
TWISTED PERIOD RELATIONS FOR LAURICELLA'S HYPERGEOMETRIC FUNCTION FA 
YOSHIAKI GOTO 

ABSTRACT. We study Lauricella's hypergeometric function FA of m variables 
and the system EA of differential equations annihilating FA, by using twisted 

(co)homology groups. We construct twisted cycles with respect to an integral 

representation of Euler type of FA. These cycles correspond to 2m linearly. 

independent solutions to EA, which are expressed by hypergeometric series FA. 
Using intersection forms of twisted (co)homology groups, we obtain twisted 
period relations which give quadratic relations for Lauricella's FA. 

1. INTRODUCTION 

Lauricella's hypergeometric series FA of m variables xi, ... , Xm with complex parameters a, bi, ... , bm, ci, ... , Cm is defined by 
00 FA(a,b,c;x) = L 

n1, .. ,,n m =O 

where X =(xi, ... , Xm), b =(bi, ... , bm), c = (ci, ... , Cm), ci, ... , Cm r/. {O, -1, -2, ... } and (ci,ni) = r(ci +ni)/r(ci). This series converges in the domain 
DA:= {(xi, ... ,xm) E cm It lxkl < 1},

and admits the integral representation (3). The system EA(a, b, c) of differential equations annihilating FA(a, b, c; x) is a holonomic system of rank 2m with the sin­gular locus S given in (1). There is a fundamental system of solutions to EA (a, b, c) in a simply connected domain in DA - S, which is given in terms of Lauricella's hypergeometric series FA with different parameters, see (2) for their expressions. In this paper, we construct 2m twisted cycles which represent elements of the m-th twisted homology group concerning with the integral representation (3). Theyimply integral representations of the solutions (2) expressed by the series FA. Weevaluate the intersection numbers of these 2m twisted cycles. Further, by using theintersection matrix of a basis of the twisted cohomology group in [9], we give twistedperiod relations for two fundamental systems of EA with different parameters.In the study of twisted homology groups, twisted cycles given by bounded cham­bers are useful. For Lauricella's FA, twisted cycles defined by 2m bounded chambers are studied in [10]. Though the integrals on these cycles are solutions to EA , they do not give integral representations of the solutions (2), except for one cycle. We construct other twisted cycles from these 2m bounded chambers by using a method introduced in [5]. For a subset {ti, ... , ir } of {1, ... , m} of cardinality r, we con­struct a twisted cycle �i, ···ir from the direct product of an r-simplex and ( m - r)intervals, by a similar manner to [5]. See Section 4, for details. Our first main theorem states that this twisted cycle corresponds to the solution (2) expressed by the power function rr;=i x�:Cip and the series FA, Our construction has a
2010 Mathematics Subject Classification. 33C65. 
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simple combinatorial structure, and enables us to evaluate the intersection matrix 
formally. Once the intersection matrix for bases of twisted homology groups and 
that of twisted cohomology groups are evaluated, then we obtain twisted period 
relations which are originally identities among the integrals given by the pairings 
of elements of twisted homology and cohomology gToups. Our first main theorem 
transforms these identities into, quadratic relations among hypergeometric series 
FA 's. Our second main theorem states these formulas in Section 6. 

As is in [2], the irreducibility condition of the system EA (a, b, c) is known to be 
1' 

b1,.,,,bm, C1-b1, ... ,Cm-bm, a-LCir r/:.Z 
p=l 

for any subset { i1, ... , i,. } of {1, ... , m }. Since our interest is in the property of 
solutions to EA (a, b, c) expressed in terms of the hypergeometric series FA, we 
assume throughout this paper that the parameters a, b = (b1, ... , bm) and c =
( c1, ... , cm) satisfy the condition above and c1, ... , Cm r/:. Z. 

2. DIFFERENTIAL EQUATIONS AND INTEGRAL REPRESENTATIONS 

In this section, we collect some facts about Lauricella's FA and the system EA 

of hypergeometric differential equations annihilating it. 

