u) : · · ·

∂u

−→ Ck(C2
x, u)

∂u

−→ Ck−1(C2
x, u)

∂u

−→ · · · ,
and its k-th homology group Hk(C•(C2

x, u)). Similarly we have a complex Clf
• (C2

x, u) of locally

finite sums of twisted chains and its k-th homology group Hk(Clf
• (C2

x, u)). It is shown in [AoKi11]
that

Hk(C•(C2
x, u)) ≃ Hk(Clf

• (C2
x, u)), dimC(µ)Hk(C•(C2

x, u)) =

{
4 if k = 2,
0 otherwise,
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for any fixed x ∈ X. Thus we have a map

reg : H2(Clf
• (C2

x, u)) → H2(C•(C2
x, u)),

which is the inverse of the natural map H2(C•(C2
x, u)) → H2(Clf

• (C2
x, u)).

We regard the integral (2.6) as the pairing between the form

φ1 = d log
( t1
L(t)

)
∧ d log

( t2
L(t)

)
=

dt1 ∧ dt2
t1t2L(t)

and ∆i loaded with a branch of u, which represents an element of H2(Clf
• (C2

x, u)) (i = 1, . . . , 5).
The images of the element above under the map reg will be denoted by ∆u

i ∈ H2(C•(C2
x, u)) for

i = 1, . . . , 5.

By considering 1/u instead of u, we have H2(C•(C2
x, 1/u)) and its elements ∆

1/u
1 ,. . . ,∆

1/u
5 .

There is the intersection pairing Ih between H2(C•(C2
x, u)) and H2(C•(C2

x, 1/u)). It is defined as
follows. Let ∆u and ∆́1/u be elements of H2(C•(C2

x, u)) and H2(C•(C2
x, 1/u)) given by

∆u =
∑
i∈I

diD
ui
i , ∆́1/u =

∑
j∈J

d́jD́
1/uj

j , di, d́j ∈ C(µ),

where Dui
i denotes a singular 2-simplex Di loaded with a branch ui of u. Then their intersection

number is

Ih(∆u, ∆́1/u) =
∑

i∈I,j∈J

∑
p∈Di∩D́j

did́j(Di · D́j)p
ui(p)

uj(p)
,

where (Di·D́j)p is the topological intersection number of 2-chainsDi and D́j at p. The intersection
from Ih is bilinear. Since

∆1/u =
∑
i∈I

d∨i D
1/ui

i , ∆́u =
∑
j∈J

d́∨j D́
uj

j ,

for the above ∆u and ∆́1/u, we have

Ih(∆́u,∆1/u) = Ih(∆u, ∆́1/u)∨, (3.2)

where z(µ1, . . . , µ4)
∨ = z(1/µ1, . . . , 1/µ4) for z(µ1, . . . , µ4) ∈ C(µ).

Lemma 3.1. The intersection numbers Ih(∆u
i ,∆

1/u
i ) (i = 1, . . . , 4) are

Ih(∆u
1 ,∆

1/u
1 ) =

1− (µ1µ4)(µ2µ4)(µ3)

(1− µ1µ4)(1− µ2µ4)(1− µ3)
=

−(1− α)γ1γ2
(α− γ1γ2)(1− γ1)(1− γ2)

,

Ih(∆u
2 ,∆

1/u
2 ) =

(1− µ1µ4)(1− µ3(µ2µ3µ4)
−1)

(1−µ1)(1−µ4)(1−µ3)(1−(µ2µ3µ4)−1)
=

αβγ1(1− γ1)(1− γ2)

(α−γ1)(α−γ1γ2)(β−γ1)(1−β)
,

Ih(∆u
3 ,∆

1/u
3 ) =

(1− µ2µ4)(1− µ3(µ1µ3µ4)
−1)

(1−µ2)(1−µ4)(1−µ3)(1−(µ1µ3µ4)−1)
=

αβγ2(1− γ1)(1− γ2)

(α−γ2)(α−γ1γ2)(1−β)(β−γ2)
,

Ih(∆u
4 ,∆

1/u
4 ) =

1− (µ1µ4)
−1(µ2µ4)

−1(µ4)

(1− (µ1µ4)−1)(1− (µ2µ4)−1)(1− µ4)
=

−(β − γ1γ2)

(1− β)(1− γ1)(1− γ2)
.

Proof. To compute Ih(∆u
1 ,∆

1/u
1 ), we have only to follow Example 3.1 in Section 3 of Chapter

VIII of [Y97], by considering the contribution of the divisor Q(t, x) = 0. By using the involution

ı, we can evaluate Ih(∆u
4 ,∆

1/u
4 ). For the rest, transform ∆i (i = 2, 3) to the domain D in the

expression (2.5) as in the proof of Lemma 2.1; regard it as a quadrilateral and apply Example
3.2 in Section 3 of Chapter VIII of [Y97].
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For a small simply connected neighborhood U of ẋ, we have a family∪
x∈U

H2(C•(C2
x, u)),

which can be naturally identified with F4(a, b, c;U) by (2.6). Since a path ρx in X connecting ẋ
and x defines the isomorphism

(ρx)∗ : H2(C•(C2
ẋ, u)) → H2(C•(C2

x, u)),

we have a local system

H2(X) =
∪
x∈X

H2(C•(C2
x, u))

over X. Its stalk over x is denoted by H2(C•(C2
x, u)).

Similarly, we have a local system

H∨
2 (X) =

∪
x∈X

H2(C•(C2
x, 1/u))

over X with respect to 1/u. The local triviality of these local systems H2(X) and H∨
2 (X) imply

the following.

Proposition 3.1. The intersection number is invariant under the deformation, that is,

Ih((ρx)∗(∆u), (ρx)∗(∆́
1/u)) = Ih(∆u, ∆́1/u)

for any ∆u ∈ H2(C•(C2
ẋ, u)), ∆́

1/u ∈ H2(C•(C2
ẋ, 1/u)), and any path ρx in X connecting ẋ and x.

4. Monodromy representation

A loop ρ in X with base point ẋ induces a linear transformation of the stalk H2(C•(C2
ẋ, u)) of

H2(X) over ẋ. By this correspondence, we have a homomorphism

M : π1(X, ẋ) → GL(H2(C•(C2
ẋ, u))),

which is called the monodromy representation of the local system H2(X). Note that we can
regard it as the monodromy representation of the system F4(a, b, c) by the identification of
F4(a, b, c;U) for a small neighborhood U of ẋ with

∪
x∈U H2(C•(C2

x, u)). It is shown in [Kan81]
that the fundamental group π1(X, ẋ) is generated by three loops ρi : [0, 1] → X (i = 1, 2, 3),

ρ1 : θ 7→
(
exp(2π

√
−1θ)

8
,
1

8

)
,

ρ2 : θ 7→
(
1

8
,
exp(2π

√
−1θ)

8

)
,

ρ3 : θ 7→
(
2− exp(2π

√
−1θ)

8
,
2− exp(2π

√
−1θ)

8

)
.

