Another E-kKP $\rightarrow 0-1 \mathrm{KP}$ revised a little bit

Hiroshi IIDA*

Abstract

We present a new transformation from a variant of the classical $0-1$ knapsack problem ($0-1 \mathrm{KP}$) into the original 0-1KP, viz E-kKP $\rightarrow 0-1 \mathrm{KP}$, employing the collapsing knapsack problem (CKP), and also mention a new $k K P \rightarrow 0-1 \mathrm{KP}$, concretely $k \mathrm{KP} \rightarrow \mathrm{E}-\mathrm{kKP} \rightarrow \mathrm{CKP} \rightarrow 0-1 \mathrm{KP}$.

keywords: cardinality constraint, knapsack problem, combinatorial optimisation

1 Introduction

This piece shows a new transformation from E-kKP, which is a variant of the $0-1$ knapsack problem (hereafter $0-1 \mathrm{KP}$), back to the original and more simple $0-1 \mathrm{KP}$. The $0-1 \mathrm{KP}$ is a classical and well-known combinatorial optimisation problem such that we pack a lot of given items of profit and weight, both of which are positive integers, into a knapsack of capacity c so that without the total weight of packed items exceeding the capacity c, the total profit of those is maximised-it goes without saying that an item is of weight $\leq c$ and we cannot pack items into the knapsack all together. The $0-1 \mathrm{KP}$ is formulated as, with $N=\{1,2, \ldots, n\}, z^{*}=\max \left\{\sum_{j \in N} p_{j} x_{j} \mid \sum_{j \in N} w_{j} x_{j} \leq c, x_{j} \in\{0,1\}\right\}$ where p_{j}, w_{j} indicate profit and weight of item $j \in N$ respectively, and $0-1$ variable x_{j} depicts the choice of item j as $x_{j}=1$ (packed)/0 (unpacked). In particular, following, a word solution corresponds to items selected-that is, we call n vector of $x=\left(x_{j}\right)_{j \in N}$ a solution according to the literature whilst in this piece we call $S \subseteq N$ a solution too, that is, we identify x with S as $x_{j}=1 \Leftrightarrow j \in S$. In the light of this, the cardinality of solution x is $\sum_{j \in N} x_{j}\left(=\sum_{j \in S} 1\right.$, usually denoted as $|S|$). In addition, a solution fulfilling all constraints is said to be feasible. A solution which accomplishes z^{*} is naturally feasible, and we call the maximised z^{*} optimal value. For further details on $0-1 \mathrm{KP}$ and related, see Kellerer et al [6].

Adding to $0-1 \mathrm{KP}$ a constraint such that the number of packed items $\leq k$ leads to $k K P$, and more tightly, k even (i.e., $\sum_{j \in N} x_{j}=k$) leads to E- $k K P$. The next section presents a new transformation from E-kKP to $0-1 \mathrm{KP}$. Taking advantage of the new, we also develop $k \mathrm{KP} \rightarrow 0-1 \mathrm{KP}$.

[^0]
2 From E－kKP to 0－1KP via CKP

Although the transformation of E－kKP into $0-1 \mathrm{KP}$ has already been proposed in［2］we＇ll devise another one in this section．For the sake of brevity we here－ after assume $p_{1} \geq p_{2} \geq \cdots \geq p_{n}$ and $w_{1} \leq w_{2} \leq \cdots \leq w_{n}$（neither provokes the re－ordering of items）．