NOTATI0l.'I 2.1 . Throughout this paper, the letter k always stands for an index 
m 

running from 1 to m. If no confusion is possible, L 
k=l 

denoted by � (or �
k
) and IT (or IT

k
), respectively. 

convehtion FA (a, b, c; x) is expressed as 
00 

FA (a, b, c; x) = L 

m 

and IJ are often simply
k=l 

For example, under this 

Let ak (k = 1, ... , m) be the partial 'differential operator with respect to Xk, 
Lauricella's FA ( a, b, c; x) satisfies hyper geometric differential equations 

[xk(l - Xk)a� - Xk L x;akai 
l<i<m 

icf.k 

+ (ck - (a+ bk+ l)xk)Ok - bk L x;o; - abk] f(x) = 0, 
l<i<m 

icf.k 

for k = 1, ... , m. The system generated by them is called Lamicella's system 
EA (a, b, c) of hypergeornetric differential equations. 

Proposition 2.2 ([8], [11]). The system EA (a, b, c) is a holonomic system of rank 
2m with the singular locus 

(1) S := (ft xk · IT (1-f x;
p
) = a) c cm . 

k=l {i1 , ... ,ir}C{l, ... ,m} p=l 

If c1, ... ,cm r/:. Z, then the vector space of solutions to EA (a,b,c) in a simply 
connected domain in DA - S is spanned by the following 2m elements: 
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Here r runs from O to m, indices i 1 , . . .  , i,. satisfy 1 :S:: i 1 < · · · < i,. :S:: m, and the 
row vectors bi1 ···ir and ci1 ···ir are defined by

r 

bi' ·· ·ir ·= b + """"'(1 - c· )e · ' � . Ip Ip' 

p=l 

r 

ci' ··ir := c + 2 L(l
-

C;p)eip,
p=l 

where e; is the i -th unit row vector of cm. 

For the above i1, ... , i,., we take J1, ... , Jm-r so that 1 :S:: J1 < · · · < Jm-r :S:: m 
and {i1, ... ,i,.,j1, ... ,jm-r} = {1, ... ,m}. It is easy to see that the ip-th entries 
of bi1 ···ir and ci1 

· 

·ir are bip - c;P + 1 and 2 - C;P (1 :S:: p :S:: r) and the Jq-th entries
are bjq and Cjq (1 ::; q :S:: m - r), respectively. 

We denote the multi-index "i1 · · · i,." by a letter I expressing the set { i 1, ... , i,.}. 
Note that the solu.tion (2) for r = 0 is f (= f0) = FA(a, b, c; x).

Proposition 2.3 (Integral representation of Euler type·, [8]). For sufficiently small 
positive real numbers x1, .... ,xm , ifRe(ck) > Re(bk) > 0 (k = 1, ... ,m), then 
FA ( a, b, c; x) admits the following integral representation: 
(3) 

II r(ck) FA(a, p, c; x) = 
f(bk)f(ck - bk) 

· ( II ( ttk-l · (1 - tkr-bk-l) · ( 1 - L Xktk )-a dt1 A··· A dtm , 
l(o,1)m 

3. TWISTED HOMOLOGY GROUPS 

We review twisted homology groups and the intersection form between twisted 
homology groups in general situations, by referring to Chapter 2 of [1] and Chapters 
IV, VIII of [12]. 

For polynomials Pj (t) = Pj (t1, ... , tm) (1 :::; j :S:: n), we set Dj := {t I Pj(t) = 
O} c cm and M := cm - (D1 U · · · U Dn)- We consider a multi-valued function 
u(t) on M defined as 

n 

u(t) := II Pj(tf'j, Aj EC - Z (1:::; j:::; n). 
j=l 

For a k-simplex (}" in M, we define a loaded k-simplex (}" ® u by (}" loading a branch 
of u on it. We denote the C-vector space of finite sums of loaded k-simplexes by 
Ck (M, u), called the k-th twisted chain group. An element of Ck (M, 1i) is called a 
twisted k-chain. For a loaded k-simplex (}" ® u and a smooth k-form cp on M, the 
integral f a@u 11. • cp is defined by 

1 u · cp := 1 [the fixed branch of u on (J"] · cp. 
a®u a 

By the linear extension of this, we define the integral on a twisted k-chain. 
We define the boundary operator au : Ck(M,u)--+ Ck-r(.M,u) by 

au((}"® u) := 8((}") ® u/a(a), 
where 8 is the usual boundary operator and u[a(a) is the restriction of u to 'a((}"). 
It is easy to see that au o au = 0. Thus we have a complex 

au au au C.(M, u): · · ·--+ Ck(M, u)--+ Ck-r(M, u)--+ · · · , 
and its k-th homology group Hk(C.(M, u)). It is called the k-th twisted homology 
group. An element of ker au is called a twisted cycle. 

