TWISTED PERIOD RELATIONS FOR LAURICELLA’S
HYPERGEOMETRIC FUNCTION Fy

YOSHIAKI GOTO

ABSTRACT. We study Lauricella’s hypergeometric function F4 of m variables
and the system E 4 of differential equations annihilating F4, by using twisted
(co)homology groups. We construct twisted cycles with respect to an integral
representation of Euler type of F4. These cycles correspond to 2™ linearly
independent solutions to E 4, which are expressed by hypergeometric series Fq.
Using intersection forms of twisted (co)homology groups, we obtain twisted
period relations which give quadratic relations for Lauricella’s Fy.

1. INTRODUCTION

Lauricella’s hypergeometric series Fy of m variables z,...,z, with complex
parameters a, by, ...,bn,c1,. ..,y is defined by
o0
a,ny+ -+ np)(bi,n1) - (b,
Fa(a,b,c;x) = Z {6, m)(b1,m1) - (b m)x;“---mﬁ{",

o (c1,m1) - (Cmymm)ma! -+ - 1!
1eeny =

where z = (z1,-..,%m), b= (b1,...,bm), c=(c1,---,cm), C1,---,cm € {0, -1,-2,. ..
and (c1,m1) = I'(¢c1 +n1)/T'(c1). This series converges in the domain

Z|xk|<l},

Dy = {(Il,...,l‘m) eC™
k=1

and admits the integral representation (3). The system Fa(a,b,c) of differential
equations annihilating F4(a,b, c; ) is a holonomic system of rank 2™ with the sin-
gular locus S given in (1). There is a fundamental system of solutions to E4(a, b, c)
in a simply connected domain in D4 — S, which is given in terms of Lauricella’s
hypergeometric series Fiy with different parameters, see (2) for their expressions.

In this paper, we construct 2™ twisted cycles which represent elements of the
m-th twisted homology group concerning with the integral representation (3). They
imply integral representations of the solutions (2) expressed by the series Fgu. We
evaluate the intersection numbers of these 2™ twisted cycles. Further, by using the
intersection matrix of a basis of the twisted cohomology group in [9], we give twisted
period relations for two fundamental systems of 4 with different parameters.

In the study of twisted homology groups, twisted cycles given by bounded cham-
bers are useful. For Lauricella’s s, twisted cycles defined by 2" bounded chambers
are studied in [10]. Though the integrals on these cycles are solutions to F4, they
do not give integral representations of the solutions (2), except for one cycle. We
construct other twisted cycles from these 2™ bounded chambers by using a method
introduced in [5]. For a subset {i1,...,%,} of {1,...,m} of cardinality r, we con-
struct a twisted cycle A;,...;, from the direct product of an r-simplex and (m — r)
intervals, by a similar manner to [5]. See Section 4, for details. Our first main
theorem states that this twisted cycle corresponds to the solution (2) expressed

l—cip

by the power function H;zl T,

in and the series F4. Our construction has a
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simple combinatorial structure, and enables us to evaluate the intersection matrix
formally. Once the intersection matrix for bases of twisted homology groups and
that of twisted cohomology groups are evaluated, then we obtain twisted period
relations which are originally identities among the integrals given by the pairings
of elements of twisted homology and cohomology groups. Our first main theorem
transforms these identities into quadratic relations among hypergeometric series
F4’s. Our second main theorem states these formulas in Section 6.

As is in [2], the irreducibility condition of the system E4(a,b,c) is known to be

by bmy 1 — b1y Cm —bmy a— Y i, €2

p=1

for any subset {i1,...,%,} of {1,...,m}. Since our interest is in the property of
solutions to E4(a,b,c) expressed in terms of the hypergeometric series Fy4, we
assume throughout this paper that the parameters a, b = (b1,...,br) and ¢ =
(c1,- ., cm) satisfy the condition above and ¢y, ..., € Z.

2. DIFFERENTIAL EQUATIONS AND INTEGRAL REPRESENTATIONS

In this section, we collect some facts about Lauricella’s F4 and the system F 4
of hypergeometric differential equations annihilating it.