In actual fact， $\mathrm{E}-\mathrm{kKP}$ is equivalent to the collapsing knapsack problem（CKP， for short）of

$$
c(j)= \begin{cases}c, & j=k \\ 0, & j \in N \backslash\{k\}\end{cases}
$$

where CKP is an extension of $0-1 \mathrm{KP}$ ，having capacity not a constant but a func－ tional over the number of packed items as $c\left(\sum_{j \in N} x_{j}\right)$ ．Therefore transform－ ing the CKP with the method by Iida and Uno［5］produces a $0-1 \mathrm{KP}$ which is equivalent to given $\mathrm{E}-\mathrm{kKP}$ as follows：

$$
\begin{align*}
P & =\max \left\{\sum_{j=1}^{n-1} p_{j}-\operatorname{pmin}+1,0\right\}, W=\max \left\{c-\sum_{j=1}^{k+1} w_{j}+1,0\right\} \\
p_{j}^{\prime} & = \begin{cases}p_{j}+P, & 1 \leq j \leq n \\
(2 n+1-j) P+p_{n}, & n<j \leq 2 n\end{cases} \tag{1}\\
w_{j}^{\prime} & = \begin{cases}w_{j}+W, & 1 \leq j \leq n \\
(3 n-1-j) W+c+1, & n<j \leq 2 n, j \neq n+k \\
(2 n-1-k) W+1, & j=n+k\end{cases} \\
c^{\prime} & =(2 n-1) W+c+1
\end{align*}
$$

where $p_{j}^{\prime}, w_{j}^{\prime}$ and c^{\prime} represent new profit and weight of item j and new capacity， respectively．The pmin in（1）is the profit of（given by）a feasible solution S^{\prime} of CKP（also feasible in given E－kKP）as pmin $=\sum_{j \in S^{\prime}} p_{j}$ ，provided $\sum_{j \in S^{\prime}} w_{j} \leq$ $c\left(\left|S^{\prime}\right|\right)$ ．For example as in Kellerer et al［6，p．272］we may adopt the lightest k items as S^{\prime} ．If not so（i．e．，$\sum_{j \in S^{\prime}=\{1,2, \ldots, k\}} w_{j}>c\left(\left|S^{\prime}\right|=k\right)=c$ ）the given instance of E－kKP is unsolvable，including no feasible solution．Also if we＇re allowed to assume $k<n$ ，we have $P=\sum_{j=1}^{n-1} p_{j}-$ pmin +1 ．Indeed，Kellerer et al［6，p．272］have assumed $2 \leq k<n$ ．In what follows，on（1）we call an item of index $j>n$（new n items added）large item，and others（of index $j \in N$ ）small items．

Here we will briefly pick up the salient points of（1）．For more details，see ［5］．In short，the optimal value of $0-1 \mathrm{KP}(1)$ is attained by a combination of large item $n+k$ and k small items．Moreover，the k small items are our goal， that is，those convey optimal value to given E－kKP．First，focusing on weight， because $w_{2 n}^{\prime}+w_{2 n-1}^{\prime} \geq c^{\prime}+1$ even for $k=n$ or $k=n-1$（only w_{n+k}^{\prime} does
not contain c amongst weights of index $>n$) we cannot pack two large items together. In the case where we especially choice large item $n+k$, we can pack at most k small items, since

$$
\sum_{j=1}^{k+1} w_{j}+(k+1) W \geq c+1+k W>c+k W=c^{\prime}-w_{n+k}^{\prime}
$$

If the number of small items is k even, after weight $k W$ being subtracted, a solution whose weight $\leq c$-feasible in given E-kKP—only remains. As for another large item $j(\neq n+k)$, owing to remaining capacity $c^{\prime}-w_{j}^{\prime}=(j-n) W$ we can pack at most $j-n-1$ small items, which actually implies that such a solution does not achieve the optimal value of $0-1 \mathrm{KP}(1)$. This is because P is provided so that profit given by large item j and less than $j-n$ small items is beneath

$$
\begin{equation*}
p_{n+k}^{\prime}+\operatorname{pmin}+k P=(n+1) P+p_{n}+\operatorname{pmin} \tag{2}
\end{equation*}
$$

where profit (2) is given by a solution of $0-1 \mathrm{KP}(1)$ corresponding to a solution which gives pmin in given E-kKP (in the CKP of only $c(k)=c$, too). More precisely,

$$
\begin{aligned}
p_{j}^{\prime}+\sum_{i=1}^{j-n-1} p_{i}+(j-n-1) P & \leq(n+1) P+p_{n}+\sum_{i=1}^{j-n-1} p_{i}-\sum_{i=1}^{n-1} p_{i}+\mathrm{pmin}-1 \\
& \leq(n+1) P+p_{n}+\mathrm{pmin}-1
\end{aligned}
$$

