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Abstract 

We give a functional equation for Appell's hypergeometric func­
tion Fi, which arises from transformations of elliptic curves. As an 
application, we give an efficient algorithm for computing incomplete 
elliptic integrals of the first kind. We also give a reduction formula that 
simplifies Lauricella's hypergeometric function FD of five variables to 

Fi. 
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1 Introduction 

It is classically known that Gauss' hypergeometric function F(a, /3, ,; z) sat­
isfies the transformation formula 

( )2p ( 1 1. 2) _ . ( . 4z 
)1+2z ·F p,p-q+

2
,q+

2
, z -F p,q,2q,(l+z)2 

. 

By this transformation formula and an Euler-type integral representation of
F(a, /3, 1; z), we can express the arithmetic-geometric mean of (a, b) E (IR>0)2 

by a complete elliptic integral of the first kind, where IR>o is the set of positive
real numbers. Transformation formulas for other hypergeometric functions
are also applied to the study of iterations of several means of several terms.
For example, in [4] it is shown that a transformation formula for Appell's
hypergeometric function Fi implies three means of three terms and that the
triple of sequences defined by the iteration of these means converges and has
a common limit expressed by an incomplete elliptic integral of the first kind.
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In this paper, we find a new transformation formula for Appell's hyper­
geometric function F1 by considering transformations of elliptic curves. Our 
main theorem (Theorem 3.1) is as follows: 

( 1 2 2) 1 . F1 1,
2,p,p + l;l-z1 ,l-z2 =

z1
Fi(l,p,p,p�l;l-w1,l-w2) , 

z1 +z�+J(l-zi)(z?-z�) z1 +z�-J(l-zi)(z?-zD 
� = ,� = 

2� 2� 

We prove this formula by using the integration by substitution that corre­
sponds to the isogeny map. We apply our theorem to the computation of 
incomplete elliptic integrals. By our transformation formula, we define a 
map (IR>o)3 --+ (IR>o)3, the iteration of which implies a triple (an , bn, cn)nEN
of sequences. It turns out that the sequences converge and satisfy 

lim an 
= lim bn =/- lim Cn 

n--too n--+oo n--+oo 

for general initial terms. An incomplete elliptic integral of the first kind can 
be expressed in terms of these limits. Since their convergence is quadratic, we 
thus obtain an efficient algorithm for computing incomplete elliptic integrals. 
As has been mentioned above, there are several extensions and analogies of 
the arithmetic-geometric mean; each of them is based on a common limit 
of a multiple of sequences. This example suggests to us the application of 
the iterations of a mapping, even if the resulting sequences do not have a 
common limit., 

The contents of .this paper are as follows. First, we describe transforma­
tions of elliptic curves in terms of the theta functions by using the results 
in [3], and we give expressions for the isogeny and the doubling map, which 
are convenient for our study. Next, we prove the main theorem by using 
the expression of the isogeny, and we explain the algorithm for computing 
incomplete elliptic integrals of the first kind. Finally, we consider a triple of 
sequences given by the ttansformation formula in [4]: 

.Z:1 + Z2 ( 1 1 3
2 2)

2 Fi 1, 2 ' 2' 2; 1 - Z1 ' 1 - Z2 

= Fi (l ! ! �- 1 _ z1 (1 + z2) 
1 _ z2(l + z1)

) 
' 2' 2' 2' Z1 + Z2 ' Z1 + Z2 

(equivalent to Proposition 5.3). By calculating an elliptic integral by using a 
substitution that arises from the doubling map, we give another proof of this 
formula and also a reduction formula of Lauricella's hypergeometric function 
FD of five variables to Appell's hypergeometric function Fi. 
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2 Elliptic curves and complex tori 

We begin by reviewing some results in [3]. 
2.1 Abel-Jacobi map 
We consider the elliptic curves 

C (.�) : y2 = x ( 1 - x) ( 1 - AX), >. E C - { 0, 1}, 
which are double coverings of the complex projective line JP>1

