
Bisecting a Four-Connected Graph

with Three Resource Sets

Toshimasa Ishii a,∗, Kengo Iwata b, Hiroshi Nagamochi c,

aDepartment of Information and Management Science,
Otaru University of Commerce, Hokkaido, 047-8501, Japan

bMazda Motor Corporation, Hiroshima 730-8670, Japan
cDepartment of Applied Mathematics and Physics,

Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

Abstract

Let G = (V,E) be an undirected graph with a node set V and an arc set E. G
has k pairwise disjoint subsets T1, T2, . . . , Tk of nodes, called resource sets, where
|Ti| is even for each i. The partition problem with k resource sets asks to find a
partition V1 and V2 of the node set V such that the graphs induced by V1 and V2

are both connected and |V1 ∩ Ti| = |V2 ∩ Ti| = |Ti|/2 holds for each i = 1, 2, . . . , k.
The problem of testing whether such a bisection exists is known to be NP-hard
even in the case of k = 1. On the other hand, it is known that if G is (k + 1)-
connected for k = 1, 2, then a bisection exists for any given resource sets, and it
has been conjectured that for k ≥ 3, a (k + 1)-connected graph admits a bisection.
In this paper, we show that for k = 3, the conjecture does not hold, while if G is
4-connected and has K4 as its subgraph, then a bisection exists and it can be found
in O(|V |3 log |V |) time. Moreover, we show that for an arc-version of the problem,
the (k + 1)-edge-connectivity suffices for k = 1, 2, 3.

Key words: graph algorithm, graph partition problem, graph connectivity,
embedding

∗ Corresponding author.
Email addresses: ishii@res.otaru-uc.ac.jp (Toshimasa Ishii),

nag@i.kyoto-u.ac.jp (Hiroshi Nagamochi).

Preprint submitted to Elsevier Science 1 March 2007

Manuscript

(a) (b)
Fig. 1. Illustration of instances of 4-connected graphs which have no 3-bisection,
where T1 = {v1, v2}, T2 = {v3, v4}, and T3 = {v5, v6} in both (a) and (b). Note that
the graph (b) is also 5-connected.

1 Introduction

In this paper, we consider the following graph partition problems: given an
undirected graph G = (V,E) with a set V of nodes a set E of arcs, and k
pairwise disjoint sets T1, T2, . . . , Tk of nodes, called resource sets, where each
|Ti| is even, find a partition V1 and V2 of V such that the graphs induced by
V1 and V2 are both connected and |V1 ∩ Ti| = |V2 ∩ Ti| = |Ti|/2 holds for each
i = 1, 2, . . . , k. This problem is called the bisection problems with k resource
sets, and such a bisection is called k-bisection (with respect to T1, . . . , Tk).

Such a problem of partitioning a graph into connected subgraphs under fair-
division type of constraints appears in many applications such as political
districting [1,7,15], the paging system in operating systems [13] and the image
processing [6]. For the political districting, a dual graph of the map which
consists of regions is required to be divided into connected subgraphs, each of
which represents an electoral zone, so that both the area and the number of
voters in each zone is balanced over all zones.

So far, for general graphs, the problem was shown to be NP-hard even if k = 1
holds, since it is NP-hard to test whether a 1-bisection exists or not [3,4]. On
the other hand, when k = 1, 2, it was shown that if a given graph is (k + 1)-
connected, then for any given resource sets, such a k-bisection exists and it
can be found in linear time for k = 1 by Suzuki et al. [12] and by Wada and
Kawaguchi [14], and in O(|V |2 log |V |) time for k = 2 by Nagamochi et al.
[11]. For a general k ≥ 3, to our knowledge, any nontrivial sufficient condition
for which a k-bisection exists is not known, while it was conjectured in [11]
that every (k + 1)-connected graph admits a k-bisection.

In this paper, we consider the case of k = 3. We first show that there exist
4-connected graphs which have no 3-bisection, as shown in Figure 1. This in-
dicates a negative answer to the above conjecture for k = 3. In particular, the

2

graph in Figure 1(b) is also 5-connected, which shows that even 5-connected
graphs may have no 3-bisection (this also indicates a negative answer to the
above conjecture for k = 4). Instead, in this paper, we give a sufficient condi-
tion for which a 3-bisection exists; we prove that if G is 4-connected and has
a complete graph K4 of four nodes as its subgraph, then a 3-bisection exists.
We also show that it can be found in O(|V |3 log |V |) time. A key technique
of the proof, which is an extension of the method by Nagamochi et al. [11],
is a reduction of the problem to a geometrical problem. We first prove that
every 4-connected graph containing a complete graph K∗ of four nodes as its
subgraph can be embedded in the 3-dimensional space �3, in such a way that
the following (i)(ii) hold: (i) the convex hull of its nodes is a trigonal pyramid
corresponding to the K∗, (ii) every node not in K∗ is in the convex hull of its
neighbors (precise definition is given in Section 2.2). This will guarantee that,
for any given plane H in �3, each of the two subgraphs of G separated by H
remains connected. Given such an embedding in �3, we apply the so-called
ham-sandwich cut algorithm, which is well known in computational geometry,
to find a plane H∗ that bisects T1, T2, and T3 simultaneously. Consequently, the
two subgraphs by the plane H∗ indicates a 3-bisection. We give an algorithm
for finding such a plane H∗ in O(|V |3 log |V |) time.