By considering u- 1 = 1/u instead of u, we have Hk (C.(M,u- 1)). There is 
the intersection pairing h between Hm(C.(M, u)) and Hm (C.(M, u-1 )) (in fact, 
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the intersection pairing is defined between Hk(C.(M,u)) and H2m-k(C.(M,u-1)), 
however we do not consider the cases k -f. m). Let /:-,. and /:-,.' be elements of 
Hm(C0(M,u)) and Hm(C.(M,u-1)) given by twisted cycles Li O:i · O'i @ ui and 
L

j 
o:.i · O'.i@ u_;1 respectively, where ui (resp. u_;1) is a branch of u (resp. u-1) on

O'i (resp. O';). Then their intersection number is defined by 

where (O'i · O'J)s is the topological intersection number of m-simplexes O'i and IJ'.i at 
s. 

In this paper, we mainly consider 

lvl := cm - (LJ(tk = 0) U u(l'- tk = 0) U (v = o)), 
k k 

where v := 1- I: xktk, We consider the twisted homology group on 111 with respect 
to the multi-valued function 

m 

·- II tbk(l - t )Ck-bk-1. -a U .- k k V . 

k=l 

Lett:-,. be the regularization of (0, 1r@u, which gives an element in Hm(C.(M, u)). 
For the construction of regularizations, refer to Sections 3.2.4 and 3.2.5 of [l]. 
Proposition 2.3 means that the integral 

1 
dt1 I\ · · · I\ dtm 

U<p, <p := 
t,, l1···trr1 

represents FA(a, b, c; x) modulo Gamma factors. 

4. TWISTED CYCLES CORRESPONDING TO LOCAL SOLUTIONS j.1 ···ir 

In this section, we construct 2m twisted cycles in J\;J corresponding to the solu­
tions ( 2) to EA(a,b,c). 

Let OS r Sm and subsets {i1, ... , i,.} and {j1, ... ,im-r} of {1, ... , m} satisfy 
i1 < · · · < ir, j1 < · · · < im-r and {i1, ... , ir,jl, ... ,im-r } = {1,.,,, m}. 

NOTATION 4.1. From now on, the letter p (resp. q) is always stands for an index 
running from 1 tor (resp. from 1 tom -r). We use the abbreviations I:, IT for 
the indices p, q as are mentioned in Notation· 2.1. 

We set 

:= cm - (u(sk = 0) LJ LJ(s;P - Xi
p 

= 0) lJ LJ(l - Sjq = 0) LJ (vi,···ir = 0)), 
k p q . 

where 

'Vi1 ··ir := 1 - L Si
p 

- L Xjq Sjq , 
p q 
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Let ui, -·ir and 'Pi,--·ir be a multi-valued function and an m-form on .Mi,--·ir defined 
as 

r m-r

• rr b;p ( 
)

C;p-bip-1 IT bjq
(l )Cj -bj -1 -a 

Ui1 ··ir .

= Sip Sip - Xip 
. Sj

q 
- Sjq 

q q 
. Vi1 ···ir' 

p=l q=l 

ds1 I\ · · · I\ dsm 
'Pi1 --·ir :=

We construct a twisted cycle Ai, ---i.- in JV!i, --·ir wit!) respect to ui, --·ir . Note that if 
{ i1 , ... , i,.} = 0, then these settings coincide with those in the end of Section 3. We 
choose positive real numbers c1, ... , cm and c so that c < 1 - Lk ck and ck < ! .
And let x1, ... , Xm be small positive real numbers satisfying 

(fol' example, if 

Xk < Ck, L Xk(l + Ck) < C 

k 

1 1 
Ck = C = 5m , 0 < Xk < 6m2,

these conditions hold). Thus the closed subset 

.. ·-{
( ) !Rm I Si

p 
:::::cip, 1-I:sip :::::c,} O'ii--·ir .- s1,---,Sm E . > . 1- . > . s10 _ c1., _ s1• _ c1q 

is nonempty, since we have ( 1:1+
2
�, ... , cm+2

�) E O'i 1 --·ir , where 6 :·= 1-I: ck -c >
0. Further, a-i, --·ir is contained in the bounded domain

{(s1, ... ,sm) E !Rm I S
o
i

p -
Xi

p >
lO, 1- I:sip - I:xj.Sjq > o} C (0, 1r.