NoTATION 2.1. Throughout this paper, the letter k always stands for an index

running from 1 to m. If no confusion is possible, Z and H are often simply
k=1 k=1

denoted by ) (or >,) and [] (or [T,), respectively. For example, under this

convention Fy4(a, b, c;x) is expressed as

‘ o > (a, > ne) TT(bk, mic) 7
Fa(a,b,c;z) = Z 11(ek, ne) - [ mw! .

Let Ox (k = 1,...,m) be the partial differential operator with respect to zx.
Lauricella’s F4(a,b,c; ) satisfies hypergeometric differential equations

[zku—mk)ai—mk 3 i,

N1y, =0

1<i<m
i#k
T (ck = (a+ b+ 1)z)d — by Y % — abi [(2) =0,
1<i<m
i#k
for £k = 1,...,m. The system generated by them is called Lauricella’s system

E4(a,b,c) of hypergeometric differential equations.

Proposition 2.2 ([8], [11]). The system E(a,b,c) is a holonomic system of rank
2™ with the singular locus

(1) S = ﬁzk- H <1imix’>:0 cCc™
m}

k=1 {i1,nin}C{L.. p=1

If c1,...,c;m & Z, then the wvector space of solutions to F4(a,b,c) in a simply
connected domain in D — S is spanned by the following 2™ elements:

T T
(2) i, = (H a:;_Ci”> - Fy (a—i— s Zcip,bi“"ir,cil"'ir;z) g

p=1 p=1
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Here r Tuns from 0 to m, indices i1,...,%, satisfy 1 < i3 < --- < i, < m, and the
row vectors b**"*r and c¢**""* are defined by

T T
bt = b+ Z(l —ciy)e,, ¢ Ti=ct 22(1 = Ci,)eiy,
p=1

p=1

where e; is the i-th unit row vector of C™.

For the above iy,...,1,, we take ji,...,jm_rsothat 1 < j; < -+ < Jpr <M
and {i1,...,ir,J1,---»Jm—r} = {1,...,m}. It is easy to see that the i,-th entries
of b1 r and ¢t it are bi, —ci, + L and 2 —¢;, (1 <p < 7) and the j,-th entries
are b;, and c;, (1 < g <m —r), respectively.

We denote the multi-index “4; - - -i,” by a letter I expressing the set {i1,...,%.}.
Note that the solution (2) for r =0is f(= fg) = Fala,b,c;2).

Proposition 2.3 (Integral representation of Euler type, [8]). For sufficiently small
positive real numbers T1,...,Tm, if Re(ck) > Re(by) > 0 (k = 1,...,m), then
Fa(a,b,c; ) admits the following integral representation:

(3)
Falae )—H [(ck)
Alg,0,¢T) = T (bx)T(ck — by)

'/(0 1y H (ti“*l- (1- tk)c"_b“_l) . (1 — katk> ¢ dty A A dipm.

3. TWISTED HOMOLOGY GROUPS

We review twisted homology groups and the intersection form between twisted
homology groups in general situations, by referring to Chapter 2 of [1] and Chapters
IV, VIII of [12].

For polynomials Pj(t) = Pj(t1,...,tm) (1 < j < m), we set D; := {t | P;(t) =
0} cC™and M :=C™ — (Dy U---UD,). We consider a multi-valued function
u(t) on M defined as

n
u(t) == [[ P, \;eC-Z (1<j<n).
j=1
For a k-simplex o in M, we define a loaded k-simplex o ® u by ¢ loading a branch
of u on it. We denote the C-vector space of finite sums of loaded k-simplexes by
Cr.(M,u), called the k-th twisted chain group. An element of Cy(M,w) is called a
twisted k-chain. For a loaded k-simplex 0 ® u and a smooth k-form ¢ on M, the
integral [ o u-¢ is defined by

/ u-pi= / [the fixed branch of u on g] - ¢.
oQ@u o
By the linear extension of this, we define the integral on a twisted k-chain.
We define the boundary operator 8% : C.(M,u) =3 Cx—1(M,u) by
0“(oc ®u) = 0(a) ® ula(o),

where 0 is the usual boundary operator and u|3(0) is the restriction of u to 9(c).
It is easy to see that 9" o 9* = 0. Thus we have a complex

Co(M,u) s 25 Cu(M, 1) 25 Coy (M) -

and its k-th homology group Hy(Ce(M,u)). 1t is called the k-th twisted homology
group. An element of ker 9 is called a twisted cycle.