Moreover, we consider an arc-version of the bisection problem; given an undi-
rected graph G = (V,E) and k pairwise disjoint sets T1, . . . , Tk of arcs, where
each |Ti| is even, find a partition E1 and E2 of E such that the graphs induced
by E1 and E2 are both connected and |E1 ∩ Ti| = |E2 ∩ Ti| = |Ti|/2 holds for
each i = 1, . . . , k. We call such a bisection k-bisection of the arc set. For this
problem, we show that a (k + 1)-edge-connected graph admits a bisection for
any given resource sets for k = 1, 2, 3.

The paper is organized as follows. Some definitions and preliminaries are de-
scribed in Section 2. Section 3 describes an algorithm for finding a 3-bisection
in a 4-connected graph with K4, and Section 4 gives a proof for its correct-
ness. In Section 5, we make some remarks on the problem for a general k and
discuss the arc-version of the problem.

2 Preliminaries

Let G = (V,E) stand for an undirected simple graph with a set V of nodes
and a set E of arcs, where we denote |V | by n and |E| by m. A singleton set
{x} may be simply written as x, and “⊂” implies proper inclusion while “⊆”
means “⊂” or “=”. For a subgraph G′ of G, the sets of nodes and arcs in G′

are denoted by V (G′) and E(G′), respectively. For a set X of nodes in G, a
node v ∈ V −X is called a neighbor of X if it is adjacent to some node in X,
and the set of all neighbors of X is denoted by NG(X).

3

For an arc e = (u, v), we denote by G/e the graph obtained from G by con-
tracting u and v into a single node (deleting any resulted self-loop), and by
G − e the graph obtained from G by removing e. We also say that G/e is
obtained from G by contracting the arc e. A graph G is k-connected if and
only if |V | ≥ k+1 and the graph G−X obtained from G by removing any set
X of (k − 1) nodes remains connected. A graph G is k-edge-connected if and
only if the graph G − F obtained from G by removing any set F of (k − 1)
arcs remains connected.

The main results of this paper are described as follows.

Theorem 1 Let G = (V,E) be a 4-connected graph which contains a complete
graph with four nodes as its subgraph. Let T1, T2, T3 be pairwise disjoint subsets
of V such that |Ti| is even for i = 1, 2, 3. Then G has a 3-bisection with respect
to T1, T2, and T3, and it can be found in O(n3 log n) time. ✷

Theorem 2 Let G = (V,E) be a (k + 1)-edge-connected graph with pairwise
disjoint subsets Ti, i = 1, . . . , k of E such that each |Ti| is even. If k = 1, 2, 3,
then a k-bisection of the arc set exists. ✷

In the sequel, we first give a constructive proof of Theorem 1 by reducing the
problem to a geometrical problem as mentioned in Section 1. For this, we give
some geometric notations in the next two subsections.

2.1 Convex hull and ham-sandwich cut

Consider the d-dimensional space �d. For a non-zero a ∈ �d and a real b ∈ �1,
H(a, b) = {x ∈ �d | 〈a · x〉 = b} is called a hyperplane, where 〈a · x〉 denotes
the inner product of a, x ∈ �d. Moreover, H+(a, b) = {x ∈ �d | 〈a · x〉 ≥ b}
(resp., H−(a, b) = {x ∈ �d | 〈a · x〉 ≤ b}) is called a positive closed half space
(resp., negative closed half space) with respect to H = H(a, b).

For a set P = {x1, . . . , x�} of points in �d, a point x′ = α1x1 + · · · + α�

with
∑

i=1,...,� αi = 1 and αi ≥ 0, i = 1, . . . , � is called a convex combination
of P , and the set of all convex combinations of P is denoted by conv(P).
If P = {x1, x2}, then conv(P) is called a segment (connecting x1 and x2),
denoted by [x1, x2]. A subset S ⊆ �d is called a convex set if [x, x′] ⊆ S for
any two points x, x′ ∈ S. For a convex set S ⊆ �d, a point x ∈ S is called
a vertex if there is no pair of points x′, x′′ ∈ S − x such that x ∈ [x′, x′′].
For two vertices x1, x2 ∈ S, the segment [x1, x2] is called an edge of S if
αx′ + (1 − α)x′′ = x ∈ [x1, x2] for some 0 ≤ α ≤ 1 implies x′, x′′ ∈ [x1, x2].
The intersection S of a finite number of closed half spaces is called a convex
polyhedron, and is called a convex polytope if S is non-empty and bounded.

