Three kinds of kKKP— [ ] —0-1KP: a survey

Hiroshi Tida™

This piece presents three sorts of transformation, all reducing
KKP to the classical 0-1 knapsack problem (0-1KP) where kKP is a
variant of 0-1KP with additional constraint such that the number of
packed items is k or less. Every transformation is not direct but via
another problem [] as in the title viz rubber knapsack, collapsing
knapsack, or E-kKP. Such a transformation makes both possible to
solve kKP as 0-1KP and not to devise a tailored method for (KP.
Anyway it shall be better that candidates for solving kKP augment.
keywords: combinatorial optimisation, knapsack problem, cardinality

constraint

1 Introduction

We argue about a transformation from kKP, which is a variant of the 0-1
knapsack problem (hereafter 0-1KP), back to the original and more simple
0-1KP. The 0-1KP is a classical and well-known combinatorial optimisation
problem such that we pack given items of profit and weight (both are
positive integers) into a knapsack of capacity ¢ so that the total profit of

packed items is maximised without the total weight of those exceeding the
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c—needless to say there is no item of weight > ¢ and a case that the total
weight of all items < ¢ is ruled out. The 0-1KP can be formulated as, with
N:=1{L2...,n)z" = max{X,cypx; | X jey w;x; < c x; €{0, 1}} where
b w; indicate profit and weight of item j € N respectively, and 0-1 variable
x; indicates the choice of item j as x;=1 (packed)/0 (otherwise). In
particular, following, a word solution corresponds to the selection of items—
that is, we call n-vector of x := (xj) jen @ solution according to the literature
while in this piece we call S € N a solution too, that is, we identify x with S
asx =1 j € S. By this, the cardinality of x means 2. JeN X Also, a solution
fulfilling all constraints is said to be feasible. A solution which gives z* is of
course feasible, and we call the maximised z* optimal value. For more details
on 0-1KP and related, see Kellerer et a/ [7].

Adding to 0-1KP a constraint such that the number of packed items < &
leads to KKP, and more tightly, k even (ie, X;cy x; = k) leads to E-kKP. In
this piece we argue about a transformation from kKP to 0-1KP. All three

transformations in the next section are not direct but via another problem.

2 [J:=rubber | CKP | E-kKP

First, we consider a transformation via rubber knapsack (which is
mentioned afterwards). This transformation is a modification of E-kKP—
kKKP. Kellerer et al [7, p. 273] proposed a transformation of E-kKP—kKP
such that P := ij]- and W = ijj are added to each item's profit and
weight respectively, and new capacity ¢ := ¢+ kW. In fact, the W is
redundant. It was provided so that under the subset-sum case (ie, b= w;
for all j € N), the condition is kept in resulting kKP. Indeed, Caprara et al [1]
employ P only (due to P we shall pack &k or more items). However the W

makes the transformation the one from E-4KP to not kKP but 0-1KP. This is
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because we have ¢’ < (k+ 1) W owing to X w; > c¢ also in E-kKP (and in
KKP too) as so in 0-1KP (if ij]» < ¢ then we can pack k£ most profitable
items and an instance of E-kKP given becomes trivial), we cannot pack
more than k items without the constraint 2 x; < k of kKP, that is, the
transformation is to not kKP but 0-1KP. Namely, by merely solving resulting
problem as 0-1KP, we can find a solution (a subset of V) that maximises
X jen (b;+ P)x; and is of cardinality k.

Note that excluding P from the E-kKP—0-1KP does not produce kKP—0-
1KP though impossible to pack more than k items certainly. This is because
it may happen that on a solution of cardinality ¥’ < k, slack (k — &) W makes
the solution feasible in resulting 0-1KP (ie., < ¢’) against of total weight > ¢
in the original (for a concrete example, see footnote no. 1 of [4]). To help
this defect, we remove the slack by using expanding knapsack problem—a
knapsack expands like rubber according to the number of packed items [7,
p. 416]; following for the sake of brevity we call the problem rubber
knapsack. More precisely, rubber knapsack’'s capacity is not a constant but a
function over the number of packed items X ;cy x; as ¢(X,x;). Then we

replace the constant ¢’= ¢ + kW with

w, 1<;<k
c(j)=c+q’ g )
kW, k<j<mn.

lida and Uno [6] proposed two transformations from CKP (collapsing
knapsack problem, which we will mention afterwards) to 0-1KP where the
former does not use a property that ¢(+) is monotonically nonascending on
CKP; thus, we can transform rubber knapsack (1) to 0-1KP by the former.
Although resultant 0-1KP obtained is terrible, we will herein note it down.