By considering u~™! = 1/u instead of u, we have Hy(Ce(M,u"")). There is
the intersection pairing I;, between H,,(Co(M,u)) and H,,(Ce(M,u"')) (in fact,



4 Y. GOTO

the intersection pairing is defined between Hy(Co(M,u)) and Hop 1 (Co(M,u1)),
however we do not consider the cases & # m). Let A and A’ be elements of
Hpn(Co(M,u)) and H,,(Co(M,u™1t)) given by twisted cycles Y, c; - 0; ® u; and
2T ® u}l respectively, where u; (resp. uj'l) is a branch of u (resp. ©~!) on
o; (resp. o%). Then their intersection number is defined by

L&A = Z Z aia;- oy 0;)5 . u;i(s)

Wil :
ij s€oind) 44 (s)

where (o; - o

])s is the topological intersection number of m-simplexes o; and a; at
S.

In this paper, we mainly consider

Mi=Cm - <U(tk:0)UU(1—tk:O)U(vzo)),
k

k

where v :=1—5" zit,. We consider the twisted homology group on M with respect
to the multi-valued function

m
ui= H LZ"‘(I — )k oLy,
k=1

Let A be the regularization of (0,1)™ ® u, which gives an element in H,,(Ce(M,u)).
For the construction of regularizations, refer to Sections 3.2.4 and 3.2.5 of [1].
Proposition 2.3 means that the integral

/ diy A - Adtyy,
up, pi=————
A

t1tm

represents Fa(a, b, c;x) modulo Gamma factors.

4. TWISTED CYCLES CORRESPONDING TO LOCAL SOLUTIONS fj,...i.

In this section, we construct 2™ twisted cycles in M corresponding to the solu-
tions (2) to Ea(a,b,c).

Let 0 < r < m and subsets {i1,...,%,} and {j1,...,Jm—r} of {1,...,m} satisfy
i1 < <dpy J1 <0 <Jmerand {i1,.. 0001, s Jmert = {1,...,m}.

NOTATION 4.1. From now on, the letter p (resp. q) is always stands for an index
running from 1 to r (resp. from 1 to m — r). We use the abbreviations ", [] for
the indices p, g as are mentioned in Notation 2.1.

We set

=C™m — <U(Sk = 0) @] U(Siﬂ - Iip = 0) U U(l - qu = 0) G] (vi1-~ir = 0)) ,

k p q
where

Vig i, =1 E Sip = E T Siq-
q

p
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Let u;, ..;,. and ¢;,...;,. be a multi-valued function and an m-form on M, ;. defined
as
m—r
— Hszp 85, — 11,, c-p bip— s "(1 . ch—b_-,-q—l 'vi-,fluir’
p=1 g=1
_dsi A Ndsy
Piriy °=

We construct a twisted cycle Ail.._i,, in M;,...;, with respect to u;,..; . Note that if

{i1,...,4,} = 0, then these settings coincide with those in the end of Section 3. We
choose positive real numbers €;,...,&, and € so that e <1 — 3", € and g, < %
And let z1,...,z,, be small positive real numbers satisfying
Ty < Eg, ka(l +ep)<e
k

(for example, if
1 1
sk—e—gm, 0<ar < 6m2’
these conditions hold). Thus the closed subset

Sip > €ipy 1= 85, 26, }

qu Z qu’ 1- qu 2 6J

Oy iy = {(51, .oy 8m) ER™

is nonempty, since we have (51+2‘§;, e ,6m+2%) € 03y...i,, Where § :=1-) e —e >
0. Further, o;,...;. is contained in the bounded domain

i, — i, >0,
{(51:---75m) eR™ 3"’< S:”’; L L= s, Y sy, > 0} c (0, 1)™
q 3

and is a direct product of an r-simplex and (m —7) intervals. Indeed, (s1,...,5m) €
Oi, .4, satisfies

Si, — Ty, > Si, — €4, > 0,

1- Zsip - Zm]-quq >e —ijq >e— Z:ck > 0.