Note that the loop ρi (i = 1, 2) turns the divisor xi = 0 positively, and ρ3 turns the divisor
R(x) = 0 positively. We put Mi = M(ρi) (i = 1, 2, 3).

Proposition 4.1. The elements ∆u
1 , . . . ,∆

u
4 span H2(C•(C2

ẋ, u)). With respect to the basis
t(∆u

1 , . . . ,∆
u
4), M1 and M2 are represented by matrices

diag(1, γ−1
1 , 1, γ−1

1 ) and diag(1, 1, γ−1
2 , γ−1

2 ),

8
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respectively, where diag(z1, . . . , zn) denotes the diagonal matrix with diagonal entries z1, . . . , zn.

Proof. Recall that the solutions fi are defined by the integrals over ∆i in (2.6), and that they
admit local expressions as in Lemma 2.1. We have

t ((ρ1)∗(∆
u
1), . . . , (ρ1)∗(∆

u
4)) = diag(1, γ−1

1 , 1, γ−1
1 ) t (∆u

1 , . . . ,∆
u
4) ,

t ((ρ2)∗(∆
u
1), . . . , (ρ2)∗(∆

u
4)) = diag(1, 1, γ−1

2 , γ−1
2 ) t (∆u

1 , . . . ,∆
u
4) ,

since the local behavior of fi is same to that of ∆i.

Lemma 4.1. If i ̸= j (1 ⩽ i, j ⩽ 4) then

Ih(∆u
i ,∆

1/u
j ) = 0.

The intersection matrix H =
(
Ih(∆u

i ,∆
1/u
j )

)
1⩽i,j⩽4

is a diagonal matrix with entries as given in

Lemma 3.1.

Proof. By Propositions 3.1 and 4.1, we have

Ih(∆u
i ,∆

1/u
j ) = Ih((ρ1)∗(∆u

i ), (ρ1)∗(∆
1/u
j )) = Ih(γ−1

1 ∆u
i ,∆

1/u
j ) = γ−1

1 Ih(∆u
i ,∆

1/u
j )

for i = 2, 4 and j = 1, 3. Since γ1 ̸= 1, Ih(∆u
i ,∆

1/u
j ) = 0 for i = 2, 4 and j = 1, 3. By

(3.2), we have Ih(∆u
i ,∆

1/u
j ) = 0 for i = 1, 3 and j = 2, 4. To show Ih(∆u

i ,∆
1/u
j ) = 0 for

(i, j) = (1, 3), (2, 4), (3, 1), (4, 2), use the map (ρ2)∗.

Remark 4.1. The eigenspace V u
1 of M1 with eigenvalue 1 is spanned by ∆u

1 and ∆u
3 . The

eigenspace of M1 with eigenvalue 1/γ1 is characterized by

{∆u ∈ H2(C•(C2
ẋ, u)) | Ih(∆u,∆

1/u
1 ) = Ih(∆u,∆

1/u
3 ) = 0}.

The eigenspace V u
2 of M2 with eigenvalue 1 is spanned by ∆u

1 and ∆u
2 . The eigenspace of M2

with eigenvalue 1/γ2 is characterized by

{∆u ∈ H2(C•(C2
ẋ, u)) | Ih(∆u,∆

1/u
1 ) = Ih(∆u,∆

1/u
2 ) = 0}.

Note that the linear transformation Mi (i = 1, 2) is determined by the subspace V u
i , the eigen-

value 1/γi and the intersection form Ih, under the condition ci /∈ Z when we assign complex
values to the parameters.

We characterize the linear transformation M3 by determining its eigenvalues and eigenspaces.
The following is the key lemma of this section.

Lemma 4.2. We have

M3(∆
u
5) = −µ3µ4∆

u
5 = −γ1γ2

αβ
∆u

5 , M3(∆
u) = ∆u

for any ∆u ∈ (∆
1/u
5 )⊥ = {∆u ∈ H2(C•(C2

ẋ, u)) | Ih(∆u,∆
1/u
5 ) = 0}.

Proof. We express ∆5 in terms of the coordinates s = (s1, s2) = (t1/x1, t2/x2). Since L(t) and
Q(t, x) are expressed as

1− s1x1 − s2x2, x1x2(s1s2 − s1 − s2),

9
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in terms of these coordinates, we set

L(s, x) = 1− s1x1 − s2x2, Q(s) = s1s2 − s1 − s2.

The intersection points P1 and P2 of the curves defined by L(s, x) = 0 and Q(s) = 0 are(
1+x1−x2+

√
R(x)

2x1
,
1−x1+x2−

√
R(x)

2x2

)
,

(
1+x1−x2−

√
R(x)

2x1
,
1−x1+x2+

√
R(x)

2x2

)
.

Note that R(x) = 1 − 4x1 for x = (x1, x1) ∈ ρ3. When x1 = x2 = 1/4, R(x) vanishes and
Q(s) = 0 is tangent to L(s, x) = 0. For ẋ = (1/8, 1/8), we regard ∆5 as∪

y∈l(ẋ1)

ℓ(y),

where l(ẋ1) is the segment connecting 1/4 and ẋ1 = 1/8, and ℓ(y) is the segment connecting the
intersection points of L(s, x) = 0 and Q(s) = 0 for x = (y, y) with y ∈ l(ẋ1); see Figure 3. For a
fixed x = (x1, x1) in the loop ρ3, the segment l(x1) is expressed as

1

4
+ (x1 −

1

4
)q1

by a parameter q1 ∈ [0, 1]. For an element y = 1/4 + (x1 − 1/4)q1 ∈ l(x1), the segment ℓ(y) is
expressed as

P1(y) + (P2(y)− P1(y))q2,

by a parameter q2 ∈ [0, 1], where P1(y) and P2(y) are the intersection points P1 and P2 for
x = (y, y). Hence ∆5 is expressed by (q1, q2) ∈ [0, 1]× [0, 1] as

(s1, s2) =

(
2(1 + (1− 2q2)

√
(1− 4x1)q1)

1− (1− 4x1)q1
,
2(1− (1− 2q2)

√
(1− 4x1)q1)

1− (1− 4x1)q1

)
(4.1)

for a fixed x = (x1, x1) in the loop ρ3.

By the continuation of
√
1− 4x1 along the loop ρ3, its sign changes. We regard this sign

change in the deformation of ∆5 along ρ3 as a bijection of ∆5 with the reversing orientation
given by

r : [0, 1]× [0, 1] ∋ (q1, q2) 7→ (q1, 1− q2) ∈ [0, 1]× [0, 1].

