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We present a new transformation from a variant of the classical 0–1
knapsack problem (0–1KP) into the original 0–1KP, viz E-kKP→0–1KP, em-
ploying the collapsing knapsack problem (CKP), and also mention a new
kKP→0–1KP, concretely kKP→E-kKP→CKP→0–1KP.

keywords: cardinality constraint, knapsack problem, combinatorial opti-
misation

1 Introduction

This piece shows a new transformation from E-kKP, which is a variant of the
0–1 knapsack problem (hereafter 0–1KP), back to the original and more simple
0–1KP. The 0–1KP is a classical and well-known combinatorial optimisation
problem such that we pack a lot of given items of profit and weight, both of
which are positive integers, into a knapsack of capacity c so that without the
total weight of packed items exceeding the capacity c, the total profit of those is
maximised—it goes without saying that an item is of weight≤ c andwe cannot
pack items into the knapsack all together. The 0–1KP is formulated as, with
N = {1, 2, . . . , n}, z∗ = max{∑j∈N pjxj | ∑j∈N wjxj ≤ c, xj ∈ {0, 1}} where
pj,wj indicate profit and weight of item j ∈ N respectively, and 0–1 variable
xj depicts the choice of item j as xj = 1 (packed)/0 (unpacked). In particular,
following, a word solution corresponds to items selected—that is, we call n-
vector of x = (xj)j∈N a solution according to the literature whilst in this piece
we call S ⊆ N a solution too, that is, we identify x with S as xj = 1 ⇔ j ∈ S.
In the light of this, the cardinality of solution x is ∑j∈N xj (= ∑j∈S 1, usually
denoted as |S|). In addition, a solution fulfilling all constraints is said to be
feasible. A solution which accomplishes z∗ is naturally feasible, and we call
the maximised z∗ optimal value. For further details on 0–1KP and related, see
Kellerer et al [6].

Adding to 0–1KP a constraint such that the number of packed items ≤ k
leads to kKP, and more tightly, k even (i.e., ∑j∈N xj = k) leads to E-kKP. The
next section presents a new transformation from E-kKP to 0–1KP. Taking ad-
vantage of the new, we also develop kKP→0–1KP.
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2 From E-kKP to 0–1KP via CKP

Although the transformation of E-kKP into 0–1KP has already been proposed
in [2] we’ll devise another one in this section. For the sake of brevity we here-
after assume p1 ≥ p2 ≥ · · · ≥ pn and w1 ≤ w2 ≤ · · · ≤ wn (neither provokes
the re-ordering of items).

In actual fact, E-kKP is equivalent to the collapsing knapsack problem (CKP,
for short) of

c(j) =
{

c, j = k
0, j ∈ N \ {k}

where CKP is an extension of 0–1KP, having capacity not a constant but a func-
tional over the number of packed items as c(∑j∈N xj). Therefore transform-
ing the CKP with the method by Iida and Uno [5] produces a 0–1KP which is
equivalent to given E-kKP as follows:

P = max

{
n−1

∑
j=1

pj − pmin + 1, 0

}
, W = max

{
c −

k+1

∑
j=1

wj + 1, 0

}
,

p′j =
{

pj + P, 1 ≤ j ≤ n
(2n + 1 − j)P + pn, n < j ≤ 2n,

w′
j =




wj + W, 1 ≤ j ≤ n
(3n − 1 − j)W + c + 1, n < j ≤ 2n, j ̸= n + k
(2n − 1 − k)W + 1, j = n + k,

c′ = (2n − 1)W + c + 1

(1)

where p′j, w′
j and c′ represent new profit and weight of item j and new capacity,

respectively. The pmin in (1) is the profit of (given by) a feasible solution S′

of CKP (also feasible in given E-kKP) as pmin = ∑j∈S′ pj, provided ∑j∈S′ wj ≤
c(|S′|). For example as in Kellerer et al [6, p. 272] we may adopt the lightest
k items as S′. If not so (i.e., ∑j∈S′={1,2,...,k} wj > c(|S′| = k) = c) the given
instance of E-kKP is unsolvable, including no feasible solution. Also if we’re
allowed to assume k < n, we have P = ∑n−1

j=1 pj− pmin +1. Indeed, Kellerer et
al [6, p. 272] have assumed 2 ≤ k < n. In what follows, on (1) we call an item of
index j > n (new n items added) large item, and others (of index j ∈ N) small
items.