The orientation of ¢;,...;, is induced from the natural embedding R™ C C™. We
construct a twisted cycle from o3,...;, ® u;,...;., where the branch of u;,...;. on 03, ...;,
is defined by the principal value. We may assume that €, = € (the above example
satisfies this condition), and denote them by €. Set L, := (s1 = 0), ..., Ly, :=
(Sm = 0)= Ly = (1_Sj1 = 0), coo Lom—r = (l_sjm—r)) Lom—ry1:= (1—2 Sip, =
0), and let U(C R™) be a bounded chamber surrounded by L1,..., Lam_r41, then
04y, 18 contained in U. Note that we do not consider the hyperplane Lom_;+1
(resp. the hyperplanes L,y1,..., Lam—»), when 7 = 0 (resp. r = m). For
Jc{1...,2m —r+ 1}, we consider Ly := NjeyL;, Uy := UNLyand Ty = e-
neighborhood of U;. Then we have

w=U-JTs.
J

Using these neighborhoods T;, we can construct a twisted cycle Ail i, in the
same manner as Section 3.2.4 of 1] (notations L and U correspond to H and
A in [1] ,respectively). Note that we have to consider contribution of branches
b —1

bi i i . . .
of sip” (sip - :cip)c » 7" ", when we deal with the circle associated to L;, (p =

1,...,7), because of z;, < €. Thus the exponent about this contribution is

b, + (Cip —b, —1)= ¢, — L.
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The exponents about the contributions of the circles associated to Lj,, Limtq, Lam—r+1
are simply

bj
respectively. We briefly explain the expression of Ail"‘ir’ Forj=1,...,.2m—-r+1,
let /; be the (m — 1)-face of o0;,...;, given by o;,...;, N T}, and let S; be a positively
oriented circle with radius € in the orthogonal complement of L; starting from the
projection of {; to this space and surrounding L;. Then /:\.il ..i,. is written as

q? Cj-z _bj-z _1’ —a,

r

Oy iy QUG ., + Z H Ii . (ﬂ lj) X H Sj ® Usyniips

a
P£JC{1,....2m—r+1} \j€J 7 jed jeJ

where
di,, =y, = 1, djq = ﬁjq -1, dm+q = 'yjqﬁj_ql -1, dom_ry1 = a = 1,

and a = 62"‘/:“, Br = 62"‘/__“"', T = e2™V=1e« . The branch of Ujy..g,. ON
(Njegl;) x HjeJ §; is defined by the analytic continuation of that on o;,...;,. Note
that, we define an appropriate orientation for each (Njesl;) x [] jes Si» see Section
3.2.4 of [1] for details.

ExAMPLE 4.2. We give explicit forms of A, Al and A]Q, for m = 2.
(i) In the case of I =0, A is the usual regularization of (0,1)™ ® w.
(ii) In the case of T = {1}, we have
(Slxll)®u1 | (SQXZ2)®U,1 1 (S’4xl4)®u1 . (S3)<13)®'U,1
I-m 1= l-al T 1oy
(S1x82)®u1 | (S2xS8)®u
I-m)1-F)  (1-B)1-a)
(Sa x S3) ® w1 (S5 x S1) @ wy
(1-a )1 -mpf")  (1-mB)1-m)
where the 1-chains [; satisty do = Z;:l l; (see Figure 1), and the orientation
of each direct product is induced from those of its components.

AI =01 ®u; +

81—1:1:0

AN T A 13

|
I 1—51—1}232:0

FIGURE 1. A; for m = 2.
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(iil) In the case of I = {1,2}, we have
(St xh)®uiz | (S2xl2)®uiz | (S3x1l3) @uiz
+
1- 7 1- Y2 1-— Ot_l
(S1 % S2) ® uiz (S2 x S3) @ u12 (83 x S1) @ uiz
IT-m)0=-m%) (-1 -al) (A-a)(1-m)

where the 1-chains /; satisfy do = I} +13+13 (see Figure 2), and the orientation
of each direct product is induced from those of its components.

A =012 ® uig +

sl—.rl:O

l3

Sg—x9 =0

1—51—82=0

FIGURE 2. A} for m = 2.