, < SJq 
< , 

and is a direct product of an r-simplex and (m-r) intervals. Indeed, (s1, ... , sm) E 
O'i, --ir satisfies 

1 - "S· - "X · S · > c - "X · > c - "Xk > 0.� ip � Jq Jq �. Jq � 

The orientation of O'i1 --·ir is induced from the natural embedding !Rm C cm. We
construct a twisted cycle from O'i1 --·ir ®Ui1 --·ir , where the branch of Ui1 --·ir on O'i1 --·ir 

is defined by the principal value. We may assume that Ek = c (the above example 
satisfies this condition), and denote them by c. Set £1 := (s1 = 0), ... , Lm :=

(sm = 0), Lm+l := (1-sii = 0), ... , L2m-r := (1-Sj=_J, L2m-r+1 := (1-I: Si
p 

=

0), and let U ( C !Rm) be a bounded chamber surrounded by £1 , . .-. , L2m-r+l, then 
a-i, --·ir is contained in U. · Note that we do not consider the hyperplane L2m-r+l
(resp. the hyperplanes Lm+l, ... , L2m-,·), when r = 0 (resp. r = m). For 
JC {l ... , 2m - r + 1}, we consider LJ := njEJLj, UJ := V n LJ and TJ := c­
neighborhood of U J. Then we have 

a-i,--·ir 
= U - LJTJ . 

J 

Using these neighborhoods TJ, we can construct a twisted cycle iii, --ir in the 
same manner as Section 3.2.4 of [1] (notations L and U correspond to H and 
D.. in [1], respectively). Note that we have to consider contribution of branches 
f b;p ( )Ci -b;p-l h d I . h h . 

1 
. d L ( o si

p 

si
p 

- Xi
p 

P 
, w en we ea wit t e ctrc e associate to i

p 
p = 

1, ... , r), because of xi
p 

< c. Thus the exponent about this contribution is 

bi
p 

+ ( Ci
p 

- bi
p 

- 1) = Cip 
- 1. 
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The exponents about the contributions of the circles associated to Lj., Lm+q , L2m-r+l 
are simply 

bJq> Cjq 
- bjq 

- 1, -a,

respectively. We briefly explain the expression of iii, ···ir. For j = 1, ... , 2m - r +I, 
let lj be the (m - 1)-face of ai,···ir given by ai,···ir n Tj , and let Sj be a positively 
oriented circle with radius c in the orthogonal complement of Lj starting from the 
projection of lj to this space and surrounding Lj. Then iii, ··ir 

is written as 

( 1) (( ) )O"i, "ir 
© Ui,. ·i r + :z= II d- . n lj X II Sj 

0,iJC{l, ... ,2m-r+l} jEJ J jEJ jEJ 

where 

d;P := 'Yi
v - 1, dj• := /3jq - 1, dm+q := '°Yjq

(3}q1 - 1, d2m-r+l := a-1 
- 1, 

and a := e2"v'=Ia, f3k := e2"v'=Ibk, 'Yk := e2"v'=Ick. The branch of ui, ···ir on 
(njEJlj) X rr

jEJ 
sj is defined by the analytic continuation of that 011 O"i1 ···ir. Note 

that we define an appropriate orientation for each (njEJlj) X rr
jEJ 

sj ' see Section 
3.2.4 of [1] for details. 

EXAMPLE 4.2. We give explicit forms of Li, fi1 and fi 12, for m= 2. 
(i) In the case of I= 0, Li is the usual regularization of (0, l)m © u.