. We choose a symplectic basis A, BE H1(C(>.), Z) so that A· A= B · B = 0, B ·A= l, and 
f dx = 2 J* dx E i �>O,}A Y 1 y'x(l - x)(l - >.x) 
f dx = 2 r

1 dx E �>O, 
J B Y Jo Jx(l - x)(l - >.x) 

when >. is in the open interval (0, 1). We set 
TA :=id:) TB := L d:) T := ;�;

note that T belongs to the upper half-plane IHI. Let L(T) be the lattice ZT+Z; 
then the complex torus E(T) := C/L(T) is isomorphic to C(>.) by the Abel­Jacobi map 

l 1P dx 
<J): C(>.) --+ E(T); Pi---+ - -· mod L(T),TB P00 Y 

where P00 is the point at infinity in C(>.). We represent the inverse map of 
<J) by the theta functions with half-integral characteristics. For a, b E {O, 1 },the theta function is defined by 

where z EC and TE IHI. We denote '!9ab(0,T) by '!9ab(T). 
Proposition 2.1 ([3]). The inverse map of <J) is expressed as follows: 

<!)_1([]) = ('!9oo(T)2 '!901(z, T)2 '!901(T)2 '!9oo(z, T)'!901(z, T)'!910(z, T)) z '!910(T)2 '!9u(z, T)2''!91o(T)2 '!9u(z, T)3 ' 
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where [z] means the element of E(7) represented by z E C. Further the
parameter A of the elliptic curve C(A) is expressed as 

2.2 Maps between elliptic curves 

We use the following formulas from [2] and [5]. 

Facts 2.2. 

(1) '!9oo(7)3'!9oo(2z, 7) = '!9oo(z, 7)4 + '!9n(z, 7)4,
(2) '!901(7)3'!901(2z, 7) = '!901(z, 7)4 - '!9u(z, 7)4 ,(3) '!910(7)3'!910(2z, 7) = '!910(z,7)4 - '!911(z, 7)4,(4) '!9oo(7)2'!901(7)'!901(2z, 7) ='1900 (z, 7)2

'1901 (z, 7)2 +'1910 (z, 7)2 '!91dz, 7)2 ,(5) '!9oo(7)'l.901(7)'l.910(7)'!911(2z, 7) =219oo(z, 7)'l.901(z, 7)'!910(z, 7)'!9n(z, 7),(6) 2'l.9oo(27)'!9oo(2z, 27) = '!9oo(z, 7)2 + 'l.901(z, 7)2,(7) '!901(27)'!901(2z, 27) = 'l.9oo(z, 7)'l.901(z, 7).

We consider the isogeny and the translation by i: 

pr: E(27)--+ E(7); z mod L(27) t---+ z mod L(7), 
, 7 

T� : E(7) � E(7); z mod L(7) t---+ z + 
2 

mod L(7).

By Proposition 2.1, E(27) is isomorphic to the elliptic curve C(X) with 

X = 1 _ 'l.901(27)4 

= 1 _ 'l.900(7)2'1901(7)2 =
(

'l.9oo(7)2 - 'l.901(7)2

)
2 

'l.900(27)4 c9oo(r)2

11?01(r)2

)2 'l.9oo(7)2 +'l.9p1(7)2 ' 

where the second equality follows from (6) and (7). Via the Abel-Jacobi 
maps, pr and T:r_ induce pi· : C(X) -+ C(A) and T:r_ : C(A) -+ C(A), respec-

2 2 

tively. 