We consider the following integrals:

E;l.ui’_ = [ uil...i,goil...,-r
AA i

L

..\ Cip—bip,—1 m-—r
clp Tip bj,—1 Cjo—bj, =1
A o (O R | C (B

e p=1 q=1

T m—r —a
. (1 - Zsip - Z zqujq) dsy A+ Ndspy,.
p=1 q=1
Proposition 4.3.

r m—r s b) F(l—a)
Fi i, = F(Cip # . —_
: ,,1;[1 1;[ 'Y e, —a-r+1)

“Fala+r— Z Cips pirin ci“"i";x).
p=1
Proof. We compare the power series expansions of the both sides. Note that the co-
-efﬁcient of ' - 2 in the series expression of Fy (a+7‘—zp_1 ci,, b i, ciins )
is
A _=F(a+r - chi,, + k) H C(bi, +1 —ci, +ni,) H I( b,q +nj,)
1 m F(a +7r— Zp Cip) F(bl +1- Cip) b]q)

q

C'-p c?q . 1
H F 2 —ci, +n1p) H [(cj, +ny,) H ng!’
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On the other hand, we have

;-"Ijﬂ Cip_bip—l_ZF(bzp +1+n2p)s—nlpanp
T~ T(b;, cl,,+1) ng,! % T

and

r m-r -a
(130 )
p=1 =1
L‘(a - Z an a—Yn; n;
D B LD DLl | C
njl,...,njm_r
When r = 0 (resp. 7 = m), we do not need the first (resp. second) cxpansion.

The convergences of these power series expansions are verified as follows. By the
construction of A, ...; , we have

0 < xp <ep, €y <53,y 155, <1+ Ejgs |1 _Zsinl 2€

Thus the uniform convergences on A, ...;. follow from

-'I:ip 51’,, —1
- b
P

Si Eq

P
1 1 1 €

. z:s: | < . @z < 2 r. (1 ; —=1.
sy D] € g, Dbl € Tl <&

Since A, ...;, is constructed as a finite sum of loaded (compact) simplexes, we can
exchange the sum and the integral in the expression of Fj,..;.. Then the coefficient
of 2T -+ -a%m in the series expansion of Fj,..;, is

4)

B '_HI‘(bip—cip—f—l—!—niP) F(a—f-Zan HL
b P F(bip - Cip + 1) k g
A RIS DS R | E A (A
ipoin p q

By the construction, the twisted cycle Ailmir of this integral is identified with the
usual regularization of the loaded domain

{(sl,...,sm)ERm |Si,,>0) 1_Zsil’>0’ 0 < sj, <l}

for the multi-valued function

bj.— e —b —
HSC,P —l-n;, 1—231 a-Zan IISJq ”qu _ jq)LJq bjg—1

p
on C™ — (Uk(sk =0uUlU,(1-sj, =0)U(l - s, = 0)) Hence the integral in
(4) is equal to
Hp I1(C'L'p - Tlip - 1) : F(_a - anq + 1) . H F(qu + leq)F(qu - qu)
e, —a—->n—r+1) L'(cj, +ny,) '
Using the formula

(5) [(2)(1 - 2) =

q

m
sin(nz)’
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we thus have

Bn1 T HF Czp _ 1) H F(b]q)r(ch Jq) F(l - a)

Anynm I'(cj,) ' ec,—-a—-r+1)’
which implies the proposmon. O
We dcfine a bijection ¢;,...i, : My, ;. - M by
8
Lil..‘ir(sl, N ,Sm) = (tl, - ,tm); ti,, = f, tjq Sjg-
p

For example, t(= 1p) is the identity map on M = M.
We also define branches of the multi-valued function u on real bounded chambers
in M. On the domain

Diyip = {(t1, 1) ER™ [ >0, 1 =) apti >0, 1 — 4, <0, 1—1t5, >0},

the arguments of ¢, 1 — > zxtr, 1 —¢;, and 1 —t;, are given as follows.

i |1 —;.’L‘ktk 1—_ti£ 1-— tjg
0 0 -7 0

We state our first main theorem.

Theorem 4.4. We define a twisted cycle A, ...;, in M by

Ail"'ir = (Lil"'ir)*(Ail"'ir)'
Then we have

-/A H tbl\ 1 )CL bk—l) (I—Zlktk)_udtl/\"'/\dtm
i1-ir

— _ /=1 bip—3 cip+T) 1-c¢; A

( /All---lr uso) ‘ ’ ’ H ’ F“ml"’

=1
and hence this integral corresponds to the local solution f;,...;. to Ea(a,b,c) given
in Proposition 2.2.