(ii) In the case of I= {1}, we have

Li _ 
(S1 x Ii)© u1 (S2 x 12) © 'll,1 (S4 x l4) © u1 (S3 x l3) © u1 

1 -0"1 © U1 + 1 + 1 (3 + I -1 + (3- 1 - 'Y1 - 2 - a 1 - 'Y2 2 

(S1 x S2) ©u1 (S2 x S4) ©u1

+ (1 - 'Y1)(l - /J2) + (1 - (32)(1 - a-1)
(S4 X S3)@ U1 (S3 X S1)@ U1 

+ -1 + -1 ' 

(1 - a-1 )(1 - 'Y2/32 ) (1 - 'Y2f32 )(1 - 'Y1)

where the I-chains lj satisfy 8a = �J=
1 

lj (see Figure 1), and the orientation 
of each direct product is induced from those of its components. 

S1 - XJ = 0 

FIGURE 1. Li1 for m = 2.
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(iii) In the case of I= {1, 2}, we have

;;; (S1 X li) 181 U12 (S2 X 12) 181 U12 (S3 X b) 181 U12 
u12 =0"12181U12 +  l + 1 + 1 -1- 'Yl - ,2 - Q 

(S1 X S2) 181 U12 (S2 X S3) 181 U12 (S3 X Si) 181 U12 + (1 -,1)(1 -,2) + 
(1 - ,2)(1 - a-1) + (1 - a-1 )(1 - 11)'

where the I-chains li satisfy Do-= li +l2+l3 (see Figure 2), and the orientation
of each direct product is induced from those of its components. 

1 - SJ - S2 = 0 

FIGURE 2. b.12 form= 2. 

We consider the following integrals: 

Fi1··:i r := Z Ui1···ir<fii1···ir 
1�i1···ir 

r ( )c· -b· -1 m-1· 

h 
2 x· 'v •v II b· -1 b 1 

II c,v- 1 
'v 

· s.10 (1- s· t1q- Jq-= siv 
- -s-- Jq Jo 

LS.,, ··•r p=l tp q=l ( r m-r )-a 
· 1 -"s· - "x · s · ds1 /\ · · · /\ ds .

6 •v 6 Jq Jq m 

p=l q=l 

Proposition 4.3. 

F . = II
r 

r(c· -1). m
II

-
r r(bjq)r(cjq - bjq) . r(l -a) 

i1 . ·tr 'v r(c. ) r("' Ci - a - r + 1) 
p=l q=l Jq L.., p 

r 

·FA (a +r-"c· bi1···ir cii ···i,..x) � t p
) ' ,� . 

p=l 

Proof. We compare the power series expansions of the both sides. Note that the co­
efficient of xn ' · · · xnm in the series expression of FA (a+r-"''" c· bi 1 ···ir ci 1 ···ir · x)� 1 m Dp=l ip , > , 

is 

A := r(a+ r -L
p

Cip + Lk nk). II r(bip + 1-C;p 
+ n;p

). II r(bjq + njq
)

n, ... n,,. r(a + r -'<;'"' C· ) r(b + 1 -C· ) r(b · ) L..,p •v p •v 'v q Jo 
II r(2 -c;p

) II r(ci
0

) II 1
. r(2-c· +n·)· r(c· +n·)· nk,· p 'v 'v q Jq Jq k 
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and 

(1- � s - - �-
x

-
s

· )-a 
L ip L Jq Jq 
p=l q=l 

L 

When r = 0 (resp. r = m), we do not need the first (resp. second) expansion. 
The convergences of these power series expansions are verified as follows. By the 
construction of Ai, ... ir, we have 

0 < Xk < Ek, E:ip :S: lsip l, lsiq l :S: 1 +ciq , 11-Lsiv l 2: E:.