Proposition 2.3 ([3]). We have

(.) _ (,, ') _ ((./>Jx' + 1)2 ./>J(l + �) (l __ 1_) ') h 1 pr x , y -
/\I 

, 8 2 
y , w ere 

4vX� X� 
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.. - (1 y) ( 11) T � ( 
X

' y) 
= 

AX' - AX2 } 

... - - , , ( 4\i)!x' -2\i)!( v>!x' -l)y
' ) (m) T� 0 pr(x ' y ) = A( \i)!x' + 1)2 ' (1 -v'l=>:)( \i)!x' + 1)3 ·

We consider the map 'ljJ : C(A) --+ C(A) induced from 
E(T) --+ E(T); z mod L(T) 1--4 2z mod L(T) 

via the Abel-Jacobi map cl>. The following proposition appears in some textbooks on elliptic curves (e.g., [6]). However, we give our proof using the theta functions, because this representation of x is key to the study of section 5. 
Proposition 2.4. The map 'ljJ : C(A) --+ C(A) is represented as follows: 

x' , 
= 

( (1 -Ax'2) 2 · (Ax12 -l)(Ax12 -2x'+l)(Ax12 -2Ax'+l)) 'I/J( ,y ) 4Ax'(l -x')(l-Ax')' 8Ay'3 

Proof. Letting 'I/J(x', y') = (x, y), we then have 
X 

79oo(T)2 7901(2z, T)2 

7910(T)2 7911(2z,T)2

- +2+������ 1 (79oo(z, T)27901(z, T)2 7910(z, T)27911(z, T)2 )4 · 7910(z, T)27911(z, T)2 'l?oo(z, T)27901(z, T)2 

1 (Ax'(l - x') 1 - Ax' ) 1 (1 - Ax'2 ) 2 

4 1 - Ax' +
2 

+ Ax'(l - x') = 4 · Ax'(l - x')(l - Ax')'
by (4) and (5). Similarly, we obtain the expression of y by applying (1), (2), and (3). D 
3 Transformation formula for Appell's hyper­

geometric function F1

Appell's hypergeometric function Fi of two variables z1, z2 with parameters a, fJ1 , fJ2, , is defined as 
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where z/s satisfy lz1 1 < 1, 1 =/- 0, -1, -2, ... , and (a,n) = a(a + 1) ···(a +
n - l) = r(a + n)/f(a). This function admits an Euler-type integral repre­
sentation:

Theorem 3.1. We have a transformation formula for F1 : 

( 1 2 2)' 1 ( ) ( 8) Fi 1, -, p, p + l; 1 - Z1 
, 1 - Z2 = -F1 1, p) p, p + l; 1 - W1 , 1 - W2 )

2 . � 

z1 +z�+ J(l-z�)(z?-z�) · z1 +zi-J(l-z�)(z?-z�)W1 = W2
=���������

2� 
' 

2� 
' 

where (z1, z2) is in a small neighborhood of (1, 1).

Remark 3.2. If we choose another branch of J(l - z�)(zr - zD, then W1 

and w2 are interchanged. By Fi(a,/3,/3,,;z1 ,z2 ) = Fi(a,/3,/3,,;z2 ,z1 ), the

right-hand side of {8) is independent of the choice of the branch of the square

root. 

Proof of Theorem 3.1. Replace 1-z? and 1 -Zi with z1 and z2, respectively,and use the integral representation for Fi. Then it is sufficient to show that 
(9)

for z1, z2 E JR satisfying O < z1 < z2 < 1, where

To prove the identity (9), we use three kinds of substitutions. By the firstsubstitution 1- Z2 t=--x+ l,Z2 
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we have dt 1 - Z2 1 - Z2 1-t= ---x,dx Z2 Z2 1 - z1t = (1 - z1) (1 - �l - z2�z1 x) , 1 - z2t = (1 - z2)(l - x),1 - Z1 Z2 
(10) 1 1 (1 - t)P-1(1 - z1t)-! (1 - z2t)-Pdt

where 

We set 

= (1 - z1)-� {O Xp-1(1 - xtP(l - AX)�!�X ,Z2 · (-z2)P l JR1

>.' = (1-�) 2 

1+� (
1-
1+ 

z2-z1 

) 