Here we will briefly pick up the salient points of (1). For more details, see
[5]. In short, the optimal value of 0–1KP (1) is attained by a combination of
large item n + k and k small items. Moreover, the k small items are our goal,
that is, those convey optimal value to given E-kKP. First, focusing on weight,
because w′

2n + w′
2n−1 ≥ c′ + 1 even for k = n or k = n − 1 (only w′

n+k does
not contain c amongst weights of index > n) we cannot pack two large items
together. In the case where we especially choice large item n + k, we can pack
at most k small items, since

k+1

∑
j=1

wj + (k + 1)W ≥ c + 1 + kW > c + kW = c′ − w′
n+k.

2
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If the number of small items is k even, after weight kW being subtracted, a
solution whose weight ≤ c—feasible in given E-kKP—only remains. As for
another large item j ( ̸= n + k), owing to remaining capacity c′ − w′

j = (j− n)W
we can pack at most j − n − 1 small items, which actually implies that such a
solution does not achieve the optimal value of 0–1KP (1). This is because P is
provided so that profit given by large item j and less than j − n small items is
beneath

p′n+k + pmin + kP = (n + 1)P + pn + pmin (2)

where profit (2) is given by a solution of 0–1KP (1) corresponding to a solution
which gives pmin in given E-kKP (in the CKP of only c(k) = c, too). More
precisely,

p′j +
j−n−1

∑
i=1

pi + (j − n − 1)P ≤ (n + 1)P + pn +
j−n−1

∑
i=1

pi −
n−1

∑
i=1

pi + pmin − 1

≤ (n + 1)P + pn + pmin − 1.

Furthermore, we have no alternative but to pack a large item, since the total
profit of all small items ∑j pj + (n + 1)P − P ≤ (n + 1)P + pn + pmin − 1,
so it’s also below (2). It should be pointed out that the last two arguments
“p′j + ∑

j−n−1
i=1 pi + (j − n − 1)P and ∑j∈N pj + nP are both less than (2)” hold

even for P = 0. Indeed, P = 0 in the definition of P (1) leads to ∑n−1
j=1 pj < pmin,

thereby us having ∑j pj < pn + pmin.
We would here like to add that the latter part of kKP→E-kKP→0–1KP in

[3] is a transformation proposed in [2]. Then, it will be possible to obtain an-
other transformation of kKP→0–1KP by replacing the latter with (1); however,
0–1KP (1) has 2n items, twice as many as the previous, and moreover too large
coefficients. For this reason, it seems not to be promising.1 Still, in the remain-
der of this section we will note it down a little.

Notice that p′2n+2k = P, because the smallest profit pn+k is 0 in converting,
by (1), E-kKP being made up of given kKP plus k dummy items (pn+j, wn+j) =
(0, 0). Like this, the total number of items in resultant 0–1KP is 2(n + k) (all n
appearing in (1) is replaced with n + k). In addition, we have W = c − w1 +
1 > 0 (the total weight of k lightest items is 0 and w1 ≤ c). Here we should
note that W > 0 since W = 0 might cause a trouble due to a dummy item of
weight 0 added. For example, we saw that large item j can be combined with at
most j − n small items; nevertheless, an item of weight 0 would, in spite of the
weight constraint, lead to unexpected result against the design of the reduction