Thus the uniform convergences on Ai, .. ·ir follow from 

I Xip I < Cip = 1, Sip 
E:ip 

I 1 · """'x · s · I < 1 · """'x Is· I < ! · """'x (1 + E: · ) < � = 1. 
1-I;sip L 1

• 
1

• -11-I;sip l L Jq Jq - c L Jq Jq c

Since Ai, ···ir is constructed as a finite sum of loaded (compact) simplexes, we can 
exchange the sum and the integral in the expression of Fi, ···i

,.
. Then the coefficient 

of x�' · · · x�,m in the series expansion of Fi, ···i,. 
is 

By the construction, the twisted cycle Ai, ···i,. of this integral is identified with the 
usual regularization of the loaded domain 

{(s1, .. ,,sm)E!Rm l sip >O, 1-LSip >O, O<sjq <l} 

for the multi-valued function 
rr/;P-1-n;P(l - """' S )-a-En;q . IT

s
b;q -niq (l - s · )c;q -b;q -1

1.p � tp Jq Jq 
p q 

on icm - ( Uk (sk = 0) U U
q
(l - si. = 0) U (1 - I: sip 

= 0)). Hence the integral in 
( 4) is equal to

n
p 

r(cip - nip - 1) . r(-a - I: njq + 1) . IT r(bjq + nj.)r(cj. - bi.) 
r(I;cip - a -I;nk - r + 1) q r(ci. + ni.) 

· 

Using the formula 

(5) 
7r 

r(z)r(l - z) = -. -( 
-

) ,sm 1r z 
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we thus have 
Bn, ... n.,, = ITr(c· -1). IT r(bj.)r(cjq 

-bj.) . r(l - a
) 

An, ... n.,, P 'P q r(ci
0

) r(I:cip-a-r+l)'

which implies the proposition. 

We define a bijection Li, ... ir : Mi, "ir ---+ lvf by 

For example, L(= L0) is the identity map on lvf = M0. 

9 

D 

We also define branches of the multi-valued function u on real bounded chambers 
in M. On the domain 

Di, .. ·ir :={(ti, ... , t,.) E !Rm I tk > 0, l -I::xktk > 0, 1- tip < 0, 1 -tjq > O},

the arguments of tk, 1 -I: xktk, 1 -tip and 1 -ti. are given as follows. 

I t; 11 -� Xktk 11 =:ip 11 -0 
tjq I 

We state our first main theorem. 

Theorem 4.4. We define a twisted cycle �i, ... ir in M by 

Then we have 

1 IT (tt"-1 
. (1 -tk r-bk-l) . ( 1 -L Xktk )-a dt1 I\ ... I\ dtm 

.6.i 1 ·-·ir 

(= 1 . u<p) = e1rv=IO:::b,p-Lc,P+r) IT x�P-c,P. Fi, .. ·ir>
.6.11· .. 1r p=l 

and hence this integral corresponds to the local solution /i, .. ·ir to EA(a, b, c) given 
in Proposition 2. 2. 

Proof. Since Li, ... ;r ( O"i, ... ir) C Di, ... ir, the left hand side is equal to 

e1rv=T(Lb;p -Lc,P+r) . l,, ... 
,r g (

t:�P -1. (tip -lt'P-b;P-1)

IT ( 
bjq -1 (1 )C· -b· -1) (1 " )-a d d · tjq 

· -tjq 

1• Jq · -�Xktk t1 /\···I\ tm , 
. q 

where the branch of the integrand is determined naturally. Pulling back this integral 
by L;

1 
... ir leads the first claim. This and Proposition 4.3 imply the second claim. D 

REMARK 4.5. Except in the case of {i1, ... ,ir} = 0, the twisted cycle �i, .. · ir is
different from the regularization of Di, ... ir ® u as elements in Hm(C.(M, u

))
. 

The replacement u i--+ u- 1 
= l/u and the construction same as �i, ... ;r give the 

twisted cycle �ft .. ·ir which represents an element in Hm(C.(M,u-1)
)
. We obtain

the intersection numbers of the twisted cycles { �i, .. -iJ and { �;,_ .. -iJ. 
Theorem 4.6. {i) For!, JC {1, ... , m} such that I=/- J, we have h(�I, �'}) =

0. 
{ii) The self-intersection number of �i, --·ir is 

[h(�i, .. ·ir>�{,. i) = ( O'�
Il

il( 'Yip ) ·IT ( /3jq (�
(
-,Yjq ) 