4

Given a convex polytope S in �d, the vertex-edge graph GS = (VS, ES) is
defined to be an undirected graph with node set VS corresponding to the
vertices of S and arc set ES corresponding to those pairs of vertices x, x′ for
which [x, x′] is an edge of S. For a convex polyhedron S, a hyperplane H(a, b) is
called a supporting hyperplane of S if H(a, b)∩S �= ∅ and either S ⊆ H+(a, b)
or S ⊆ H−(a, b). We say that a point p ∈ S is strictly inside S if there is no
supporting hyperplane of S containing p. If S has a point strictly inside S in
�d, S is called full-dimensional in �d. The set of points strictly inside conv(P)
is denoted by int(conv(P)).

Let P1, . . . , Pd be d sets of points in �d. We say that a hyperplane H = H(a, b)
in �d bisects Pi if |Pi ∩ H+(a, b)| ≥ �|Pi|/2� and |Pi ∩ H−(a, b)| ≥ �|Pi|/2�
hold. Thus if |Pi| is odd, then any bisector H of Pi contains at least one point
of Pi. If H bisects Pi for each i = 1. . . . , d, then H is called a ham-sandwich
cut with respect to P1, . . . , Pd. The following result is well-known (see, e.g.,
[5]).

Theorem 3 Given d sets P1, . . . , Pd of points in the d-dimensional space �d,
there exists a hyperplane which is a ham-sandwich cut with respect to the sets
P1, . . . , Pd. ✷

In [2], Chi-Yuan et al. showed that a ham-sandwich cut with respect to given
sets P1, P2, . . . , Pd of points in �d with

∑d
i=1 |Pi| = p can be found in O(p3/2)

time for d = 3, O(p8/3) time for d = 4, and O(pd−1−a(d)) time with certain
small constant a(d) > 0 for d ≥ 5.

2.2 Convex embedding of a graph

In this section, we introduce a strictly convex embedding of a graph in �d,
which was first defined by Nagamochi et al. [11].

Given a graph G = (V,E), an embedding of G in �d is an mapping f : V → �d,
where each node v is represented by a point f(v) ∈ �d, and each arc e = (u, v)
by a segment [f(u), f(v)], which may be written by f(e). For two arcs e, e′ ∈ E,
segments f(e) and f(e′) may cross each other. For a set {v1, . . . , vp} = Y ⊆ V
of nodes, we denote by f(Y) the set {f(v1), . . . , f(vp)} of points, and we denote
conv(f(Y)) by convf(Y).

A strictly convex embedding of a graph is defined as follows (see Figure 2).

Definition 4 [11] Let G = (V,E) be a graph without isolated nodes and
let G′ = (V ′, E ′) be a subgraph of G. A strictly convex embedding (or SC-
embedding, for short) of G with boundary G′ is an embedding f of G into �d

in such a way that

5

(a) (b)
Fig. 2. Illustration of an instance of an SC-embedding; (b) shows an SC-embedding
of the graph in (a) with boundary ({v1, v2, v3, v4}, ⋃1≤i,j≤4(vi, vj)) into �3.

(i) the vertex-edge graph of the full-dimensional convex polytope convf(V
′) is

isomorphic to G′ (such that f itself defines an isomorphism),

(ii) f(v) ∈ int(convf (NG(v))) holds for all nodes v ∈ V − V ′,

(iii) the points of {f(v) | v ∈ V } are in general position. ✷

From this definition, we can see that the vertices of convf (V) are precisely the
points in the boundary f(V ′).

The following lemma implies that given an SC-embedding of G = (V,E)
into �d, each two sets of nodes obtained by bisecting f(V) with an arbitrary
hyperplane in �d induce connected graphs.

Lemma 5 [11, Lemma 4.2] Let G = (V,E) be a graph without isolated nodes
and let f be an SC-embedding of G into �d. Let f(V1) ⊆ H+(a, b) and f(V)∩
(H+(a, b) − H(a, b)) ⊆ f(V1) hold for some hyperplane H = H(a, b) and for
some ∅ �= V1 ⊆ V . Then V1 induces a connected graph. ✷

By Theorem 3 and this lemma, if there is an SC-embedding of a given graph
G = (V,E) into �k, then by bisecting the embedded graph with a hyperplane
which is a ham-sandwich cut with respect to T1, . . . , Tk, we can obtain a par-
tition V1 and V2 of V bisecting each Ti such that each Vj induces a connected
graph, that is, a k-bisection. Based on this observation, we give an algorithm
for finding a 3-bisection in the next section.

6

3 Algorithm for bisecting resource sets

In this section, we give an algorithm, named BISECT3 for finding a 3-bisection
in a 4-connected graph with K4 in O(n3 log n) time, which proves Theorem 1.