Furthermore, we have no alternative but to pack a large item, since the total profit of all small items $\sum_{j} p_{j}+(n+1) P-P \leq(n+1) P+p_{n}+\operatorname{pmin}-1$, so it's also below (2). It should be pointed out that the last two arguments " $p_{j}^{\prime}+\sum_{i=1}^{j-n-1} p_{i}+(j-n-1) P$ and $\sum_{j \in N} p_{j}+n P$ are both less than (2)" hold even for $P=0$. Indeed, $P=0$ in the definition of $P(1)$ leads to $\sum_{j=1}^{n-1} p_{j}<$ pmin, thereby us having $\sum_{j} p_{j}<p_{n}+$ pmin.

We would here like to add that the latter part of $k \mathrm{KP} \rightarrow \mathrm{E}-k \mathrm{KP} \rightarrow 0-1 \mathrm{KP}$ in [3] is a transformation proposed in [2]. Then, it will be possible to obtain another transformation of $k \mathrm{KP} \rightarrow 0-1 \mathrm{KP}$ by replacing the latter with (1); however, $0-1 K P(1)$ has $2 n$ items, twice as many as the previous, and moreover too large coefficients. For this reason, it seems not to be promising. ${ }^{1}$ Still, in the remain-

[^1]der of this section we will note it down a little．
Notice that $p_{2 n+2 k}^{\prime}=P$ ，because the smallest profit p_{n+k} is 0 in converting， by（1），E－kKP being made up of given $k K P$ plus k dummy items $\left(p_{n+j}, w_{n+j}\right)=$ $(0,0)$ ．Like this，the total number of items in resultant $0-1 \mathrm{KP}$ is $2(n+k)$（all n appearing in（1）is replaced with $n+k$ ）．In addition，we have $W=c-w_{1}+$ $1>0$（the total weight of k lightest items is 0 and $w_{1} \leq c$ ）．Here we should note that $W>0$ since $W=0$ might cause a trouble due to a dummy item of weight 0 added．For example，we saw that large item j can be combined with at most $j-n$ small items；nevertheless，an item of weight 0 would，in spite of the weight constraint，lead to unexpected result against the design of the reduction in［5］．${ }^{2}$ On the other hand，because a dummy item added in $k K P \rightarrow E-k K P$ by Kellerer et al $[6, \mathrm{p} .272]$ is not $(0,0)$ but $(1,1)$ ，which may be preferable with no possible trouble albeit larger coefficients（e．g．，the capacity of resulting E－kKP is up to $k(c+1)-1[1, \mathrm{p} .2])$ ．