We deform the pull-backs of s1, s2, L(s, x), and Q(s) to [0, 1] × [0, 1] by (4.1) along ρ3 and
apply r to them. It is easy to see that those of s1 and s2 are invariant under the deformation
and the action. Since those of L(s, x) and Q(s) are expressed as

(1− q1)(1− 4x1)

1− (1− 4x1)q1
,

16q1q2(1− q2)(1− 4x1)

(1− q1(1− 4x1))2
,

their arguments increase by 2π under the deformation, and they are invariant under r. Thus
the pull-back of sλ1

1 sλ2
2 L(s, x)λ3Q(s)λ4 to [0, 1] × [0, 1] by (4.1) is multiplied by µ3µ4 under the

deformation along ρ3 and the action r. By considering the orientation of ∆5, we have

M3(∆
u
5) = −µ3µ4∆

u
5 .

It is easy to see by Figure 3 that three chambers

∆6 = {(s1, s2) ∈ R2 | s1, s2 < 0},
∆7 = {(s1, s2) ∈ R2 | s1, Q(s) > 0, s2 < 0},
∆8 = {(s1, s2) ∈ R2 | s2, Q(s) > 0, s1 < 0}

10
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are invariant under the deformation along ρ3. Thus the elements ∆u
i (i = 6, 7, 8) of H2(C•(C2

ẋ, u))
corresponding to ∆i are eigenvectors of M3 with eigenvalue 1. Since they do not intersect ∆5

topologically, they belong to (∆
1/u
5 )⊥. To show that they are linearly independent, we compute

the intersection numbers

Hij = Ih(∆u
i ,∆

1/u
j ) (6 ⩽ i, j ⩽ 8) :

H66 = 1 +
1

µ0 − 1
+

1

µ1 − 1
+

1

µ2 − 1

+
µ12 − 1

(µ124 − 1)(µ1 − 1)(µ2 − 1)
+

µ01 − 1

(µ014 − 1)(µ0 − 1)(µ1 − 1)
+

µ02 − 1

(µ024 − 1)(µ0 − 1)(µ2 − 1))
,

H67 = − 1

µ1 − 1

(
1 +

1

µ124 − 1
+

1

µ014 − 1

)
,

H68 = − 1

µ2 − 1

(
1 +

1

µ124 − 1
+

1

µ024 − 1

)
,

H77 = 1 +
1

µ1 − 1
+

1

µ4 − 1
+

µ14 − 1

(µ124 − 1)(µ1 − 1)(µ4 − 1)
+

µ14 − 1

(µ014 − 1)(µ1 − 1)(µ4 − 1)
,

H78 = − µ1µ4

(µ4 − 1)(µ124 − 1)
,

H88 = 1 +
1

µ2 − 1
+

1

µ4 − 1
+

µ24 − 1

(µ124 − 1)(µ2 − 1)(µ4 − 1)
+

µ24 − 1

(µ024 − 1)(µ2 − 1)(µ4 − 1)
,

and Hji = H∨
ij for 6 ⩽ i < j ⩽ 8, where

µ0 =
1

µ1µ2µ3µ2
4

= α, µij = µiµj , µijk = µiµjµk.

Since

det(Hij)6⩽i,j⩽8 =
β2(α− γ1γ2)

2(αβ + γ1γ2)

(α− 1)(α− γ1)(α− γ2)(β − 1)2(β − γ1)(β − γ2)(β − γ1γ2)
,

if αβ+γ1γ2 ̸= 0 when we assign complex values to the parameters, then they span the eigenspace

of M3 with eigenvalue 1 and the space (∆
1/u
5 )⊥.

To represent M3 by a matrix, we express ∆u
5 by a linear combination of ∆u

1 , . . . ,∆
u
4 .

Lemma 4.3. We have

Ih(∆u
5 ,∆

1/u
1 ) =

1− (µ1µ4)(µ2µ4)(µ3)

(1− µ1µ4)(1− µ2µ4)(1− µ3)
=

−(1− α)γ1γ2
(α− γ1γ2)(1− γ1)(1− γ2)

,

Ih(∆u
5 ,∆

1/u
2 ) = Ih(∆u

5 ,∆
1/u
3 ) =

µ3µ4

(1− µ3)(1− µ4)
=

−γ1γ2
(α− γ1γ2)(1− β)

,

Ih(∆u
5 ,∆

1/u
4 ) =

1− (µ1µ4)
−1(µ2µ4)

−1(µ4)

(1− (µ1µ4)−1)(1− (µ2µ4)−1)(1− µ4)
=

−(β − γ1γ2)

(1− β)(1− γ1)(1− γ2)
.

The twisted cycle ∆u
5 is expressed as

∆u
1 − γ2(α− γ1)(β − γ1)

αβ(1− γ1)(1− γ2)
∆u

2 − γ1(α− γ2)(β − γ2)

αβ(1− γ1)(1− γ2)
∆u

3 +∆u
4 ,

this leads to

Ih(∆u
5 ,∆

1/u
5 ) =

1 + µ3µ4

(1− µ3)(1− µ4)
=

−(αβ + γ1γ2)

(α− γ1γ2)(1− β)
.

11
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Figure 3. Cycles ∆5, . . . ,∆8

Proof. By the results in Section 3.4 of Chapter VIII of [Y97], we can compute the intersection

numbers Ih(∆u
5 ,∆

1/u
i ) for i = 2, 3. Among the components of ∆1, only △ intersects with

√
−1R2

x

at (
√
x1,

√
x2). Since their topological intersection number at this point is −1, we have

(
√
−1R2

x)
1/u =

(1− γ1)(1− γ2)(α− γ1γ2)

(1− α)γ1γ2
∆

1/u
1

by (2.4). This implies that Ih(∆u
5 ,∆

1/u
1 ) =

−(1− α)γ1γ2
(α− γ1γ2)(1− γ1)(1− γ2)

. We can evaluate the

intersection number Ih(∆u
5 ,∆

1/u
4 ) in a similar way. Lemma 4.1 together with Lemma 3.1 imply

the expression of ∆u
5 as a linear combination of ∆u

i (i = 1, . . . , 4).

Remark 4.2. (i) The eigenspace of M3 with eigenvalue 1 is characterized by ∆u
5 and the

intersection form Ih.
(ii) If αβ + γ1γ2 = 0, then Ih(∆u

5 ,∆
1/u
5 ) = 0. In this case, the 3-dimensional space (∆

1/u
5 )⊥

contains the cycle ∆u
5 and coincides with the eigenspace of M3 with eigenvalue 1. Since

H2(C•(C2
ẋ, u)) is not spanned by eigenvectors of M3, its representation is not diagonalizable.