1Regarding E-kKP→0–1KP proposed in [2], under the same assumptions in this piece to
{pj, wj} and with pmin (the profit of some feasible solution of given E-kKP), we set P = W =

max{∑k−1
j=1 pj− pmin +1, c − ∑k+1

j=1 wj + 1, 0} and (p′j, w′
j) = (pj + P, wj + W), c′ = c + kW where

the total number of items is still n (unchanged). Here we would like to note that this W makes the
number of packed items at most k. In particular, when we set W = c + 1 and c′ = c + kW, unless
wj < 0, we cannot pack k + 1 items of original weight plus W since c′ < (k + 1)W. If W = 0, from
the definition of W we have c < ∑k+1

j=1 wj. In this case, even sans W we cannot pack k + 1 items, or
more; thus, W is indeed needless. Conversely, P has us pack k items, or more. Then, P = 0 implies
∑k−1

j=1 pj < pmin, and in the same way as W, indeed P is needless in the case of P = 0.

3

2 From E-kKP to 0–1KP via CKP

Although the transformation of E-kKP into 0–1KP has already been proposed
in [2] we’ll devise another one in this section. For the sake of brevity we here-
after assume p1 ≥ p2 ≥ · · · ≥ pn and w1 ≤ w2 ≤ · · · ≤ wn (neither provokes
the re-ordering of items).

In actual fact, E-kKP is equivalent to the collapsing knapsack problem (CKP,
for short) of

c(j) =
{

c, j = k
0, j ∈ N \ {k}

where CKP is an extension of 0–1KP, having capacity not a constant but a func-
tional over the number of packed items as c(∑j∈N xj). Therefore transform-
ing the CKP with the method by Iida and Uno [5] produces a 0–1KP which is
equivalent to given E-kKP as follows:

P = max

{
n−1

∑
j=1

pj − pmin + 1, 0

}
, W = max

{
c −

k+1

∑
j=1

wj + 1, 0

}
,

p′j =
{

pj + P, 1 ≤ j ≤ n
(2n + 1 − j)P + pn, n < j ≤ 2n,

w′
j =




wj + W, 1 ≤ j ≤ n
(3n − 1 − j)W + c + 1, n < j ≤ 2n, j ̸= n + k
(2n − 1 − k)W + 1, j = n + k,

c′ = (2n − 1)W + c + 1

(1)

where p′j, w′
j and c′ represent new profit and weight of item j and new capacity,

respectively. The pmin in (1) is the profit of (given by) a feasible solution S′

of CKP (also feasible in given E-kKP) as pmin = ∑j∈S′ pj, provided ∑j∈S′ wj ≤
c(|S′|). For example as in Kellerer et al [6, p. 272] we may adopt the lightest
k items as S′. If not so (i.e., ∑j∈S′={1,2,...,k} wj > c(|S′| = k) = c) the given
instance of E-kKP is unsolvable, including no feasible solution. Also if we’re
allowed to assume k < n, we have P = ∑n−1

j=1 pj− pmin +1. Indeed, Kellerer et
al [6, p. 272] have assumed 2 ≤ k < n. In what follows, on (1) we call an item of
index j > n (new n items added) large item, and others (of index j ∈ N) small
items.

Here we will briefly pick up the salient points of (1). For more details, see
[5]. In short, the optimal value of 0–1KP (1) is attained by a combination of
large item n + k and k small items. Moreover, the k small items are our goal,
that is, those convey optimal value to given E-kKP. First, focusing on weight,
because w′

2n + w′
2n−1 ≥ c′ + 1 even for k = n or k = n − 1 (only w′

n+k does
not contain c amongst weights of index > n) we cannot pack two large items
together. In the case where we especially choice large item n + k, we can pack
at most k small items, since

k+1

∑
j=1

wj + (k + 1)W ≥ c + 1 + kW > c + kW = c′ − w′
n+k.