Algorithm BISECT3

Input: A 4-connected graph G = (V,E) which has a complete graph K with
4 nodes, and three pairwise disjoint node sets T1, T2, and T3 where each |Ti|
is even.

Output: A 3-bisection of G with respect to T1, T2, and T3.

Phase 1: Find an SC-embedding f of G with boundary K into �3.

Phase 2: By applying a ham-sandwich cut algorithm to f(V) in �3, find a
plane H in �3 which bisects T1, T2, and T3. Output the bisection {V1, V2} of
V divided by H . ✷

As mentioned in Section 2.1, a ham-sandwich cut bisecting each Ti in �3 exists,
and it can be found in O(n3/2) time. Hence, for proving the correctness of
algorithm BISECT3, it suffices to show that Phase 1 can find an SC-embedding
of G with boundary K into �3 in O(n3 log n) time. In the next section, we
give a proof for this.

4 SC-embedding of a graph into �3

In this section, given a 4-connected graph G which contains a complete graph
with four nodes, denoted by K, we propose an algorithm, named EMBED3,
for finding an SC-embedding of G with boundary K into �3 in O(n3 log n)
time. Figure 2 shows an instance of such an SC-embedding of a 4-connected
graph into �3.

The algorithm EMBED3, which is an extension of the algorithm in �2 given
in [11], consists of two steps. First, we contract arcs, one by one, until a small
sized graph whose SC-embedding can be found easily is attained, and next,
we embed the remaining nodes while tracing the process of the contraction
reversely. More precisely, in the first step, we contract arcs in E −E(K), one
by one, while preserving the 4-connectivity until a complete graph G∗ with 5
nodes containing K is obtained. Then we can easily obtain an SC-embedding
f of G∗ with boundary K into �3; we find an embedding f ′ of V (K) by putting
them in general position (which shapes a trigonal pyramid), and we embed the

7

node v with {v} = V (G∗)−V (K) in int(convf ′(V (K))). In the second step, by
tracing the process of the contraction reversely and embedding the contracted
arcs into �3, we convert the embedding f into the one for the original graph.
The outline of algorithm EMBED3 is described as follows.

Algorithm EMBED3

Input: A 4-connected graph G = (V,E) which has a complete graph K with
4 nodes.

Output: An SC-embedding of G with boundary K into �3.

Step 1: While |V (G)| ≥ 6 holds, execute the following procedure (1) and (2).

(1) Find an arc e ∈ E(G) − E(K) such that G/e remains 4-connected, and
contract the arc e.

(2) Let G := G/e.

/** The current graph G obtained by Step 1 is a complete graph with 5 nodes
containing K. **/

Step 2: Embed G into �3 so that its embedding is an SC-embedding f with
boundary K. Next, by tracing the process of the contraction in Step 1 re-
versely and embedding the contracted arcs into �3, one by one, we convert
the embedding f into the one for the original graph. ✷

In the subsequent sections, we prove the correctness of algorithm EMBED3
by describing the details for each step, analyze the time complexity of each
step.

4.1 Correctness of Step 1

We give a proof of the following theorem for the correctness of Step 1.

Theorem 6 Let G = (V,E) be a 4-connected graph which has a complete
graph K with 4 nodes. Then there exists an arc e ∈ E − E(K) such that G/e
is 4-connected. ✷

We first introduce the following preparatory theorem about the contraction of
arcs in 4-connected graphs.

Definition 7A graph G is called uncontractible k-connected if G is k-connected
and G/e is not k-connected for any arc e ∈ E(G). ✷

8

Theorem 8 [9] A graph G is uncontractible 4-connected if and only if G
satisfies the following properties:

(i) G is 4-connected,

(ii) the degree of each node in V (G) is exactly 4, and

(iii) for each arc (u, v) ∈ E(G), there exists a node w ∈ V (G) − {u, v} with
{(u, w), (v, w)} ⊆ E(G). ✷

PROOF of Theorem 6. Let V1 = V − V (K). We construct the new graph
G∗ from G = (V,E), defined as follows. V (G∗) = V1 ∪ V (K) ∪ V2, where V2 is
a copy of V1. An arc (u1, u2) belongs to E(G∗) if and only if (a) (u1, u2) ∈ E,
(b) u1, u2 ∈ V2 and ui, i = 1, 2 is the copy of vi ∈ V1 such that (v1, v2) ∈ E, or
(c) u1 ∈ V (K), u2 ∈ V2, and u2 is the copy of v2 ∈ V1 such that (u1, v2) ∈ E.
Note that G∗ is also 4-connected. Since |NG∗(v)| ≥ 5 holds for a node v ∈
V (K), Theorem 8 implies that G∗ has an arc e ∈ E(G∗) such that G∗/e is
4-connected. Without loss of generality, let e ∈ E−E(K) (note that e /∈ E(K)
since |V (K)| = 4 and G∗ − V (K) is not connected).