Proposition 4.2. With respect to the basis t(∆u
1 ,∆

u
2 ,∆

u
3 ,∆

u
4), M3 is represented by the matrix

id4 − (1 + γ1γ2α
−1β−1)

H te∨5 e5
e5H te∨5

= id4 −
(β − 1)(α− γ1γ2)

αβ
H te∨5 e5,

where id4 is the unit matrix of size 4, and

e5 =

(
1,−γ2(α− γ1)(β − γ1)

αβ(γ2 − 1)(γ1 − 1)
,−γ1(α− γ2)(β − γ2)

αβ(γ2 − 1)(γ1 − 1)
, 1

)
,

e∨5 =

(
1,− (α− γ1)(β − γ1)

γ1(γ1 − 1)(γ2 − 1)
,− (α− γ2)(β − γ2)

γ2(γ1 − 1)(γ2 − 1)
, 1

)
,

corresponding to ∆u
5 and ∆

1/u
5 by the expression in Lemma 4.3.

12
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Proof. We set M = id4 − (1 + γ1γ2α
−1β−1)H te∨5 (e5H

te∨5 )
−1e5. Since

Ih(∆u,∆
1/u
5 ) = (d1, . . . , d4)H

te∨5 ,

for ∆u = (d1, . . . , d4)
t(∆u

1 ,∆
u
2 ,∆

u
3 ,∆

u
4), we have

e5M = e5 − (1 + γ1γ2α
−1β−1)e5H

te∨5 (e5H
te∨5 )

−1e5 = −γ1γ2
αβ

e5,

(d1, . . . , d4)M = (d1, . . . , d4),

for (d1, . . . , d4) satisfying (d1, . . . , d4)H
te∨5 = 0. Thus the eigenvalues of M are −γ1γ2/(αβ)

and 1, e5 is an eigenvector with eigenvalue −γ1γ2/(αβ), and the eigenspace with eigenvalue
1 is characterized by the equality (d1, . . . , d4)H

te∨5 = 0. Since e5 corresponds to ∆5 and

(d1, . . . , d4)H
te∨5 = Ih(∆u,∆

1/u
5 ) for ∆u = d1∆

u
1 + · · ·+ d4∆

u
4 , the linear transformation repre-

sented by M coincides with M3 by Lemma 4.2. Note that
1 + γ1γ2α

−1β−1

e5H te∨5
=

(β − 1)(α− γ1γ2)

αβ
by Lemma 4.3. The representation matrix of M3 on the right-hand side is valid even in the case
αβ + γ1γ2 = 0.

Note that M1,M2, and M3 are represented by the matrices in Propositions 4.1 and 4.2
with respect to the basis t(∆u

1 ,∆
u
2 ,∆

u
3 ,∆

u
4). However, this basis degenerates when we assign

an integer to ci (i = 1, 2). For example, if c1 = 1, then γ1 = 1 and M1 is represented by the
unit matrix; we see that this expression is not valid in this case. Hence we give expressions of
M1,M2, and M3 in terms of the intersection form Ih, which are independent of the choice of
a basis of H2(C•(C2

ẋ, u)) and are valid even for integer values of c1, c2. As we have mentioned in
Remarks 4.1 and 4.2, Mi are determined by the eigenspaces V u

1 , V u
2 , the eigenvector ∆u

5 , and
the intersection form Ih. We take a basis of H2(C•(C2

ẋ, u)) consisting of bases of these subspaces.
We set

∆̂u
1234 =

t(∆̂u
1 , ∆̂

u
2 , ∆̂

u
3 , ∆̂

u
4) = P t(∆u

1 ,∆
u
2 ,∆

u
3 ,∆

u
5),

where

P =



αβ(1− γ1)(1− γ2)

(1− α)(1− β)γ1γ2
0 0 0

−αβ(1− γ2)

(1− α)(1− β)γ2

γ1
1− γ1

0 0

−αβ(1− γ1)

(1− α)(1− β)γ1
0

γ2
1− γ2

0

0 0 0 1


.

Lemma 4.4. The integrals

f̂(x) =

∫
∆̂i

u(t, x)φ1 (i = 1, 2, 3)

are well defined even in the case c1, c2 ∈ Z when we assign complex values to the parameters.

13



Yoshiaki Goto and Keiji Matsumoto

Proof. By Lemma 2.1, we have

f̂1(x) = G4

∑
n∈N2

Γ (a+ n1 + n2)Γ (b+ n1 + n2)

Γ (c1 + n1)Γ (c2 + n2)Γ (1 + n1)Γ (1 + n2)
xn1
1 xn2

2 ,

f2(x) = G4

∑
n∈N2

Γ (a+ 1− c1 + n1 + n2)Γ (b+ 1− c1 + n1 + n2)

Γ (2− c1 + n1)Γ (c2 + n2)Γ (1 + n1)Γ (1 + n2)
xn1+1−c1
1 xn2

2 ,

f3(x) = G4

∑
n∈N2

Γ (a+ 1− c2 + n1 + n2)Γ (b+ 1− c2 + n1 + n2)

Γ (c1 + n1)Γ (2− c2 + n2)Γ (1 + n1)Γ (1 + n2)
xn1
1 xn2+1−c2

2 ,

f̂2(x) = G4
γ1

1− γ1
(f2(x)− f̂1(x)),

f̂3(x) = G4
γ2

1− γ2
(f3(x)− f̂1(x)),

where G4 = Γ (1− b)Γ (c1 + c2 − a− 1)eπ
√
−1(a+b−c1−c2). It is clear that f̂1(x) is well defined for

c1, c2 ∈ Z. We claim that

lim
c1→m

f2(x)− f̂1(x)

c1 −m

converges to a nonzero function for any m ∈ Z. Let m be a fixed integer, and put c1 = m − ε.
Then f2(x)/G4 is ∑

n′
1⩾1−m
n2⩾0

Γ (a+ n′
1 + n2 + ε)Γ (b+ n′

1 + n2 + ε)

Γ (1 + n′
1 + ε)Γ (c2 + n2)Γ (n′

1 +m)Γ (1 + n2)
x
n′
1+ε

1 xn2
2 ,

where n′
1 = n1 + 1−m. If m ⩾ 2, then we have

lim
ε→0

1

Γ (1 + n′
1 + ε)

= 0

for 1−m ⩽ n′
1 < 0. If m ⩽ 0, then the terms 1/Γ (c1+n1) (0 ⩽ n1 ⩽ −m) in the series expressing

f̂1(x) converge to 0 as c1 → m. Thus f2(x) converges to f̂1(x) with c1 = m as ε → 0. Since the
poles of the Γ -function are simple, we have this claim. Similarly we can show that f̂3(x) is well
defined for c1, c2 ∈ Z.