Proof. Since ¢, ...;,(04;..-i,) C D;,...i,., the left hand side is equal to

(VIS by =K iy 1), / [T (" (b, = et )

ip
Axl “ip P

H(":q (1 —t;,)%% jq—l) . (1_Zg;ktk>_adt1/\---/\dtm,

where the branch of the integrand is determined naturally. Pulling back this integral
by ti,...;, leads the first claim. This and Proposition 4.3 imply the second claim. 0O

REMARK 4.5. Except in the case of {i1,...,7.} = 0, the twisted cycle A;,..;. is
different from the regularization of D;,...;. ® u as elements in Hp, (Co(M,u)).

The replacement u +— v~ ! = 1/u and the construction same as A;;...;, give the

twisted cycle A}, ; which represents an element in Hyp, (Co(M,u"")). We obtain
the intersection numbers of the twisted cycles {4, i, } and {AY. . }.

Theorem 4.6. (i) ForI,J C {1,...,m} such that I # J, we have I(A;,AY) =

0.
(it) The self intersection number of JAVRI 1
H Yi ﬁ — % )
[’ (Az 1r7Az i) = P Jq Jq
' v v 1) l_[ 1 - 'Ylp II (1 - ,B]q ﬁ]q - "/Jq)
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Proof. (i) Since A, ...;.’s represent local solutions (2) to Fa(a,b,c) by Theorem
4.4, this claim is followed from similar arguments to the proof of Lemma 4.1 in [6].
(ii) By ¢4,...1,, the self-intersection number of A, ..;, is equal to that of A;, . ;, with
respect to the multi-valued function w;,.;.. To calculate this, we apply results
in [7]. Since we construct the twisted cycle Ail...ir from the direct product of an
r-simplex and (m — r) intervals, the self intersection number of A;, ;. is obtained
as the product of those of the loaded simplex and the loaded intervals. Thus we
have

1—[L, v, ot 1—m;
I e N i, ) = P2 - L T
h( r 1 r) Hp(l _ ’Yi,,) . (1 _ a—l) H (1 . qu)(l _ ’quﬁqu)

q

5. INTERSECTION NUMBERS OF TWISTED COHOMOLOGY GROUPS

In this section, we review twisted cohomology groups and the intersection form
between twisted cohomology groups in our situation, and collect some results of [9]
in which intersection numbers of twisted cocycles are evaluated.

Recall that

M=C™- <U(tk:0)UU(1ﬁtk —O)U(v—0)> ,
k k
U= Hti“(l - tk)"“_b"_l T
We consider the logarithmic 1-form
w:=dlogu = d_u
u

We denote the C-vector space of smooth k-forms on M by £¥(M). We define the
covariant differential operator V,, : E¥(M) -+ EF1(M) by

Vo) :=dp +wAyp, e EFM).
Because of V, 0 V, = 0, we have a complex

M) : - I gk Yo bty Y

and its k-th cohomology group H*(M,V.,,). It is called the k-th twisted de Rham
cohomology group. An element of ker V,, is called a twisted cocycle. By replacing
EF(M) with the C-vector space £F(M) of smooth k-forms on M with compact sup-
port, we obtain the twisted de Rham cohomology group H, f(]\/[ , V) with compact
support. By [3], we have H*(M,V,,) =0 for all k # m. Further, by Lemma 2.9 in
[1], there is a canonical isomorphism

7 H™(M, V) = H*(M,V,,).

By considering u~! = 1/u instead of u, we have the covariant differential operator
V_. and the twisted de Rham cohomology group H*(M,V_,). The intersection
form I. between H™(M,V,,) and H™(M,V_,) is defined by

L(y,9") = /M W) AY, e H™(M, V), ¥' € H™(M,V_y,),

which converges because of the compactness of the support of ().

REMARK 5.1. By Lemma 2.8 and Theorem 2.2 in [1], we have
dim Hi(Co(M,u)) =0 (k # m),
dim H,, (Co(M,u)) = dim H™(M,V,,) = (=1)"x(M) = 2™,
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where x(M) is the Euler characteristic of M. Under our assumption for the param-
eters a, b and c (see Section 1), since the determinant of the intersection matrix
(In(Af, AY)) is not zero by Theorem 4.6, the twisted cycles {A;}; form a basis of
Hp (Ca(M,u)).