We claim that G/e remains 4-connected, proving the theorem. Assume by
contradiction that G/e would have a node set X with |X| ≤ 3 such that
(G/e) − X is not connected. Then there is a component C� of (G/e) − X
with V (C�) ⊆ V1 since K is the complete graph. Indeed, if there would exist
two distinct components Ci, Cj of (G/e) − X with V (K) ∩ V (Ci) �= ∅ �=
V (K) ∩ V (Cj), then two nodes u ∈ V (K) ∩ V (Ci) and v ∈ V (K) ∩ V (Cj)
would satisfy (u, v) /∈ E, contradicting that K is a complete graph. Also in
G∗/e, NG∗/e(V (C�)) ⊆ X holds. V (G∗/e)−V (C�)−X �= ∅ and this contradict
the 4-connectivity of G∗/e. ✷

Finally, we show that Step 1 can be implemented to run in O(n3α(n, n))
time. First, we compute a sparse spanning 4-connected subgraph G′ of G with
V (G) = V (G′) and O(n) arcs. Such a sparse spanning subgraph exists and it
can be computed in linear time [10]. In the subsequent arguments about the
time complexity of algorithm, let us assume that |E| = O(n).

Now it was shown in [8] that it can be checked in O(nα(n, n)) time whether
G is 4-connected or not, where α denotes the inverse of the Ackermann’s
function. From |E| = O(n), we can find a contractible edge in E(G)− E(K)
in O(n2α(n, n)) time. The number of the contraction is O(n), and it follows
that Step 1 can be implemented to run in O(n3α(n, n)) time.

9

4.2 Correctness of Step 2

In this section, for a graph G = (V,E) and a subgraph G1 of G, we consider
a situation where a graph G/e obtained from G by contracting some arc
e = (u1, u2) with {u1, u2} − V (G1) �= ∅ has an SC-embedding f ′ of G/e with
boundary G1 into �d. For proving the correctness of Step 2, we will show
by the following Lemma 9 that if |NG(ui)| ≥ d + 1 holds for i = 1, 2, then
we can find an SC-embedding of G with boundary G1 into �d. Since Step 1
in algorithm EMBED3 contracts arcs while preserving the 4-connectivity, it
follows that the degree of every node is always at least 4 in the current graph.
Also note that any arc in boundary K is not contracted through the algorithm.
Hence, we can observe that the following Lemma 9 proves the correctness of
Step 2.

Lemma 9 Let G = (V,E) be a graph without isolated nodes and let f ′ be an
SC-embedding of G/e with boundary G1 into �d for an arc e = (u1, u2) with
{u1, u2}−V (G1) �= ∅. Assume that for each node ui, i = 1, 2, |NG(ui)| ≥ d+1
holds if ui ∈ V − V (G1). Then there is an SC-embedding of G with boundary
G1 into �d. ✷

Before proving Lemma 9, we give some notations and one preparatory lemma
for an embedding of a new point into �d. For a convex polyhedron S in �d, a
supporting hyperplane H of S is called a facet of S if the dimension of H ∩ S
is d − 1. It is well-known that every full-dimensional convex polyhedron can
be uniquely represented by all of its facets.

Definition 10 For a full-dimensional convex polyhedron S in �d, let x be a
vertex of S. Let Hx denote the family of all facets H(a, b) of S containing the
point x such that S ⊆ H+(a, b). Define the following polyhedron (see Figure 3) :

D(x, S) =
⋂

H(a,b)∈Hx
(H−(a, b)− H(a, b)). ✷

It is not hard to see the following property.

Lemma 11 Let P be a set of points in �d such that conv(P) is full-dimensional,
and let x be a vertex of conv(P). Then for a point y ∈ �d, x ∈ int(conv(P ∪
{y}) if and only if y ∈ D(x, conv(P)).

PROOF. Assume that y /∈ D(x, conv(P)). Then from the definition of
D(x, conv(P)), there exists a facet H(a, b) of conv(P) containing x such that
P ∪ {y} ⊆ H+(a, b). This indicates that x /∈ int(conv(P ∪ {y}).