The intersection matrix Ĥ =
(
Ih(∆̂u

i , ∆̂
1/u
j )

)
1⩽i,j⩽4

is given by

−αβ(1−γ1)(1−γ2)
(1−α)(α−γ1γ2)(1−β)2

−αβ(1−γ2)
(1−α)(α−γ1γ2)(1−β)2

−αβ(1−γ1)
(1−α)(α−γ1γ2)(1−β)2

−αβ
(α−γ1γ2)(1−β)

αβγ1(1−γ2)
(1−α)(α−γ1γ2)(1−β)2

αβ(αβ−γ1)γ1(1−γ2)
(1−α)(α−γ1)(α−γ1γ2)(1−β)2(β−γ1)

αβγ1

(1−α)(α−γ1γ2)(1−β)2 0

αβ(1−γ1)γ2

(1−α)(α−γ1γ2)(1−β)2
αβγ2

(1−α)(α−γ1γ2)(β−1)2
αβ(αβ−γ2)(1−γ1)γ2

(1−α)(α−γ2)(α−γ1γ2)(β−1)2(β−γ2)
0

−γ1γ2

(α−γ1γ2)(1−β) 0 0 −(αβ+γ1γ2)
(α−γ1γ2)(1−β)

 ,

and its determinant is

α3β3(β − γ1γ2)γ
2
1γ

2
2

(1− α)(α− γ1)(α− γ2)(α− γ1γ2)3(1− β)5(β − γ1)(β − γ2)
.

Let Ĥ12 (resp. Ĥ13) be the submatrix of Ĥ made by entries (1, 1), (1, 2), (2, 1), and (2, 2) (resp.
(1, 1), (1, 3), (3, 1), and (3, 3)).
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Theorem 4.1. The linear transformations Mi = M(ρi) (i = 1, 2, 3) of H2(C•(C2
ẋ, u)) are ex-

pressed as

M1(∆
u) =

1

γ1
∆u + (1− 1

γ1
)
(
Ih(∆u, ∆̂

1/u
1 ), Ih(∆u, ∆̂

1/u
3 )

)
(Ĥ13)

−1

(
∆̂u

1

∆̂u
3

)
,

M2(∆
u) =

1

γ2
∆u + (1− 1

γ2
)
(
Ih(∆u, ∆̂

1/u
1 ), Ih(∆u, ∆̂

1/u
2 )

)
(Ĥ12)

−1

(
∆̂u

1

∆̂u
2

)
,

M3(∆
u) = ∆u − (1 +

γ1γ2
αβ

)
Ih(∆u,∆

1/u
5 )

Ih(∆u
5 ,∆

1/u
5 )

∆u
5 = ∆u − (β − 1)(α− γ1γ2)

αβ
Ih(∆u,∆

1/u
5 )∆u

5 .

Proof. By Proposition 4.1 and Lemma 4.1, the eigenspace of M1 with eigenvalue 1 is spanned
by ∆u

1 and ∆u
3 , and that with γ−1

1 is its orthogonal complement

{∆u ∈ H2(C•(C2
ẋ, u)) | Ih(∆u,∆

1/u
1 ) = Ih(∆u,∆

1/u
3 ) = 0}.

The elements ∆̂u
1 and ∆̂u

3 belong to the eigenspace of M1 with eigenvalue 1, and they are linearly
independent. Set

M′
1(∆

u) =
1

γ1
∆u + (1− 1

γ1
)
(
Ih(∆u, ∆̂

1/u
1 ), Ih(∆u, ∆̂

1/u
3 )

)
(Ĥ13)

−1

(
∆̂u

1

∆̂u
3

)
.

We can easily check that

M′
1(∆

u) =

 ∆̂u
i if ∆u = ∆̂u

i (i = 1, 3),
1

γ1
∆u if Ih(∆u, ∆̂

1/u
1 ) = Ih(∆u, ∆̂

1/u
3 ) = 0,

by the property

(
Ih(∆u, ∆̂

1/u
1 ), Ih(∆u, ∆̂

1/u
3 )

)
(Ĥ13)

−1 =


(1, 0) if ∆u = ∆̂u

1 ,

(0, 1) if ∆u = ∆̂u
3 ,

(0, 0) if Ih(∆u, ∆̂
1/u
1 ) = Ih(∆u, ∆̂

1/u
3 ) = 0.

Since the eigenvalues and eigenspaces of M1 coincide with those of M′
1, we have M1 = M′

1. We
obtain the expression of M2 in a similar way. Set

M′
3(∆

u) = ∆u − (1 +
γ1γ2
αβ

)
Ih(∆u,∆

1/u
5 )

Ih(∆u
5 ,∆

1/u
5 )

∆u
5 .

By the property

Ih(∆u,∆
1/u
5 )

Ih(∆u
5 ,∆

1/u
5 )

=

{
1 if ∆u = ∆u

5 ,

0 if ∆u ∈ (∆
1/u
5 )⊥,

we see that

M′
3(∆

u) =

 −γ1γ2
αβ

∆u
5 if ∆u = ∆u

5 ,

∆u if ∆u ∈ (∆
1/u
5 )⊥,

which shows M3 = M′
3 by Lemma 4.2. The second expression of M3 is obtained by the equality

Ih(∆u
5 ,∆

1/u
5 ) =

−(αβ + γ1γ2)

(α− γ1γ2)(1− β)
in Lemma 4.3.
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Remark 4.3. (i) We note that when we assign integers to c1 and c2, although ∆u
1 , ∆

u
2 , and

∆u
3 are linearly dependent, ∆̂u

1 , ∆̂
u
2 , and ∆̂u

3 remain linearly independent.

(ii) Since we have

(Ĥ12)
−1 =

(α− γ1γ2)(1− β)

αβγ21(1− γ2)

(
(αβ − γ1)γ1 (α− γ1)(β − γ1)

−(α− γ1)(β − γ1)γ1 −(α− γ1)(β − γ1)(1− γ1)

)
,

(Ĥ13)
−1 =

(α− γ1γ2)(1− β)

αβ(1− γ1)γ22

(
(αβ − γ2)γ2 (α− γ2)(β − γ2)

−(α− γ2)(β − γ2)γ2 −(α− γ2)(β − γ2)(1− γ2)

)
,

the factors 1− γ1 and 1− γ2 are canceled in the expression of M1 and M2. Theorem 4.1 is

valid even in the case c1, c2, a+ b− c1 − c2 −
1

2
∈ Z when we assign complex values to the

parameters.

Corollary 4.1. The linear transformations Mi (i = 1, 2, 3) are represented by matrices Mi

with respect to the basis ∆̂u
1234 =

t(∆̂u
1 , . . . , ∆̂

u
4) as Mi(∆̂

u
1234) = Mi∆̂

u
1234, where

M1 =
1

γ1
id4 + (1− 1

γ1
)Ĥ( te1,

te3)(Ĥ13)
−1

(
e1
e3

)
=


1 0 0 0
1 1

γ1
0 0

0 0 1 0
αβ−γ2
αβ 0 (α−γ2)(β−γ2)

αβγ2
1
γ1

 ,

M2 =
1

γ2
id4 + (1− 1

γ2
)Ĥ( te1,

te2)(Ĥ12)
−1

(
e1
e2

)
=


1 0 0 0
0 1 0 0
1 0 1

γ2
0

αβ−γ1
αβ

(α−γ1)(β−γ1)
αβγ1

0 1
γ2

 ,

M3 = id4 − (1 +
γ1γ2
αβ

)
Ĥ te4e4

e4Ĥ te4
=


1 0 0 −1
0 1 0 0
0 0 1 0

0 0 0 −γ1γ2
αβ

 ,

and ei is the i-th unit row vector of Z4.