In the same way as［3］when we pack only one item of the largest profit，we obtain pmin $=p_{1}$－since $w_{j} \leq c$ ，a solution consisting of one item is always feasible in given $k K P$（A solution corresponding to the solution in the E－kKP of $n+k$ items shall contain $k-1$ dummy items）．In this case，however，we have $P=\sum_{j=2}^{n+k-1} p_{j}+1=\sum_{j=2}^{n} p_{j}+1$ pretty huge．The larger the pmin is，the smaller the P is．If we address E－kKP then we can make use of a solution being composed of k lightest items as mentioned previously［6，p．272］but now is $k K P$ and the solution is not always available－there may not exist a solution of cardinality k ．To replace the solution giving pmin $=p_{1}$ ，anybody will think of a framework of greedy heuristic such that until exceeding capacity we iterate packing an item according to the sequence of items sorted in nonascending order of efficiency p_{j} / w_{j} or just profit．Needless to say，we stop the iteration straightaway when the cardinality reaches k（if necessary ${ }^{3}$ ）．
$w_{j}<0$ ，we cannot pack $k+1$ items of original weight plus W since $c^{\prime}<(k+1) W$ ．If $W=0$ ，from the definition of W we have $c<\sum_{j=1}^{k+1} w_{j}$ ．In this case，even sans W we cannot pack $k+1$ items，or more；thus，W is indeed needless．Conversely，P has us pack k items，or more．Then，$P=0$ implies $\sum_{j=1}^{k-1} p_{j}<$ pmin，and in the same way as W ，indeed P is needless in the case of $P=0$ ．
${ }^{2}$ For simplicity let n^{\prime} be $n+k$ ：the total number of items in E－kKP including k dummy items． On large item $j<n^{\prime}+k$ ，we can pack $j-n^{\prime}$ dummy items against remaining capacity $\left(j-n^{\prime}\right) W$ even when $W>0$ ；nonetheless，because the total profit of $j-n^{\prime}$ dummy items is 0 ，its profit $\left(n^{\prime}+1\right) P<\left(n^{\prime}+1\right) P+$ pmin，and does not become optimal where pmin >0 follows from that a solution of one item is feasible in given $k K P$ as will be mentioned afterwards．At the same time， $P=0$ brings $\sum_{j=1}^{n^{\prime}-1} p_{j}<$ pmin impossible，so we have $P>0$ ．
${ }^{3}$ Notice that it＇s all over when we＇ve packed the most profitable k items in applying to $k \mathrm{KP}$ the greedy heuristic along the nonascending order of profit．

3 Conclusions

We have hereby defined a new transformation from E-kKP to 0-1KP, yet unfortunately we cannot contend that the new is an alternative to that of [2]. Finally, we hope that this piece will become a start of something new.

References

[1] Hiroshi Iida, Some thoughts around kKP. Discussion paper series no. 171, pp. 1-3, CBC at Otaru Univ Commerce, June 2015 (in Japanese) http:// hdl.handle.net/10252/5464.
[2] Hiroshi Iida, On a transformation from E-kKP to the 0-1 knapsack problem. pp. 1-2, August 2015; http://researchmap.jp/?action=cv_download_ main\&upload_id=93469.
[3] Hiroshi Iida, On the transformation of $k K P$ to the $0-1$ knapsack problem. pp. 1-2, 21 July 2015; http://researchmap.jp/?action=cv_download_ main\&upload_id=91874.
[4] Hiroshi Iida, Another E-kKP $\rightarrow 0-1 \mathrm{KP} . \operatorname{pp}$. 1-4, 28 Feb 2016; http:// researchmap.jp/?action=cv_download_main\&upload_id=103753 (An erratum: 'from E-kKP to $0-1 K \mathrm{P}$ ' at line 8 in page 3 should be, of course, 'from $k K P$ to $\left.0-1 \mathrm{KP}^{\prime}\right)$.
[5] Hiroshi Iida and Takeaki Uno, A short note on the reducibility of the collapsing knapsack problem. J Oper Res Soc Japan 45(3) 293-8 (Sept 2002).
[6] Hans Kellerer, Ulrich Pferschy and David Pisinger, Knapsack Problems. Springer 2004.

[^0]: *Otaru Univ Commerce, Hokkaido 047-8501; E-mail address: hiroggiida@me.com

[^1]: ${ }^{1}$ Regarding E-kKP $\rightarrow 0-1 \mathrm{KP}$ proposed in [2], under the same assumptions in this piece to $\left\{p_{j}, w_{j}\right\}$ and with pmin (the profit of some feasible solution of given E-kKP), we set $P=W=$ $\max \left\{\sum_{j=1}^{k-1} p_{j}-\operatorname{pmin}+1, c-\sum_{j=1}^{k+1} w_{j}+1,0\right\}$ and $\left(p_{j}^{\prime}, w_{j}^{\prime}\right)=\left(p_{j}+P, w_{j}+W\right), c^{\prime}=c+k W$ where the total number of items is still n (unchanged). Here we would like to note that this W makes the number of packed items at most k. In particular, when we set $W=c+1$ and $c^{\prime}=c+k W$, unless