2 

(l-z1)z2 

z2-z1 
(l-z1)z2 

and consider the integral in the right-hand side of (10) by the second substi­tution 
4v'>2"x' 

x=-----. >.(v'>2"x' + 1)2 

in Proposition 2.3 (iii). If x = 0, then x1 = 0. On the other hand, the equation 

has two solutions 
4v'>2"x' R1=----->.( v'>2" x' + 1 )2 

x' = R± ·= ->.R1 + 2(1 ±· y!1 - >.R1)
2 . >.v'>2"R1 Since R1 < 0, the inequality Rt < R.:; < 0 holds. Hence the integral interval 
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[R1, OJ for xis changed to the integral interval [R2, OJ for x'. We have 

dx 
dx' 

l - x  

1 - ,\x = 

4�(1 - v'>Jx') 
,\( v'>Jx' + 1)3

,\ (v'>Jx' + 1)2 
- 4v'>Jx' 

,\( v'>J x' + l )2 

1 
(1 + 2(,\ - 2) I+ X 12)

( v'>Jx' + 1)2 (1 + vf=-1)2 X X 

1 
1 - x' 1 - Xx' 

( v'>Jx ' + 1)2 ( · )( ), 

-\ (v'>Jx' + 1)2
--' 4,\v'>Jx ' = 

(
v'>Jx' -1

)
2 

,\( v'>Jx' + 1)2 v'>Jx' + 1 

Note that if R2 < x' < 0, then v'>Jx' + 1 > 0 and v'>Jx' - 1 < 0. Thus the
identity (10) is equivalent to 

(11) 1 1 

(1 - t)P-1(1 - z1t)-! (1 - z2t)-Pdt ·

(1 )-"" 22p 10 
= 

-z1 �1 2 
x'p-1

(1-x')-P
(l-Xx ')-Pdx'.Z2 · ( -z2)P (1 + z2-z1 ) P R2 (l-z1)z2 

Finally, we consider the integral in the right-hand side of (11) by the third 
substitution 

x' = -R2t' + R2.

Th�n it follows that 

dx' _ , _
( ') 

, 
( 

_
) ( 

-R2 ') d1' = -R2 ) X = R2 l - t ) 1 - X = l - R2 1 -
1 - R2 

t ) 

1 - Xx' = (1 - X R-) (1 - -X R2 t') .
2 1 - X R-2 

Using ,\R1 = -
1

��
1

, we calculate v'>J and Ri: 

8 



This implies that 
1 _ -R21- R2

Thus we have 

1 -- = ---------1 - R2 vft Z1 - Z1 + 2 - 2� 1 (� - Jz2(z2 -z1))2 - (1-z2)2 

2� � - Jz2(z2 -z1) - (1- z2) 

11 (1 - t)P-1(1 - z1t)-! (1 - z2t)-Pdt 
(1 )_l 22p- -Z1 2 (-R-)(R-)p-l- . (. _ )p-l ( ) 2p 2 2 Z2 Z2 1 + z2-z1 

(l-z1)z2 

·(1 - R2)-P(l - >..'R2)-P 11 (1- t')P-1(1 - w1t')-P(l - w2t')-Pdt1
, 

and hence, to conclude the identity (9), it is sufficient to show the following: 
( 12) z2P ( 2 ) 2

P ( -R2 )P ( 1-R2 tP ( 1-X R2 )-P = 1.1 + z2-z1 
(l-z1)z2 By these calculations, we obtain 
-R;-(1- R2)(1 - XR2) 2 -z1 - 2� vftz1 (� + 1-z2)2 - z2(z2 _ ;1)4(1 - z1) (1 - z2)z1 4(1 - z1)vft (1 - z2)z1 .J(l -z1)z2 + Jz2 -z14(1 -Z1) y{(l -z1)z2 - Jz2 - Z1

which implies (12). 
9 
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, 4 Triple of sequences and its application to 

computing elliptic integrals 

We now apply Theorem 3.1 to produce an efficient algorithm for computing 
incomplete elliptic integrals of the first kind. We con.sider a triple of sequences 

(an , bn, Cn) where

(13) 

(ao, bo, co)= (a, b, c), a 2:: b 2:: c > 0,
an+l :=·�,

b ·- Cn + � + J(an - en)(bn - en)
n+l .-

2 
, 

Cn + � - J(an - en)(bn - en) 
en+l := 2 

·

Lemma 4.1. (i) The sequences { an}nEN, {bn}nEN, and { en }nEN converge.