Before writing it, we would like to add that we can reduce the W.
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Specifically, a requirement is Zfii wj+ (k+1)W > ¢+ kW under w, <
wy < - < w, [2,3], it's better to set W= ¢— X 51w + 1. If this W <0,
the total weight of the lightest k£ + 1 items is > ¢; thus, we may solve given
kKP without any transformation. Consequently we have a solution of
cardinality < k naturally.

We assume p; > py, > -+ > p, and w; < wy < -+ < w, (this doesn’t
provoke the sorting of items). For simplicity, we also assume W > 0.
Moreover for the sake of max, . ;{c(:) + ¢(j)} = 2(c + kW) we assume k < n.
Indeed k = is non sense, and according to Kellerer et al [7, p. 272] we
assume 2 < k < n (but considering Zj w; > ¢, k=n— 1 is still meaningless).
In what follows, on resultant 0-1KP obtained, (p}, w}) indicates the two

properties of new items and ¢’ does new capacity.

k1 k+1
W=c-D w+1 A= w,
j=1 j=3
wite—w —wy+1, 1<j<n

wi=9 Bn—1-)A+c+ Q2k+n-7)W+1, n<j<n+k
Bn—-1-HA+c+ikW+1, n+k<j<2n,

C=Cn—-1)A+2(c+kW) +1,

n—1
C=>p+1
=2

. [p+C 1<j<n
4 (2n+1-7)C+p, n<j<2n

where A should be ¢ = W= w, — w, + 1 according to [6], yet the definition
of W makes it so. In addition, as a feasible solution of rubber knapsack, we
adopt one being made up of only one item of the largest profit. Moreover an

assumption 2 < k£ < 7 leads to » > 3 and A > 0. Furthermore because of
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W+A >0wehave W+A=c—w —w,+1 >0, and it follows that «; > 0
(G<n).

Second, we show another transformation which is also related to a
capacity function ¢ (Zj xj). As mentioned in footnote no. 2 of [5] we can
assume kKP as a collapsing knapsack problem (CKP). In the CKP, as its
name indicates, the knapsack will collapse according to the number of

packed items as ¢(1) > ¢(2) >--- > c(n). Therefore, a CKP of

] ¢, 1<j<k

is identical to kKP; then, we shall gain 0-1KP by transforming CKP (2) with
a method proposed by Iida and Uno [6]. Assuming w; < w, < - < w,, the
total number of items in resulting 0-1KP is 7z + &":= min{k, max{¢ | Zle w; <
c}}. Further we assume p; > p, >+ > p,. Then, pmin appearing afterwards
indicates profit given by some feasible solution of CKP. For example, as so in
rubber knapsack, when we adopt a solution including only one item of the
largest profit, pmin = p; (although hidden, it's same on (3) which will appear
afterwards). To summarise, assuming c(1) =¢(2) =¢ (ie, k > 2) we have
the following 0-1KP by transforming CKP of (2) with the 2nd method
proposed by Iida and Uno [6], which takes advantage of the monotonicity of
c(+):