2

If the number of small items is k even, after weight kW being subtracted, a
solution whose weight ≤ c—feasible in given E-kKP—only remains. As for
another large item j ( ̸= n + k), owing to remaining capacity c′ − w′

j = (j− n)W
we can pack at most j − n − 1 small items, which actually implies that such a
solution does not achieve the optimal value of 0–1KP (1). This is because P is
provided so that profit given by large item j and less than j − n small items is
beneath

p′n+k + pmin + kP = (n + 1)P + pn + pmin (2)

where profit (2) is given by a solution of 0–1KP (1) corresponding to a solution
which gives pmin in given E-kKP (in the CKP of only c(k) = c, too). More
precisely,

p′j +
j−n−1

∑
i=1

pi + (j − n − 1)P ≤ (n + 1)P + pn +
j−n−1

∑
i=1

pi −
n−1

∑
i=1

pi + pmin − 1

≤ (n + 1)P + pn + pmin − 1.

Furthermore, we have no alternative but to pack a large item, since the total
profit of all small items ∑j pj + (n + 1)P − P ≤ (n + 1)P + pn + pmin − 1,
so it’s also below (2). It should be pointed out that the last two arguments
“p′j + ∑

j−n−1
i=1 pi + (j − n − 1)P and ∑j∈N pj + nP are both less than (2)” hold

even for P = 0. Indeed, P = 0 in the definition of P (1) leads to ∑n−1
j=1 pj < pmin,

thereby us having ∑j pj < pn + pmin.
We would here like to add that the latter part of kKP→E-kKP→0–1KP in

[3] is a transformation proposed in [2]. Then, it will be possible to obtain an-
other transformation of kKP→0–1KP by replacing the latter with (1); however,
0–1KP (1) has 2n items, twice as many as the previous, and moreover too large
coefficients. For this reason, it seems not to be promising.1 Still, in the remain-
der of this section we will note it down a little.

Notice that p′2n+2k = P, because the smallest profit pn+k is 0 in converting,
by (1), E-kKP being made up of given kKP plus k dummy items (pn+j, wn+j) =
(0, 0). Like this, the total number of items in resultant 0–1KP is 2(n + k) (all n
appearing in (1) is replaced with n + k). In addition, we have W = c − w1 +
1 > 0 (the total weight of k lightest items is 0 and w1 ≤ c). Here we should
note that W > 0 since W = 0 might cause a trouble due to a dummy item of
weight 0 added. For example, we saw that large item j can be combined with at
most j − n small items; nevertheless, an item of weight 0 would, in spite of the
weight constraint, lead to unexpected result against the design of the reduction

1Regarding E-kKP→0–1KP proposed in [2], under the same assumptions in this piece to
{pj, wj} and with pmin (the profit of some feasible solution of given E-kKP), we set P = W =

max{∑k−1
j=1 pj− pmin +1, c − ∑k+1

j=1 wj + 1, 0} and (p′j, w′
j) = (pj + P, wj + W), c′ = c + kW where

the total number of items is still n (unchanged). Here we would like to note that this W makes the
number of packed items at most k. In particular, when we set W = c + 1 and c′ = c + kW, unless
wj < 0, we cannot pack k + 1 items of original weight plus W since c′ < (k + 1)W. If W = 0, from
the definition of W we have c < ∑k+1

j=1 wj. In this case, even sans W we cannot pack k + 1 items, or
more; thus, W is indeed needless. Conversely, P has us pack k items, or more. Then, P = 0 implies
∑k−1

j=1 pj < pmin, and in the same way as W, indeed P is needless in the case of P = 0.

3



152 人　文　研　究　第　132　輯

in [5].2 On the other hand, because a dummy item added in kKP→E-kKP by
Kellerer et al [6, p. 272] is not (0, 0) but (1, 1), which may be preferable with no
possible trouble albeit larger coefficients (e.g., the capacity of resulting E-kKP
is up to k(c + 1)− 1 [1, p. 2]).