Assume by contradiction that y ∈ D(x, conv(P)) and there is a facet H(a, b)
of conv(P ∪ {y}) containing x. If H(a, b) contains y, then it follows from

10

Fig. 3. Illustration for definition of D(x, S).

the definition of D(x, conv(P)) that (H+(a, b) − H(a, b)) ∩ conv(P) �= ∅ �=
(H−(a, b)−H(a, b))∩conv(P), a contradiction. Hence, H(a, b) does not contain
y, and without loss of generality conv(P∪{y}) ⊆ H+(a, b) holds. It follows that
H(a, b) is also a facet of conv(P), which contradicts that y ∈ H−(a, b)−H(a, b)
holds (from the definition of D(x, conv(P))). ✷

PROOF of Lemma 9. Let u∗ ∈ V (G/e) denote the node obtained by con-
tracting u1 and u2 in G. Without loss of generality, assume u2 ∈ V − V (G1)
(this is possible from the assumption {u1, u2}−V (G1) �= ∅). Hence |NG(u2)| ≥
d+1 holds. We give a constructive proof of the lemma; we show a way of finding
an SC-embedding f of G with boundary G1 into �d. Let f(v) := f ′(v) for each
node v ∈ V (G/e) − {u∗} = V (G) − {u1, u2} and f(u1) := f ′(u∗) (see Figure
4(a)). Note that G1 also plays the role as G′ in Definition 4 (i), and that every
node v ∈ V (G) − V (G1) − (NG(u2) ∪ {u2}) satisfies v ∈ int(convf (NG(v))).
We prove this lemma by showing that u2 can be embedded so that each node
v ∈ {u2} ∪ NG(u2)− V (G1) is strictly inside the convex hull of its neighbors.

First, observe that u2 needs to be embedded in int(convf (NG(u2))) for the
convexity for u2 (see Figure 4(b)). Note that the position of each node v ∈
V (G) − {u2} has been fixed, so int(convf (NG(u2))) is well-defined. Since
|NG(u2)| ≥ d + 1 holds and the points of {f(v) | v ∈ NG(u2)} are in gen-
eral position, it follows that int(convf (NG(u2))) �= ∅.

For the convexity for each v ∈ NG(u2) − V (G1), u2 ∈ Dv must hold by
Lemma 11, where Dv = D(v, convf(NG(v) ∪ {v} − {u2})) if v is a vertex of
convf (NG(v) ∪ {v} −{u2}), Dv = �d otherwise (see Figure 4(c)). Here note
that in the case of Dv = D(v, convf(NG(v) ∪ {v} − {u2})), convf (NG(v) ∪
{v}−{u2}) is full-dimensional in �d. Indeed, if v = u1 holds, then u1 /∈ V (G1)
indicates |NG(u1)| ≥ d+1 and hence we have |NG(u1)∪{u1}−{u2}| ≥ d+1. If
v �= u1 holds, then v ∈ int(convf ′(NG/e(v))) indicates that |NG/e(v)| ≥ d+ 1,

11

(a) (b)

(c) (d)

Fig. 4. Illustration for the positions f(u2): (a) shows an embedding of nodes
in V (G) − {u2}, where f(v) = f ′(v) for each node v ∈ V (G) − {u1, u2}
and f(u1) = f ′(u∗). (a) also shows NG(u2) = {u1, v1, v2, v3, v4} for the node
u2 which has not been embedded. (b), (c), and (d) show int(convf (NG(u2))),
D(v1, convf (NG(v1) ∪ {v1} − {u2})), and D(u1, convf (NG(u1) ∪ {u1} − {u2})), re-
spectively.

|NG(v)−{u2}| ≥ |NG/e(v)−{u∗}| ≥ d, and |NG(v)∪{v}−{u2}| ≥ d+1 hold
(note that the points of {f ′(w) | w ∈ V (G/e)} = {f(w) | w ∈ V (G)− {u2}}
are in general position). Let D∗ =

⋂
v∈NG(u2)−V (G1) Dv.

Hence, for proving the lemma, it suffices to show that D∗∩ int(convf (NG(u2)))
�= ∅ holds; we can embed u2 in D∗ ∩ int(convf (NG(u2))) (while satisfying
that the points of {f(v) | v ∈ V (G)} are in general position). There are
the following two possible cases: (I) f(u1) ∈ int(convf (NG(u1) − {u2})) or
u1 ∈ V (G1), (II) otherwise.

(I) In this case, we have Du1 = �d or u1 /∈ NG(u2) − V (G1); we do not have
to consider the convexity for u1. Since each node v ∈ NG(u2)− V (G1)− {u1}
satisfies v ∈ NG/e(u

∗) and f(v) = f ′(v) ∈ int(convf ′(NG/e(v))), it follows that
D∗ contains the point f ′(u∗) = f(u1). This implies that D∗ �= ∅. Moreover,
since D∗ is an open set, we can observe that D∗ contains points sufficiently
close to f(u1). This and u1 ∈ NG(u2) indicate that D∗∩ int(convf (NG(u2))) �=

12

∅.

(II) In this case, f(u1) is a vertex of convf (NG(u1) ∪ {u1} − {u2}) and u1 ∈
V (G) − V (G1) holds, and hence Du1 = D(u1, convf (NG(u1) ∪ {u1} − {u2}))
holds (see Figure 4(d)). Let D′ =

⋂
v∈NG(u2)−V (G1)−{u1} Dv (note that D∗ =

D′ ∩Du1). Similarly to the arguments in (I), we can observe that D′ contains
the point f(u1) and points sufficiently close to f(u1). From u2 ∈ NG(u1) and
the definition of Du1, we can observe that if Du1 ∩ int(convf (NG(u2))) �= ∅,
then some points sufficiently close to f(u1) included in D′ are also contained
in Du1 ∩ int(convf (NG(u2))). Based on this observation, for proving D∗ ∩
int(convf (NG(u2))) �= ∅, it suffices to show that Du1∩int(convf (NG(u2))) �= ∅.