(ii) lim an = lim bn .
n--+oo n--+oo 

(iii) lim bn = lim Cn � b = e.
n--+oo n--+oo 

(iv) If b > e, then { an}nEN, {bn}nEN, and { Cn }nEN converge quadratically.

Proof. If we assume an 2:: bn 2:: Cn > 0, then we have

Cn+l - Cn

It follows that 

>

�(� - A) 2:: o,

� - Cn - J
,-,--

( a-n --en..,....,) (-bn ___ Cn-,--)
2 

Cn (an+ bn - en - va.J};;, - J(an - Cn)(bn -Cn))

2( � + J(an - Cn)(bn - en))

( b an + bn an - Cn + bn - Cn)Cn an + n-Cn-
2 

- 2 
----C------==------;:=======---�=0 

2( va.J};;, + J(an - Cn)(bn - en))
../b:i(� - ../b:i) + Jbn - Cn(Jan - Cn - Jbn - Cn)

. 2 2::0, 
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which implies (i). By an+l = ..;a;:r;;;,, we have (ii). Inequalities 

show (iii). Since (iii) and 

an+l - bn+l = Cn+l - Cn 

( .j(Fn-Fn)(�+Fn)-.j(Fn+Fn)(�-Fn))
2 

4 
= (an - bn )2 . 

(.Jri;i
:

n

�)2

· ( ./(Fn-VC::)(A+VC::) + ./(Fn+�)(A-�))-
2

, 

there exists M > 0 'such that 

These inequalities mean (iv). D 

Example 4.2. Let (a, b, c) be (1, 0.5, 0.3). The. values of (an , bn , Cn) and
[-log

10
(an - bn)J, computed using Maple version 14, are shown in Table

1, where [d] means the largest integer not greater than d. Note that the
rate of growth of [- log10

(an - bn )] means the rapidity of the convergence,
because an and bn are in agreement until the [-log

10
(an - bn)]-th decimal

place. Comparing Table 1, below, to Table 2 in section 5, we notice that this 
triple of sequences converges much faster. 

n 

0 
1 
2 
3 
4 
5 

an 

1.00000000000000000 
0.70710678118654752 
0.69882299814131164 
0.69881295712371630 
0.69881295710878734 
0.69881295710878734 

0. 50000000000000000 0. 30000000000000000
0.69063625993197083 0.31647052125457669 
0.69880291625039502 0.31649060314549330 
0.69881295709385839 0.31649060317535121 
0.69881295710878734 0.31649060317535121 
0.69881295710878734 0.31649060317535121 

n 1 2 3 4 5 6 7 8 9 10 
[-log

10
(an - bn )] 1 4 10 22 45 92 185 371 744 1490

Table 1: Fast convergence 
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.Theorem 4.3. For O < z1 < z2 < 1) we consider the triple of sequences 
(an, bn, en) with (a, b, c) = (1, 1 - z1, 1 - z2) and set 

a := lim an = lim bn, I := lim Cn . 
n�oo n�oo n�oo 

Then we have 

[
1

-,=:::::==;::==dt ====== = a (1og (1) - 2log (1- J1 _ 1))lo y'(l - t)(l - z1 t)(l - z2t) a� a 
· 

a 
·

Proof. We set z1 = , z2 = - and p = - in Theorem 3.1; then we
� 

' 1 
an 2 

have 

This implies that the function 

p µ(p, q, r) := I dt 
1 y'(l - t)(l - (1- q/p)t)(l - (1 - r/p)t) 

satisfies µ(an, bn, en)= µ(an+l, bn+I, C
n
+1) for all n EN, Then we obtain

r
1 dt r

1 dt 
lo y'(l - t)(l - z1t)(l - z2t) - lo ..j(l - t)(l - (1 - �)t)(l - (1 - �)t) 

a a a [ 1 dt 
= µ(a, b, c) = µ(a, a, 1) = ; lo y'(l - t)(l - (1 - ;)t)

= a� ( log ( �) - 2 log ( 1 - v 1 - �)) .