Proof. The matrix M3 is obtained in the same way as in the proof of Proposition 4.2. By the
expression of M1 in Theorem 4.1, we give its representation matrix with respect to the basis
∆̂u

1234. Set ∆
u = (d1, . . . , d4)∆̂

u
1234. Since

Ih(∆u, ∆̂
1/u
i ) = (d1, . . . , d4)Ĥ

tei (i = 1, . . . , 4)

we have (
Ih(∆u, ∆̂

1/u
1 ), Ih(∆u, ∆̂

1/u
3 )

)
= (d1, . . . , d4)Ĥ( te1,

te3).

Note that (
∆̂u

1

∆̂u
3

)
=

(
e1
e3

)
∆̂u

1234.

Thus we have(
Ih(∆u, ∆̂

1/u
1 ), Ih(∆u, ∆̂

1/u
3 )

)
(Ĥ13)

−1

(
∆̂u

1

∆̂u
3

)
= (d1, . . . , d4)Ĥ( te1,

te3)(Ĥ13)
−1

(
e1
e3

)
∆̂u

1234,

which implies that M1 is the representation matrix of M1. We obtain the matrix M2 in a similar
way.
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Remark 4.4. With respect to the basis P ′ t(∆u
1 ,∆

u
2 ,∆

u
3 ,∆

u
4) of H2(C•(C2

ẋ, u)) for

P ′ =



αβ(1−γ1)(1−γ2)

(1−α)(1−β)γ1γ2
0 0 0

−αβ(1−γ2)

(1−α)(1−β)γ2

γ1
1−γ1

0 0

−αβ(1−γ1)

(1−α)(1−β)γ1
0

γ2
1−γ2

0

αβ

(1−α)(1−β)

−γ1γ2
(1−γ1)(1−γ2)

−γ1γ2
(1−γ1)(1−γ2)

αβγ1γ2
(α−γ1γ2)(β−γ1γ2)


,

M1, M2, and M3 are represented by matrices
1 0 0 0

1 γ−1
1 0 0

0 0 1 0

0 0 1 γ−1
1

 ,


1 0 0 0
0 1 0 0

1 0 γ−1
2 0

0 1 0 γ−1
2

 ,


−γ1γ2

αβ
γ1γ2
αβ − 1

γ1
γ1γ2
αβ − 1

γ2
− (α−γ1γ2)(β−γ1γ2)

αβγ1γ2
0 1 0 0
0 0 1 0
0 0 0 1

 ,

respectively. These representations ofMi are also valid even in the case c1, c2, a+b−c1−c2−
1

2
∈ Z

when we assign complex values to the parameters.

5. Twisted cohomology group

Recall that

λ1 = b+ 1− c1, λ2 = b+ 1− c2, λ3 = −a+ c1 + c2 − 1, λ4 = −b,

X =
{
(t, x) ∈ C2 ×X

∣∣t1t2L(t)Q(t, x) ̸= 0
}
⊂ (P1 × P1)× P2,

C2
x = pr−1(x), pr : X ∋ (t, x) 7→ x ∈ X.

In this section, we regard vector spaces as defined over the rational function field C(λ) =
C(λ1, . . . , λ4) = C(a, b, c1, c2). We denote the vector space of rational functions on P2 with poles
only along S by OX(∗S). Note that OX(∗S) admits the structure of an algebra over C(λ). We
set

S = (P1 × P1)× P2 − X.

Let Ωk
X(∗S) be the vector space of rational k-forms on X with poles only along S and Ωp,q

X (∗S)

be the subspace of Ωp+q
X (∗S) consisting of elements that are p-forms with respect to the variables

t1, t2. We set

ω = dt log(u(t, x)) = λ1
dt1
t1

+ λ2
dt2
t2

+ λ3
dtL(t)

L(t)
+ λ4

dtQ(t, x)

Q(t, x)
∈ Ω1,0

X (∗S),

where dt is the exterior derivative with respect to the variables t1, t2. Note that

dtL(t) = −dt1 − dt2, dtQ(t, x) = (t2 − x2)dt1 + (t1 − x1)dt2.
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By a twisted exterior derivative ∇ = dt + ω∧ on X, we define quotient spaces

Hk(∇) = ker
(
∇ : Ωk,0

X (∗S) → Ωk+1,0
X (∗S)

)/
∇
(
Ωk−1,0
X (∗S)

)
(k = 0, 1, 2),

where we regard Ω−1,0
X (∗S) as the zero vector space. Each of them admits the structure of a

vector bundle over X.

We consider the structure of the fiber of Hk(∇) at x. Let Ωp
C2
x
(∗x) be the vector space of

rational p-forms on C2
x with poles only along the pole divisor of the pull-back ωx = ı∗x(ω) of ω

by the map ıx : C2
x → X. There is a natural map from each fiber of Hk(∇) at x to the rational

twisted cohomology group

Hk(Ω•
C2
x
(∗x),∇x) = ker

(
∇x : Ωk

C2
x
(∗x) → Ωk+1

C2
x

(∗x)
)
/∇x

(
Ωk−1
C2
x

(∗x)
)

on C2
x with respect to the twisted exterior derivative ∇x = dt + ωx∧.

Facts 5.1 [AoKi11],[Cho97]. (i) We have

dimHk(Ω•
C2
x
(∗x),∇x) =

{
4 if k = 2,
0 if k = 0, 1.

(ii) There is a canonical isomorphism

ȷx : H2(Ω•
C2
x
(∗x),∇x) → H2(E•

c (x),∇x) = ker(∇x : E2
c (x) → E3

c (x))/∇x(E1
c (x)),

where Ek
c (x) is the vector space of smooth k-forms with compact support in C2

x.

We have a twisted exterior derivative ∇∨ = dt − ω∧ for −ω and

H2(∇∨) = Ω2,0
X (∗S)

/
∇∨(Ω1,0

X (∗S)), H2(Ω•
C2
x
(∗x),∇∨

x ) = Ω2
C2
x
(∗x)/∇∨

x (Ω
1
C2
x
(∗x)).

The OX(∗S)-module H2(∇∨) can be regarded as a vector bundle over X.

For any fixed x ∈ X, we define the intersection form betweenH2(Ω•
C2
x
(∗x),∇) andH2(Ω•

C2
x
(∗x),∇∨)

by

Ic(φx, φ
′
x) =

∫
C2
x

ȷx(φx) ∧ φ′
x ∈ C(α),

where φx, φ
′
x ∈ Ω2

C2
x
(∗x), ȷx is given in Fact 5.1. This integral converges since ȷx(φx) is a smooth

2-from on C2
x with compact support. It is bilinear over C(α).