Assume by contradiction that Du1 ∩ int(convf (NG(u2))) = ∅. From the defini-
tion of Du1 = D(u1, convf(NG(u1)∪ {u1}− {u2})), it follows that there exists
a supporting hyperplane H(a, b) of convf(NG(u1) ∪ {u1} − {u2}) containing
the point f(u1) such that without loss of generality, convf (NG(u1) ∪ {u1} −
{u2}) ∪ convf (NG(u2)) ⊆ H+(a, b) holds. This and NG/e(u

∗) = (NG(u1) −
{u2}) ∪ (NG(u2) − {u1}) indicate that H(a, b) is a supporting hyperplane of
convf ′(NG/e(u

∗) ∪ {u∗}) containing f ′(u∗) (= f(u1)) in �d. It follows that
f ′(u∗) ∈ int(convf ′(NG/e(u

∗))) cannot hold and it violates the statement (ii)
in Definition 4 about f ′, which contradicts that f ′ is an SC-embedding of G/e
(note that u∗ /∈ V (G1) from {u1, u2} ⊆ V (G)− V (G1)). ✷

Here we show that Step 2 of algorithm EMBED3 can be implemented to run
in O(n3 log n) time. Since the number of the contraction in Step 1 is O(n),
it suffices to show that given an SC-embedding f ′ of G/e with boundary G1

into �3 for an arc (u1, u2) with {u1, u2} − V (G1) �= ∅, we can find an SC-
embedding f of G with boundary G1 in O(n2 logn) time. According to the
proof of Lemma 9, we can observe that the time complexity of this procedure
depends on that of choosing a location for u2.

First we need to compute convf(NG(u2)) and Dv for each node v ∈ NG(u2).
It is known in [5] that for a set P of points in �3, conv(P) can be com-
puted in O(n logn) time. Moreover, from Definition 10, we can observe that
the time complexity of computing D(v, conv(P)) depends on that of com-
puting conv(P). Hence it follows that convf (NG(u2)) and Dv for each node
v ∈ NG(u2) can be computed in O(n2 log n) time. Now since the number of
facets representing conv(P) is O(n), the number of hyperplanes representing
D∗ ∩ convf(NG(u2)) is O(n2). This implies that D∗ ∩ convf (NG(u2)) can be
computed in O(n2 logn) time. Moreover, it is not difficult to observe that we
can find a location for u2 in D∗ ∩ convf (NG(u2)) in O(n2 log n) time so that
all points in f(V (G)) are in general position.

Before closing this section, we remark that the following properties hold as a
corollary of Theorem 1.

13

Corollary 12 Let G = (V,E) be a 4-connected graph and contain pairwise
disjoint subsets T1, T2, T3 of V such that |Ti| is even for i = 1, 2, 3. Then, by
adding at most two extra arcs to G, a 3-bisection can be obtained. In particular,
if G has K3, then by adding at most one extra arc to G, a 3-bisection can be
obtained.

PROOF. Let (u, v), (v, w), (w, x) be three arcs in G (note that such three
arcs always exist). In G′ = G + {(u, w), (v, x), (u, x)}, {u, v, w, x} forms K4.
So by applying BISECT3 to G′, we obtain a 3-bisection {V1, V2}. It is not
difficult to see that at least one of extra arcs (u, w), (v, x), and (u, x) can be
deleted while preserving the feasibility, which proves the first statement of this
corollary. Then note that it turns out to be only the case of {v, x} ⊆ V1 and
{w, u} ⊆ V2 that two extra arcs may be necessary. Hence, in the case where
G has K3, if we choose u, v, w, x such that {u, v, w} forms K3 and (w, x) ∈ E,
then we can observe that one extra arc suffices. ✷

5 Concluding Remarks

5.1 Sufficient connectivity for a general k

We have shown that any 4-connected graph with K4 admits a 3-bisection.
However, the sufficient connectivity for a graph to admit a k-bisection is still
a challenging question even if k = 3. Let f(k) denote the smallest p such
that any p-connected graph admits a k-bisection. From results in [12,14] and
[11], f(1) = 2 and f(2) = 3 hold, respectively. In this paper, we have shown
f(k) ≥ 6 for k ≥ 3 (see Figure 1).