In the same way as [3] when we pack only one item of the largest profit, we
obtain pmin = p1—since wj ≤ c, a solution consisting of one item is always
feasible in given kKP (A solution corresponding to the solution in the E-kKP
of n + k items shall contain k − 1 dummy items). In this case, however, we
have P = ∑n+k−1

j=2 pj + 1 = ∑n
j=2 pj + 1 pretty huge. The larger the pmin is, the

smaller the P is. If we address E-kKP then we can make use of a solution being
composed of k lightest items as mentioned previously [6, p. 272] but now is
kKP and the solution is not always available—there may not exist a solution of
cardinality k. To replace the solution giving pmin = p1, anybody will think of
a framework of greedy heuristic such that until exceeding capacity we iterate
packing an item according to the sequence of items sorted in nonascending
order of efficiency pj/wj or just profit. Needless to say, we stop the iteration
straightaway when the cardinality reaches k (if necessary3).

3 Conclusions

We have hereby defined a new transformation from E-kKP to 0–1KP, yet unfor-
tunately we cannot contend that the new is an alternative to that of [2]. Finally,
we hope that this piece will become a start of something new.
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packing an item according to the sequence of items sorted in nonascending
order of efficiency pj/wj or just profit. Needless to say, we stop the iteration
straightaway when the cardinality reaches k (if necessary3).

3 Conclusions

We have hereby defined a new transformation from E-kKP to 0–1KP, yet unfor-
tunately we cannot contend that the new is an alternative to that of [2]. Finally,
we hope that this piece will become a start of something new.
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2For simplicity let n′ be n + k: the total number of items in E-kKP including k dummy items.
On large item j < n′ + k, we can pack j − n′ dummy items against remaining capacity (j − n′)W
even when W > 0; nonetheless, because the total profit of j − n′ dummy items is 0, its profit
(n′ + 1)P < (n′ + 1)P+ pmin, and does not become optimal where pmin > 0 follows from that a
solution of one item is feasible in given kKP as will be mentioned afterwards. At the same time,
P = 0 brings ∑n′−1

j=1 pj < pmin impossible, so we have P > 0.
3Notice that it’s all over when we’ve packed the most profitable k items in applying to kKP the

greedy heuristic along the nonascending order of profit.
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If the number of small items is k even, after weight kW being subtracted, a
solution whose weight ≤ c—feasible in given E-kKP—only remains. As for
another large item j ( ̸= n + k), owing to remaining capacity c′ − w′

j = (j− n)W
we can pack at most j − n − 1 small items, which actually implies that such a
solution does not achieve the optimal value of 0–1KP (1). This is because P is
provided so that profit given by large item j and less than j − n small items is
beneath

p′n+k + pmin + kP = (n + 1)P + pn + pmin (2)

where profit (2) is given by a solution of 0–1KP (1) corresponding to a solution
which gives pmin in given E-kKP (in the CKP of only c(k) = c, too). More
precisely,

p′j +
j−n−1

∑
i=1

pi + (j − n − 1)P ≤ (n + 1)P + pn +
j−n−1

∑
i=1

pi −
n−1

∑
i=1

pi + pmin − 1

≤ (n + 1)P + pn + pmin − 1.

Furthermore, we have no alternative but to pack a large item, since the total
profit of all small items ∑j pj + (n + 1)P − P ≤ (n + 1)P + pn + pmin − 1,
so it’s also below (2). It should be pointed out that the last two arguments
“p′j + ∑

j−n−1
i=1 pi + (j − n − 1)P and ∑j∈N pj + nP are both less than (2)” hold

even for P = 0. Indeed, P = 0 in the definition of P (1) leads to ∑n−1
j=1 pj < pmin,

thereby us having ∑j pj < pn + pmin.
We would here like to add that the latter part of kKP→E-kKP→0–1KP in

[3] is a transformation proposed in [2]. Then, it will be possible to obtain an-
other transformation of kKP→0–1KP by replacing the latter with (1); however,
0–1KP (1) has 2n items, twice as many as the previous, and moreover too large
coefficients. For this reason, it seems not to be promising.1 Still, in the remain-
der of this section we will note it down a little.