D 

Theorem 4.3 and Lemma 4.1 (iv) imply an efficient algorithm for com­
puting incomplete elliptic integrals of the first kind: 
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Algorithm 4.4. To approximate
(14)

[ 1 dt (O<z1<z2<l),
lo J(l - t)(l - z1t)(l - z2t)

we evaluate (aN,bN,cN) in Theorem 4.3 by the recurrence relation (13),
where N is sufficiently large. Thus aN and CN approximate a: and 'Y, re­
spectively, and hence an approximation of the integral (14) is evaluated as

a (log (cN)- 2log (1- �)).aN Ji - cN aN V .,_ - � 
aN 

Remark 4.5. Note that N does not have to be very large, since the conver­
gence of (an, bn, en) is quadratic by Lemma 4, 1 (iv). For example, to evaluatethe integral (14) for z1 = 0.5, z2 = 0.7, we approximate a and 'Y as a10 and
c10, respectively, then la10 - o:1, lc10 - 'YI < 10-

1000 by Example 4.2. 

5 Triple of sequences in [4] 

5.1 Triple of sequences and their common limit 

We define a triple of sequences (an, bn, Cn) by 

(a0, b0, co)= (a, b, c), a 2'. b 2'. c > 0,

( b )-(Fn(�+Fn) �(Fn+Fn) Fn(Fn+�))an+l, n+l, Cn+l - 2 , 
2 ' 2 

Fact 5.1 ([4]). The sequences { an}nEN, {bn}nEN, and { cn }nEN converge and
satisfy lim an

= lim bn = lim Cn ,
n---+oo n---+oo n---+oo 

This common limit of the sequences {an }, {bn}, and {en
} is denoted by

m�(a,b, c). 
Theorem 5.2 ([4]). The common limit of the triple of sequences can be
expressed as
(15) 

2a m�(a,b,c) = -
1
-------- --

( dt 
lo J(l - t)(l - z1t)(l - z2t)

where z1 = 1 - .!!. z2 = 1 - £ .
a' a 
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To prove this theorem, we use the following proposition which we prove 
in the next subsection. 

Proposition 5.3 ([4]). If a 2 b 2 c > 0, then we have 

r
1 dt' vab+ ,lac r

1 dt 

lo J(l-t')(l-w1 t')(l-w2t') 
- 2a lo J(l-t)(l-z1t)(l-z2t)' 

where 
b C \fab + /& y'ac + /& 

Z1 = 1 - -, Z2 = 1--, W1 = 1- , W2 = 1-
a a y1ab + yac y1a/; + yac 

Proof of Theorem 5.2 (Refer to [4/). Let µ(a, b, c) be the right-hand side of 
(15). Proposition 5.3 implies that 

for all n E N. Hence we have 

µ(a,b,c) lim µ(an, bn, en) = µ(mc;'(a, b, c), mc;'(a, b, c), mc;'(a, b, c)) 
n---too 

2mc;'(a, b, c)j [
1 

� = mc;'(a, b, c).
lo 1- t 

D 

Remark 5.4. By this triple of sequences, we can also compute an incomplete 
elliptic integral of the first kind. However, the convergence of (an, bn, en) is 
not rapid. For example, the values of (an, bn, en) and [-log

10(an - bn)] with 
(a, b, c) := (1, 0.5, 0.3) are computed by Maple version 14 and are shown in 
Table 2. 

5.2 Another proof of Proposition 5.3 

In [4], Proposition 5.3 is proved as a consequence of the transformation for­
mula for Appell's hypergeometric function F1 , which is obtained by the cal­
culation of connection matrices of integrable Pfaffian systems. Here we give 
our proof using !ntegration by substitution. 