We take four elements

φ1 = dt log
( t1
L(t)

)
∧ dt log

( t2
L(t)

)
=

dt1 ∧ dt2
t1t2L(t)

, φ2 = dt log(t2) ∧ dt log(L(t)) =
dt1 ∧ dt2
t2L(t)

,

φ3 = −dt log(t1) ∧ dt log(L(t)) =
dt1 ∧ dt2
t1L(t)

, φ4 =
t1 ∧ t2

L(t)Q(t, x)

of H2(∇), and we denote ı∗x(φi) ∈ H2(Ω•
C2
x
(∗x),∇x) by φx,i. Since ∇∨(φi) = 0, ∇∨

x (φx,i) = 0, we

can regard φi and φx,i as elements ofH2(∇∨) andH2(Ω•
C2
x
(∗x),∇∨

x ), respectively. The intersection

numbers Ic(φx,i, φx,j) (φx,i ∈ H2(Ω•
C2
x
(∗x),∇x), φx,j ∈ H2(Ω•

C2
x
(∗x),∇∨

x ) 1 ⩽ i, j ⩽ 4) are
evaluated as follows.
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Period relations for F4

component residue

E∞ λ0 = a− 1

t1 = 0 λ1 = b− c1 + 1

t2 = 0 λ2 = b− c2 + 1

L(t) = 0 λ3 = −a+ c1 + c2 − 1

Q(t, x) = 0 λ4 = −b

E0 λ124 = b− c1 − c2 + 2

t1 = ∞ λ−
134 = a− c2

t2 = ∞ λ−
234 = a− c1

Table 2. Residues of ωx

Theorem 5.1. The intersection matrix
(
Ic(φx,i, φx,j)

)
1⩽i,j⩽4

is (2π
√
−1)2C, where C is a sym-

metric matrix with entries

C11 =

(
1

λ1
+

1

λ2

)(
1

λ3
+

1

λ124

)
=

(−a+ 1 + b)(2b− c1 − c2 + 2)

(−a+ c1 + c2 − 1)(b− c1 + 1)(b− c2 + 1)(b− c1 − c2 + 2)
,

C12 =
1

λ2λ3
=

1

(b− c2 + 1)(−a+ c1 + c2 − 1)
,

C13 =
1

λ1λ3
=

1

(b− c1 + 1)(−a+ c1 + c2 − 1)
,

C14 = 0,

C22 =

(
1

λ0
+

1

λ2

)(
1

λ3
+

1

λ−
134

)
=

(c1 − 1)(a+ b− c2)

(a− 1)(a− c2)(b− c2 + 1)(−a+ c1 + c2 − 1)
,

C23 =
−1

λ0λ3
=

−1

(a− 1)(−a+ c1 + c2 − 1)
,

C24 = 0,

C33 =

(
1

λ0
+

1

λ1

)(
1

λ3
+

1

λ−
234

)
=

(c2 − 1)(a+ b− c1)

(a− 1)(a− c1)(b− c1 + 1)(−a+ c1 + c2 − 1)
,

C34 = 0,

C44 =
2

λ3λ4R(x)
=

2

(−a+ c1 + c2 − 1)(−b)R(x)
,

where

λ0 = −λ1 − λ2 − λ3 − 2λ4 = a− 1, λ124 = λ1 + λ2 + λ4 = b− c1 − c2 + 2,
λ−
134 = −λ1 − λ3 − λ4 = a− c2, λ−

234 = −λ2 − λ3 − λ4 = a− c1.

The determinant of C is

−4b

(a− 1)(a− c1)(a− c2)(−a+ c1 + c2 − 1)3(b− c1 + 1)(b− c2 + 1)(b− c1 − c2 + 2)R(x)
.

Proof. We blow up P1 × P1(⊃ C2
x) at the two points (0, 0) and (∞,∞) so that the pole divisor

of ωx is normally crossing. We tabulate the residue of ωx at each component of the pole divisor
in Table 5, where E0 and E∞ are the exceptional divisors corresponding to the points (0, 0) and
(∞,∞), respectively. To evaluate C11, we find the intersection points of components of the pole
divisor of φx,1. There are four points

{t1 = 0} ∩ E0, {t2 = 0} ∩ E0, {t1 = 0} ∩ {L(t) = 0}, {t2 = 0} ∩ {L(t) = 0};

19



Yoshiaki Goto and Keiji Matsumoto

t

2

= 0

t

1

= 0

L(t) = 0

t

2

=1

t

1

=1

Q(t; x) = 0

E

0

E

1

�

1

= b� 


1

+ 1

�

2

= b� 


2

+ 1

�

3

= �a + 


1

+ 


2

� 1

�

�

134

= a� 


2

�

4

= �b

�

�

234

= a� 


1

�

124

= b� 


1

� 


2

+ 2

�

0

= a� 1

Figure 4. Pole divisor of ωx

see Figure 4. For every intersection point, we compute the reciprocal of the product of the residues
of ωx along the components passing it. The results in Section 5 of [M98] imply that C11 is given
by their sum:

1

λ1λ124
+

1

λ2λ124
+

1

λ1λ3
+

1

λ2λ3
.

Similarly, we can evaluate C22 and C33.

Let us evaluate C12. The intersection points of the components of the pole divisor of φx,2 are

{t2 = 0} ∩ {L(t) = 0}, {t2 = 0} ∩ {t1 = ∞}, {L(t) = 0} ∩ E∞, {t1 = ∞} ∩ E∞;

{t2 = 0} ∩ {L(t) = 0} is the common intersection point of the pole divisors of φx,1 and φx,2 . By
regarding L(t) and t2 as local coordinates around this point, we express φx,1 and φx,2 in terms
of them:

φx,1 = − dL(t) ∧ dt2
(1− L(t)− t2)t2L(t)

, φx,2 = −dL(t) ∧ dt2
t2L(t)

.