As mentioned at the end of Section 2.2, from Theorem 3 and Lemma 5, we
can observe that if an SC-embedding of G into �k exists, then G admits a
k-bisection. Lemma 9 implies that if

(a) G has a subgraph G1 which plays the role as G′ in Definition 4 (i),

(b) |NG(v)| ≥ k + 1 holds for each node v ∈ V (G)− V (G1), and

(c) we can continue contracting arcs not in E(G1) while preserving the above
(b) until a graph consisting of G1 and at most one extra node is obtained,

then an SC-embedding of G with boundary G1 into �k can be found. Hence,
a sufficient condition for G to satisfy the above (a)–(c) indicates one for G to
have a k-bisection.

14

5.2 The arc-version of the bisection problem

We here give a proof of Theorem 2 about the arc-version of the bisection
problem; given an undirected graph G = (V,E) and k pairwise disjoint sets
T1, . . . , Tk of arcs, where each |Ti| is even, find a partition E1 and E2 of E such
that the graphs induced by E1 and E2 are both connected and |E1 ∩ Ti| =
|E2 ∩ Ti| = |Ti|/2 holds for each i = 1, . . . , k. This can be done by using a
reduction to the node-version of the problem.

Let G be a (k + 1)-edge-connected graph. If G has exactly k + 1 arcs, then it
has exactly two nodes and it is trivial. Assume that |E(G)| > k+1. Let L(G)
denote the line graph of G, and VL(E

′) ⊆ V (L(G)) denote the node set of L(G)
corresponding to an arc set E ′ ⊆ E in G. Observe that {E1, E2} is a k-bisection
of the arc set with respect to {T1, . . . , Tk} in G if and only if {VL(E1), VL(E2)}
is a k-bisection of the node set with respect to {VL(T1), . . . , VL(Tk)} in L(G).
Moreover, if G is (k + 1)-edge-connected, then L(G) is (k + 1)-connected and
has Kk+1.

As mentioned in Section 1 and Theorem 1, if k = 1, 2, 3, then L(G) admits a
k-bisection of the node set, and hence G admits a k-bisection of the arc set.
Finally, we remark that there exist instances that have no feasible partition
unless G is (k + 1)-edge-connected for k = 1, 2, 3. Therefore, f ′(k) = k + 1
holds for k = 1, 2, 3, where f ′(k) denotes the smallest p such that any p-edge-
connected graph admits a k-bisection of the arc set.

Acknowledgments:

We are very grateful to two anonymous referees for their helpful suggestions.
This research was partially supported by the Scientific Grant-in-Aid from Min-
istry of Education, Culture, Sports, Science and Technology of Japan.

References

[1] B. Bozkaya, G. Laporte, E. Erkut, A tabu search heuristic and adaptive
memory procedure for political districting, European J. Operational Research,
144 (2003), 12–26.

[2] L. Chi-Yuan, J. Matoušek and W. Steiger, Algorithms for ham-sandwich cuts,
Discrete Comput. Geom., 11 (1994), 433–452.

15

[3] J. Chléıková, Approximating the maximally balanced connected partition
problem in graphs, Information Processing Letters, 60 (1999), 225–230.

[4] M. E. Dyer and A. M. Frieze, On the complexity of partitioning graphs into
connected subgraphs, Discrete Applied Mathematics, 10 (1985), 139–153.

[5] H. Edelsbrunner, Algorithms in combinatorial geometry, Springer-Verlag,
Berlin, 1987.

[6] R. C. Gonzales and P. Wintz, Digital Image Processing, Publisher Addison-
Wesley, Reading, MA, 1977.

[7] B. Hayes, Machine politics, American Scientist, 84 (1996), 522–526.

[8] A. Kanevsky, R. Tamassia, G. Di Battista, and J. Chen, On-line maintenance
of the four-connected components of a graph, Proc. 32th IEEE Symp. on
Foundations of Computer Science, (1991), 793–801.

[9] N. Martinov, A recursive characterization of the 4-connected graphs, Discrete
Mathematics, 84 (1990), 105–108.

[10] H. Nagamochi and T. Ibaraki, A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph, Algorithmica, 7 (1992),
583–596.

[11] H. Nagamochi, T. Jordán, Y. Nakao, and T. Ibaraki, Convex embeddings
bisecting of 3-connected graphs, Combinatorica, 22(4) (2002), 537–554.

[12] H. Suzuki, N. Takahashi, and T. Nishizeki, A linear algorithm for bipartition of
biconnected graphs, Information Processing Letters, 33 (1990), 227–232.

[13] D. C. Tsichritzis and P. A. Bernstein, Operating Systems, Academic Press, New
York, 1981.

[14] K. Wada and K. Kawaguchi, Efficient algorithms for tripartitioning triconnected
graphs and 3-edge-connected graphs, Lecture Notes in Comput. Sci., 790,
Springer, Graph-theoretic concepts in computer science, 1994, 132–143.

[15] J. C. Williams Jr, Political redistricting: a review, Papers in Regional Science,
74 (1995), 12–40.

16