The intersection numbers of some twisted cocycles are evaluated in [9]. We use
a part of these results. We consider m-forms
(pil“'ir — dtl AN A dtm
[T, — ) I, 4,
on M, which is denoted by ¢g (v,,...v,,) With v;, =1, v;, = 0in [9]. Note that
© = P is equal to = ¢y defined in Section 3 (and 4). We put

A-,_.__AI—ZH YC(;)-{-I

(oyi=1 @
where {I)} runs sequences of subsets of I = {iy,..., i}, which satisfy
I=1M -0 ... 5@ 5 1MLy

and we write J®) = {z(l) 71.[(1)}'

Proposition 5.2 ([9]). We have

I(e" ") = @nv=D)" An ] or,r(n)

Nc{l,.., m} ngn 01(n)

where

0 (otherwise),

o fen=by—1 (ne)
br() "{ b (n € I°).

Under our assumptions for the parameters, {¢'}s form a basis of H™(M,V,,).

or,r(n) ::{ 1 (ne(INnI)u(enI™))

6. TWISTED PERIOD RELATIONS

Because of the compatibility of intersection forms and pairings obtained by in-
tegrations (see [4]), we have the following theorem.

Theorem 6.1 (Twisted period relations, [4]). We have

/7 1 V
(6) Lo )= > vy ILN 91N
Nc{L,..m} Tn(Bn, AK)

— -1 I
g1,N —/ ucp], g}’,‘N =/ U <p],
Ay Ay,

N

where

By the results in Sections 4 and 5, twisted period relations (6) can be reduced
to quadratic relations among F4’s. We write out two of them as a corollary.

Corollary 6.2. We use the notations
bt = b4 Z(l —¢)e,, ¢V =c+ 22(1 —¢i,)e;, (see Proposition 2.2),

Qi ..q. =a+T— E Cip

E":l"'il‘ o= (1, o 1) _ biln..i,-, Eil---i,. = (2’ L 72) _ cil-“i,«.
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(i) The equality (6) for I = I' =0 is reduced to

-1 5 () H&

I eI J

_ Cj, — 1. 1
>[I

CSREEE PR S RLET PR
. FA(a'il-'-i,A)b T, c r)a')
Jq Qi --iy

. FA( — Gy ips —bilmir,é’il Ai";fC) .
(ii) The equality (6) for I =0, I' ={1,...,m} is reduced to
H-cx)
(-

i1eein i1 e, Tiroeeiy xip cip. o
s (G i, U6 0) - Fa(= iy, B8 ),
7 Gireir

Proof. We prove (i). By Proposition 4.3 and Theorem 4.4, we have

— o™V LT bip =3 ciptr) - e (qu)r(ch '7")
Giy-ip =€ . w 'HF(Cz’p—l)' H

T'(cj,)

p—l g=1

I'(l-a)
Zcz(—a—r—i—l II - Fa( a+7_zclwbu e i a).

On the other hand, we can express gilwir like this by the replacement
(a,b,¢) — (—a,—b,(2,...,2) —¢),
since u~ 'y is written as
u_l(P _ Ht}:bk—l( 1— tk)—ck+bk+1 . (1_ sztk)“dt1 A Adtm.

Thus we obtain

glv1~-i,. = e"\/_—l(_ Db+ ci, )
'ﬁf(l-c ).ﬁrr(’biq)r(Q—quﬂLqu) I(1+ a)
p=1 v a=1 I'(2-cj,) (=X ci,+a+r+1)

Hmz,, Fa(—a=r+ Y e, =607, (2,.,2) - 1),
By the formula (5) and Theorem 4.6, we have

I(1-a)T(1+ a)

I(Se, —a—r+ (-5 c, +atr+1) -l;lr(c,-,, S DI(1-¢;)
L(4,)T(=b;,) - T(g, = bi)T(1-¢j, +bj,)

11 (e, (2 ciy)

q
1 C; — b —1 a
= (2ry-1)" AL (D A
(am ) l;ICk—l 1;1 bj, a+r—3 ¢y n(Biyins By, i)
Hence, we obtain (i) by Proposition 5.2. A similar calculation shows (ii). ]
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