We consider two elliptic curves 

C: s2 = (1 - t)(l - z1t)(l - z2t), 
C': s'2 = (1 - t')(l - w1t')(l - w2t'), 
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0 1. 000000000000000 0. 500000000000000 0. 300000000000000
1 0.627414669345856 0.547202557903644 0.467510446062953 
2 0.563765287089548 0.545863514844305 0.523691167084954 
3 0.549050549905967 0.544702305679079 0.539010662167320 
4 0.545439775683462 0.544360558450349 0.542928227999162 
5 0.544541226396508 0.544271910695070 0.543913237208964 

20 0.544242076130621 0.544242076130370 0.544242076130036 
n l 2 3 4 5 6 7 8 9 10 20 

[-log 10(an-bn)] 1 1 2 2 3 4 4 5 5 6 12 

Table 2: Slow convergence 
\, 

where z 1, z 2, w1, and w2 are as in Proposition 5.3. Both of these curves are 
isomorphic to 

Then there is an isomorphism 

which maps the branched points 1, 1 / z1, and 1 / z2 of C ---+ IP'1 to 1, 1 / w1, 
and 1/w2 of C' ---+ IP'1 , respectively. We calculate the integral 

by the substitution 

Then we have 

r
1 dt' 

lo J(l -t')(l -W1t')(l -W2t') 

r
1 dt' 

lo J(l -t')(l - w1t')(l - w2t') 
vab + y'ac 1.1 dt 

to = _z_1_-_w_1_-
a to J(l -t)(l -z1t)(l -z2t)' (1 -w1)z1 · 
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Comparing to Proposition 5.3, we have to show that 

(16) (
1 . dt = 2 (

1 dt 

lo v(l - t)(l - z1t)(l - z 2 t) lt
o y'(l - t)(l - z1t)(l - z 2 t)

Claim 5. 5. The equation {16) corresponds to the doubling map via the Abel­
Jacobi map that sends (1, 0) E C to the origin of the complex torus. More
precisely, (t0, .J(l - t0)(1 - z1t0)(1 - z 2t0)) E C multiplied by 2 is (0, 1) EC. 

We should thus make a different substitution that uses the doubling map. 
We define an isomorphism by 

P: C -----+ C(,�);

(t,s) f----7 
(�-1 1 {f=-;; s )

Z1 t - 1 ) 
Z1 V � (t - 1)2 ) 

which maps (1, 0) E C to the point at infinity of C(,�) (the isomorphism 
p' : C' -----+ C(>.) is given in a similar way). Via p and the Abel-Jacobi map 
for C(>.), (0, 1) EC corresponds to the origin of the complex torus E(T). If 
we let 1/J be as in Proposition 2.4 and (t, s) be p-1 o 1jJ o p'(t', s'), then we 
obtain 

(17) t = 1 _ 4 . (1 - z1)(l - w 2)w1 (L- t')(l - w1t')(l - w2t')

z1(W1W 2t12 - 2w1w 2t' + W1 + W 2 - 1)2 

Proof of Proposition 5.3. We prove Proposition 5.3 by making the substitu­
tion ( 17). Then we have 

dt 

dt' 
-4 . _( 1_ -�· _z1 _) (_l_-_w_2 _)w_1 

Z1

(w1w2t'2 - 2w1t' + W1 - w 2 + l)(w1w 2t12 - 2w 2t' - W1 + W 2 + 1)
(w1w 2t'2 � 2w1w 2t' + w1 + w2 - 1)3

For simplicity, we set 

fi(t') =w1w 2t'2 -2wit' +w1 -w 2 +l, h(t') =w1w2t'2-2w 2t1 -w1 +w 2 +l, 
h(t') =w1w 2t'2 -2w1w2t1 +w1 +w 2-l. 