Since 1/(1 − L(t) − t2) = 1 for (L(t), t2) = (0, 0), the intersection number C12 is given by
the reciprocal of the product of the residues of ωx along the components passing the point
(L(t), t2) = (0, 0), that is 1/(λ2λ3). Similarly, we can evaluate C13. To evaluate C23, we express
φx,2 and φx,3 in terms of coordinates s1 = 1/t1, s2 = t2/t1 around {L(t) = 0} ∩E∞ represented
by (s1, s2) = (0,−1). Since

φx,2 =
−ds1 ∧ ds2

s1(s1 − 1− s2)
, φx,3 =

−ds1 ∧ ds2
s1s2(s1 − 1− s2)

, [s2](s1,s2)=(0,−1) = −1,

and the residue of ωx along {L(t) = 0} and that along E∞ are λ3 and λ0, respectively, we have
C23 = −1/(λ0λ3).
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The pole divisor of φ4 consists of L(t) = 0 and Q(t, x) = 0. They intersect at the two points
P1 and P2. Since the pole divisor of φx,i (i = 1, 2, 3) does not contain Q(t, x) = 0, we have
Ci4 = 0 for i = 1, 2, 3. To compute C44, we express φ4 around the intersection points P1 and P2

in terms of the local coordinates L(t) and Q(t, x). A straightforward calculation implies

φ4 =
(−1)idL(t) ∧ dQ(t, x)

L(t)Q(t, x)
√

R(x) + L(t)2 − 2(1− x1 − x2)L(t)− 4Q(t, x)

around Pi (i = 1, 2), where the function (−1)i/
√

R(x) + L(t)2 − 2(1− x1 − x2)L(t)− 4Q(t, x) is
a single-valued holomorphic function around Pi with value (−1)i/

√
R(x) at this point. We have

C44 =
1

λ3λ4

−1√
R(x)

−1√
R(x)

+
1

λ3λ4

1√
R(x)

1√
R(x)

=
2

λ3λ4R(x)
.

The determinant of C is obtained by a straightforward calculation.

Note that the matrix C is well defined, and det(C) ̸= 0 for any x ∈ X under our assumption.
The natural map from each fiber of H2(∇) at x to H2(Ω•

C2
x
(∗x),∇x) is surjective. The C(λ)-span

of the classes of φ1, . . . , φ4 ∈ H2(∇) (resp. ∈ H2(∇∨)) is denoted by H2
C(λ)(∇) (resp. H2

C(λ)(∇
∨)).

The intersection form Ic is regarded as a map from H2
C(λ)(∇)×H2

C(λ)(∇
∨) to O(∗S).

6. Twisted period relations

Among H2(C•(C2
x, u)), H2(C•(C2

x, 1/u)), H
2(Ω•

C2
x
(∗x),∇x), and H2(Ω•

C2
x
(∗x),∇∨

x ), there are the
intersection pairings Ih and Ic, and the pairings which yield solutions of F4 with various param-
eters. We have two isomorphisms from H2(C•(C2

x, u)) to H2(Ω•
C2
x
(∗x),∇∨

x ) by regarding them as

the dual spaces of H2(C•(C2
x, 1/u)) and those of H2(Ω•

C2
x
(∗x),∇x). As is shown in [KiY94], these

isomorphisms coincide. This compatibility implies the following.

Theorem 6.1. The intersection matrices H and (2π
√
−1)2C and the period matrices

Π+(x) =

(∫
∆j

uφx,i

)
0⩽i,j⩽4

, Π−(x) =

(∫
∆j

(1/u)φx,i

)
0⩽i,j⩽4

satisfy

Π+(x)
tH−1 tΠ−(x) = (2π

√
−1)2C. (6.1)

Corollary 6.1. The identity (6.1) implies twisted period relations

1− a

1− a12
F4(a, b, c1, c2;x)F4(2− a,−b, 2− c1, 2− c2;x)

− b(1− a1)

b1(1− a12)
F4(a1, b1, 2− c1, c2;x)F4(2− a1,−b1, c1, 2− c2;x)

− b(1− a2)

b2(1− a12)
F4(a2, b2, c1, 2− c2;x)F4(2− a2,−b2, 2− c1, c2;x)

+
b

b12
F4(a12, b12, 2− c1, 2− c2;x)F4(2− a12,−b12, c1, c2;x)

=
(1− a+ b)(b1 + b2)(1− c1)(1− c2)

(1− a12)b1b2b12
,
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1− a

1− a12
F4(a, b+ 1, c1, c2;x)F4(2− a, 1− b, 2− c1, 2− c2;x)

− b1(1− a1)

b(1− a12)
F4(a1, b1 + 1, 2− c1, c2;x)F4(2− a1, 1− b1, c1, 2− c2;x)

− b2(1− a2)

b(1− a12)
F4(a2, b2 + 1, c1, 2− c2;x)F4(2− a2, 1− b2, 2− c1, c2;x)

+
b12
b
F4(a12, b12 + 1, 2− c1, 2− c2;x)F4(2− a12, 1− b12, c1, c2;x)

=
2(1− c1)(1− c2)

(1− a12)(−b)R(x)
,

1− a

1− a12
F4(a, b, c1, c2;x)F4(2− a, 1− b, 2− c1, 2− c2;x)

− 1− a1
1− a12

F4(a1, b1, 2− c1, c2;x)F4(2− a1, 1− b1, c1, 2− c2;x)

− 1− a2
1− a12

F4(a2, b2, c1, 2− c2;x)F4(2− a2, 1− b2, 2− c1, c2;x)

+ F4(a12, b12, 2− c1, 2− c2;x)F4(2− a12, 1− b12, c1, c2;x)

= 0,

where

a1 = a− c1 + 1, a2 = a− c2 + 1, a12 = a− c1 − c2 + 2,
b1 = b− c1 + 1, b2 = b− c2 + 1, b12 = b− c1 − c2 + 2.

Proof. Compare the (1, 1)-entries of the both sides of (6.1). Then we have

(f1(x), . . . , f4(x))
tH−1 t(f∨

1 (x), . . . , f
∨
4 (x)) = Ic(φx,1, φx,1), (6.2)

where

f∨
1 (x) =

Γ (c1 − 1)Γ (c2 − 1)Γ (1− c1 − c2 + a)

Γ (−1 + a)
F4(2− a,−b, 2− c1, 2− c2;x),

f∨
2 (x) =

Γ (c1 − b− 1)Γ (c1 − a+ 1)Γ (1 + b)Γ (1− c1 − c2 + a)

Γ (c1)Γ (2− c2)

×e−π
√
−1(a+b−c1−c2)xc1−1

1 F4(c1 − a+ 1, c1 − b− 1, c1, 2− c2;x),

f∨
3 (x) =

Γ (c2 − a+ 1)Γ (c2 − b− 1)Γ (1 + b)Γ (1− c1 − c2 + a)

Γ (2− c1)Γ (c2)

×e−π
√
−1(a+b−c1−c2)xc2−1

2 F4(c2 − a+ 1, c2 − b− 1, 2− c1, c2;x),

f∨
4 (x) =

xc1−1
1 xc2−1

2 Γ (1− c1)Γ (1− c2)Γ (1 + b)

Γ (3− c1 − c2 + b)
F4(c1 + c2 − a, c1 + c2 − b− 2, c1, c2;x).

Since H is diagonal, we can easily evaluate H−1 = tH−1. By multiplying both sides of (6.2)
by (1 − c1)(1 − c2)/(2π

√
−1)2 and using the formula Γ (a)Γ (1 − a) = π/ sin(πa), we reduce

this relation to the first identity. By multiplying the identities arising from the (4,4) and (1,4)
entries of (6.1) by (1 − c1)(1 − c2)/(2π

√
−1)2, we have the second and third equalities in this

corollary.

22



Period relations for F4

References
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