Notice that p′2n+2k = P, because the smallest profit pn+k is 0 in converting,
by (1), E-kKP being made up of given kKP plus k dummy items (pn+j, wn+j) =
(0, 0). Like this, the total number of items in resultant 0–1KP is 2(n + k) (all n
appearing in (1) is replaced with n + k). In addition, we have W = c − w1 +
1 > 0 (the total weight of k lightest items is 0 and w1 ≤ c). Here we should
note that W > 0 since W = 0 might cause a trouble due to a dummy item of
weight 0 added. For example, we saw that large item j can be combined with at
most j − n small items; nevertheless, an item of weight 0 would, in spite of the
weight constraint, lead to unexpected result against the design of the reduction

1Regarding E-kKP→0–1KP proposed in [2], under the same assumptions in this piece to
{pj, wj} and with pmin (the profit of some feasible solution of given E-kKP), we set P = W =

max{∑k−1
j=1 pj− pmin +1, c − ∑k+1

j=1 wj + 1, 0} and (p′j, w′
j) = (pj + P, wj + W), c′ = c + kW where

the total number of items is still n (unchanged). Here we would like to note that this W makes the
number of packed items at most k. In particular, when we set W = c + 1 and c′ = c + kW, unless
wj < 0, we cannot pack k + 1 items of original weight plus W since c′ < (k + 1)W. If W = 0, from
the definition of W we have c < ∑k+1

j=1 wj. In this case, even sans W we cannot pack k + 1 items, or
more; thus, W is indeed needless. Conversely, P has us pack k items, or more. Then, P = 0 implies
∑k−1

j=1 pj < pmin, and in the same way as W, indeed P is needless in the case of P = 0.
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in [5].2 On the other hand, because a dummy item added in kKP→E-kKP by
Kellerer et al [6, p. 272] is not (0, 0) but (1, 1), which may be preferable with no
possible trouble albeit larger coefficients (e.g., the capacity of resulting E-kKP
is up to k(c + 1)− 1 [1, p. 2]).
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cardinality k. To replace the solution giving pmin = p1, anybody will think of
a framework of greedy heuristic such that until exceeding capacity we iterate
packing an item according to the sequence of items sorted in nonascending
order of efficiency pj/wj or just profit. Needless to say, we stop the iteration
straightaway when the cardinality reaches k (if necessary3).
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We have hereby defined a new transformation from E-kKP to 0–1KP, yet unfor-
tunately we cannot contend that the new is an alternative to that of [2]. Finally,
we hope that this piece will become a start of something new.

References

[1] Hiroshi Iida, Some thoughts around kKP. Discussion paper series no. 171,
pp. 1–3, CBC at Otaru Univ Commerce, June 2015 (in Japanese) http://
hdl.handle.net/10252/5464.

[2] Hiroshi Iida, On a transformation from E-kKP to the 0–1 knapsack problem.
pp. 1–2, August 2015; http://researchmap.jp/?action=cv_download_

main&upload_id=93469.

[3] Hiroshi Iida, On the transformation of kKP to the 0–1 knapsack problem.
pp. 1–2, 21 July 2015; http://researchmap.jp/?action=cv_download_

main&upload_id=91874.

2For simplicity let n′ be n + k: the total number of items in E-kKP including k dummy items.
On large item j < n′ + k, we can pack j − n′ dummy items against remaining capacity (j − n′)W
even when W > 0; nonetheless, because the total profit of j − n′ dummy items is 0, its profit
(n′ + 1)P < (n′ + 1)P+ pmin, and does not become optimal where pmin > 0 follows from that a
solution of one item is feasible in given kKP as will be mentioned afterwards. At the same time,
P = 0 brings ∑n′−1

j=1 pj < pmin impossible, so we have P > 0.
3Notice that it’s all over when we’ve packed the most profitable k items in applying to kKP the

greedy heuristic along the nonascending order of profit.

4