)' · r O' - 1 
p 1 -'Yip q l -/3jq /3jq 

-,Yjq 
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Proof. (i) Since �i, ···i,. 's represent local solutions (2) to EA (a, b, c) by Theorem 
4.4, this claim is followed from similar arguments to the proof of Lemma 4.1 in [6]. 
(ii) By l;1 ... ;,., ,the self-intersection number of �i, ... ;,. is equal to that of tl;, ... ;,. with
respect to the multi-valued function u;, ... ;,.. To calculate this, we apply results
in [7]. Since we construct the twisted cycle tl;, ... ;,. from the direct product of an
r-simplex and ( m - r) intervals, the self-intersection number of tl;, ... ;,. is obtained
as the product of those of the loaded simplex and the loaded intervals. Thus we
have

D 

5. INTERSECTION NUMBERS OF TWISTED COHOMOLOGY GROUPS

In this section, we review twisted cohomology groups and the intersection form 
between twisted cohomology groups in our situation, and collect some results of [9] 
in which intersection numbers of twisted cocycles are evaluated. 

Recall that 

JvI = cm - (LJ(tk = 0) U LJ(l - tk = 0) U (v = o)) ,
k k 

u = II ttk(l - tktk-bk-1. v-a.

We consider the logarithmic 1-forni 
du 

w := dlogu = �.
u 

We denote the C-vector space of smooth k-forms on M by [k(JvI). We define the 
covariant differential operator "'vw: [k(M) -+ [k+1 (NI) by 

"'vw(1P) := d'lj; + w I\ 'lj;, 'lj; E [k(M). 

Because of "'v w o "'v w = 0, we have a complex 

t:•(M):,, · � t:k(M) � t:k+1(M) � ... 

and its k-th cohomology group H k(JvI, "'v w), It is called the k-th twisted de Rham 
cohomology group. An element of ker "'v w is called a twisted cocycle. By replacing 
[k(JvI) with the C-vector space Et(M) of smooth k-forms on Jvl with compact sup­
port, we obtain the twisted de Rham cohomology group Ht(M, "'vw) with compact 
support. By [3], we have H k(M, "'vw) = 0 for all k-/= m. Further, by Lemma 2.9 in 
[1], there is a canonical isomorphism 

J : Hm (M, "'v w) -+ H;'(M, "'v w)-
By considering u-

1 
= 1/u instead of u, we have the covariant differential operator 

"'v -w and the twisted de Rham cohomology group H k(JvI, "'v -w), The intersection 
form Ic between Hm(l\ll, "'vw) and Hm(M, "'v-w) is defined by 

Ic('lj;,'lj;1

) := JM J('lj;) I\ 'lj; 1

, 'lj; E Hm(M, "'vw), 'lj;1 E Hm(M, "'v _w), 

which converges because of the compactness of the support of J( 'lj;). 

REMARK 5.1. By Lemma 2.8 and Theorem 2.2 in [1], we have 

dimHk(C.(M,u)) = 0 (k-/= m), 
dimHm(C.(M,u)) = dimHm(M, "'v�) = (-lrx(Nl) = 2m, 
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where x(M) is the Euler characteristic of M. Under our assumption for the param­
eters a, b and c (see Section 1), since the determinant of the intersection matrix 
(11i(llr,Clj)) is not zero by Theorem 4.6, the twisted cycles {lli}r form a basis of 
Hm(C.(M,u)). 

The intersection numbers of some twisted cocycles are evaluated in [9]. We use 
a part of these results. We consider m-forms 

i ···i dt1 A · ·. · A dtm t.p' ":=-------TIP
(tip - 1). nq t1• 

on M, which is denoted by 'Px ,(v,, ... ,v m ) with Vi
p 

= 1, v1• = 0 in [9]. Note that 
t.p = ip0 is equal to t.p = 'P0 defined in Section 3 (and 4). We put 

r 1 
Ai, ... i,. = Ar := L II a - "c. i l' 

{I(1l}l=l L..., ,�l + 

where {I(!)} runs sequences of subsets of I = { i1, ... , i,.}, which satisfy 

I = r(r) ;2 1<•·-1) ;2 ... ;2 r(2) ;2 1(1) -/ 0, 

and we write [(l) = { i�l), ... , i} t)}. 