It is easy to show that ifO s t' s 1, then Ji ( t') > 0, h ( t') > 0, and h ( t') < 0. 
This implies that f;, > 0 when O s t' s 1. Since 

Ji (t1)2-h(t1)2 = (2w1 wd2 -2w1(l +w2)t1 +2w1)(2w1 ( w2-l)t1 -2w 2 + 2) 
= 4w1 (1-w 2)(1-t1)(l-wit')(l-w 2t'), 
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we obtain

(the latter is followed similarly by (l-zi)(l-w2)wi = (l-z2)(l-wi)w2). ThereforeZ[ Z2 we conclude 

This completes our proof of Proposition 5.3, since
(1- w2)w1 a2 (.jac+v'bc)(.jac-v'bc) ( a )

2
(1- z2)z1 - (v'ab+.jac)2 c(a - b) - v'ab+.jac 

5.3 Reduction formula 

D

Using the substitution (17), we now obtain a reduction formula from Lauri­
cella's FD of five variables to Appell's Fi. Lauricella's hypergeometric func­
tion FD of m-variables z1, ... , Zm with parameters a, (/3j) = (/31 , ... , f3m), 'Y
is defined as 

where z/s satisfy lzil < 1, 'Y-=f. 0, -1, -2, .. .. Note that if we set m = 2, thenFD(a,(/31,/32),'Y;z1,z2) = Fi(a,/31,/32,'Y;z1,z2). The function FD admits anintegral representation: 
FD(a, (/3j ), "(; Z1, ... , Zm)
= r(a)�\� _ a) [ t"(l - t)•-• (fi (1-z; t)-P;) 

t(
/� l

)
.
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We consider the integral representation for F1 with the substitution (17).Replacing z 1 and z2 with 1 - zf and 1 - zJ, respectively, we then have 

Since calculations in section 5.2 are valid after replacing them, and we cansimplify the right-hand side of (17) as 

the following the9rem is obtained. 
Theorem 5.6. We have 

( z1;z2) p Fi (P,l,l,};1 - zl,l - z�) 
=FD (P, (p-l,p-l,1-p,1-p,l -p) ,};w1,w2,W3,W4,w5), 
(w1,W2,W3,W4,W5) _. 
= (l- z1(l+z2) 1_ z2(l+z1) l-z1 l-z2 _(l-z1)(1-z2) ) Z1 + Z2 ' Z1 + Z2 ' 2 ' 2 ' 2( z1 + z2) '

where (z1, z2) is in a small neighborhood of (1, 1). 

This theorem is a generalization of Proposition 5.3, which is different from 
Theorem 1.1 in [4]. Indeed, if we let p = 1, z1_= .jf, and z2 = Jr, then we
obtain Proposition 5.3. 
Acknowledgement. I thank Professor Keiji Matsumoto for his useful ad­vice and constant encouragement. 

References 

[1] K. Aomoto and M. Kita, translated by K. Iohara, Theory of Hypergeo­metric Functions, Springer-Verlag, 2011. 
[2] J. Igusa, Theta functions, Die Grundlehren der mathematischen Wis­senshaften in Einzeldarstellungen 194, Springer-Berlin-Heidelberg, New York, 1972. 

18 



[3] K. Matsumoto, Geometries and equations behind the arithmetic­
geometric mean (in Japanese), Suurikagaku, 48 no.6 (2010), 22-28.

[4] K. Matsumoto, A transformation formula for Appell's hypergeometric
function F1 and common limits of triple sequences by mean iterations,
Tohoku Math. J., 23 (2010), 37-47.

[5] D. Mumford, Tata lectures on Theta I, progress in Math 28. Birkhauser,
Boston-Basel-Berlin, 1983.

[6] J. H. Silverman and J. Tate, Rational Points on Elliptic Curves,
Springer-Verlag, New York, 1992.

Department of Mathematics 
Hokkaido University 
Sapporo 060-0810 
Japan 
E-mail: y-goto@math.sci.hokudai.ac.jp

19 