W=max{c—w, —w,+1 0},

w; + W, 1<j<n
w, =
I K+n—-1-7)W+c+1l n<j<n+k

= Q2Kk=1)W+2c+1,
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k-1
P=max{z pj—pmin+ 1,0},
j=1

p;+ P, 1<j<n

p'.—{ n
! (2n+1—j)P+2pi, n<j<n+k
i=K

Now we have seen two transformations, both of which are complicated. To
our knowledge, the one in [4] is the simplest, which is kKP—E-(KP—0-
1KP. Third, we cite coefficients of 0-1KP obtained by the transformation as

follows:

k-1
P= W=max{2pj,c— min w]} + 1,

=2 I<j<n

(p;+P.w;+ W), jEN
(05, w) = :
(P, W), 1<j-n<k

c=c+ kW

where we assume p; > p, > --- > p, in kKP given. In addition & > 2, and if
k=2 then Zf;%pj = 0. By extra k items of index j > » provided, each
solution of cardinality < k in given kKKP can become a solution of cardinality
k even in E-kKP. In other words, these £ dummy items produce one-to—-one
correspondence of feasible solutions between kKP and E-kKP (for example,
an empty set in kKP is feasible while a solution of X = 1, V7 > n in E-kKP
corresponds to the empty set). Why does solving 0-1KP (3) lead to solving
E-kKP equivalent to given kKP? Roughly speaking, because of W > ¢—
minlﬁjg w; by the definifion of W, the total weight of the lightest £ + 1
items min; _;, w; + (k+1)W > ¢ + kW =¢’; thus, we can pack at most k

items. In addition, because of P > 2 ]’-‘; ; b; by the definition of P, we have
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k=1 k=1 k=1
Db+ (k=1)P< D p+kP— D p;=p +kP. (4)
j=1 j=1 j=2

Thus we must pack k£ or more items. In consequence we shall consider a
solution of cardinality k even only. Let z*+ kP be an optimal (maximised)
value in 0-1KP (3). Then, for its optimality, we can contend that z* is
maximised in original kKP (a solution obtained by discarding j > » (if exist)
from the one which gives z*+ kP gives z" in original kKP).

In comparison with the one via CKP, the total number of items in (3) (ie.
n + k) may greater than n + K’ whereas the capacity ¢ + kW is, in the case of
W=c¢—min) _;_, w;+ 1, almost the half of (24— 1)W+2¢c+1 (so as to
keep subset-sum case like E-kKP—kKP (0-1KP) proposed by Kellerer et
al [7,p. 2731, P and Win (3) are defined [2]).

To conduct a further comparison with the third (via E-XKP), on the same
framework of kKKP—E-tKP—0-1KP, we will build it by pure elements
KKP—E-kKP and E-XKP—0-1KP both proposed by Kellerer et al [7, pp. 272~
3] (as indicated at the start of Section 2, although described E-kKP—kKP
but in fact —0-1KP) and note down the coefficients of 0-1KP obtained by
the built. Notice that new capacity by the first kKP—E-kKP is k(¢ +1) — 1
according to the claim in [2] (next E-kKP—0-1KP does + kW ):

P:k(1+zpj), W=k(1+2wj),

JEN JEN
Gy = Ut Pk W), EN
bi j (1+P 1+ W), 1<j - n<k,
d=kle+W+1) - L

It should be pointed out that under ijj > ¢ assumed previously, we have
< k ijj + kW + k= (k+1)W. Although simple, it's in no doubt that

these coefficients are bigger than (3).
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3 Conclusions

Until now we have seen three transformations from 4/KP to 0-1KP. Finally

we would like to note three points for further study.

® On the transformation of E-AKP—0-1KP, as seen in (4), as an upper
bound of profit gained among solutions of cardinality < k, we adopt the
total profit of the most profitable k-1 items [2,3]. Then, if the total
weight of a solution which gives the upper bound is > ¢, we can
improve the bound. Is there alternative upper bound? In addition, as a
solution which gives pmin in the transformation via rubber or E-kKP,

one consisting of only one item of the largest profit is ordinary.

® We have focused on weight as to the transformation via rubber or CKP.
Does focusing on profit and reformulating kKP bring something new?
For example, a solution of cardinality > k shall have penalty, or

conversely, a solution of cardinality < & shall have extra large profit.

® Does there exist another [, that is, a problem which can be inserted
between kKP and 0-1KP? It is well known that bounded knapsack
problem (BKP, the available number of each item is determined
beforehand in the integer knapsack problem) can be reduced to 0-1KP
[7, Subsect 7.1.1]; but, it seems kKP has no connection with BKP. Also,

is there a direct transformation from kKP to 0-1KP?
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