Proposition 5.2 ([9]). We have 

where 

Ic('P1 ,ipl '_) = (21rv=Tr · L (AN II 
0i;��;)), 

NC{l, ... , m} n(/.N 

0 ( ) ·= { 1 (n E (l n I') U UC n I'c))
I ,I ' n · 0 (otherwise ), 

b- ( ) ·-{ Cn - bn - 1 (n E I)
I n .- bn (n E le). 

Under our assumptions for the parameters, {ipr}r form a basis of Hm(M, 'vw ), 

6. TWISTED PERIOD RELATIONS 

Because of the compatibility of intersection forms and pairings obtained by in-
tegrations (see [4] ), we have the following theorem. 

Theorem 6.1 (Twisted period relations , [4]). We have

(6) 

where 

Ic('PI ,t.pl') = L I (6. 
1 

L�Y)
. gr,N. gf,,N,

NC{l, ... ,m} h N, N 

1 I V 1 -1 I' gr,N = Ut.p , .9I',N = U t.p , 
b,N b.'f., 

By the results in Sections 4 and 5, twisted period relations (6) can be reduced
to quadratic relations among FA 's. We write out two of them as a corollary. 

Corollary 6.2. We use the notations 

bi, .. -i,. = b + L(l - ci
p

)eip
, ci, .. ,i,. = c + 2 L(l - cip)eip (see Proposition 2.2),

I 

ai,···i,. :=a+ r - LCiv, 

ii• ···i ,. ·= (1 1) - bi' ···i,. cf• ···i ,. := (2, ... , 2) - ci' ···i,.. . ' ... ' ' 
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{i) The equality {6} for I= I' = 0 is reduced to 

fl(c
:
- 1). L (A1 IT:) I j(/.1 J 

[ 
c·- b-1 1 = "'""' II Jq Jq . -- . FA (a. . bi1 .. ,ir ci1 , .. ir. x)

� b . i1 ... t,.) ) , � 

I q jq ai1· .. ir 

·FA (-ai1 .. ·ir,-bi1 .. ·ir,if1 ·i,.;x)J.
{ii} The equality {6} for I= 0, I'= {1, ... , m} is reduced to

[1(1 - Ck) 
. Ai .. ,m 

(-1)" = L -- . FA(ai1 ··i,., bi1 ···ir' ci1 ··ir; x) . FA(-ai1 ···i,., l,i1 ... i,.) 2-1 ••ir; x).
I ai1 ···i,. 

Proof. We prove (i). By Proposition 4.3 and Theorem 4.4, we have 

r(1 - a) 
rr" 

1-c· 

I: 
. . . . 

. ' X, 'P 'FA (a + 1' - c· b'1 .. ·•r c'1 .. ,r., x).
r(I:ci - a-r+l) tp 

'v' ) 
p �=l 

On the other hand, we can express gt .. ir like this by the replacement

(a, b, c) >-----+ (-a, -b, (2, .. . , 2) - c), 

since u- 1
<p is written as 

u-1
<p 

= IT t;;bk-1(1 - tk)-ck+bk+l · (1 - LXkt1.:}°dt1 I\ ··· I\ dtm.

Thus we obtain 
gv . = e"v'=I(- :�:>,P +I:c,P -r)

t1 ···lr 

. rr" r(l - c· ) . IT r(-bj.)r(2 - Cjq + bjq). r(l + a) 
'P r(2 - c1

· ) r(- I: ci +a+ r + 1) p=l q=l q p 

. II x�;p-1. FA (-a -r + L Cip, -bi1···ir ) (2, ... ) 2) - ci1· .. ir; x). 
p=l 

By the formula (5) and Theorem 4.6, we have 

r(1 -a)r(1 + a) II r( 1 )r(l ) r(I': cip - a -r + l)r(- I: cip +a+ r + 1) · P 
cip - - Cip 

. II r(bj.)r(-bj.). r(cjq - bj.)r(l - Cjq + bjq )

q 
r( cj. )r(2 -ci.) 

1 C· - b· - 1 a =(21rRr-II--·II Jq Jq . 
L 

·h(�i1···ir ,�ii---iJ•
Ck -1 b · a+ r - c· 

k q Jq ip 

Hence, we obtain (i) by Proposition 5.2. A similar calculation shows (ii). D 
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