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ABSTRACT

This work deals with the intra-day determination of foreign exchange
rates. We have two objectives. The first is to suggest a microstructure model
of the foreign exchange markets. The second is to explain certain empirical

issues, using this model.

Auctions in foreign exchange markets are continuous and double-sided.
In a continuous auction, there is no specific length of time during which quan-
tities of demand and supply are defined. Therefore, we model random arrivals
of buyers and sellers as Poisson processes and define per-unit-time expected
number of arrivals (arrival intensity) of buyers or sellers. In a double-sided
auction, buyers (sellers) compete with other buyers (sellers). This competi-
tion complicates a trader’s decision process. We circumvent this difficulty by

adopting the concept of arrival intensities.



Our model combines an individual agent’s optimization problem with an
auction setting, which models interactions among heterogeneous agents. By
solving the agent’s optimization problem, we show the first local extremum
(FLE) of the expected time path of the exchange rate, not any other local

extrema, determines an agent’s current action.

Since agents’ actions depend on their expected FLE values, the distribu-
tion of the expected FLE values among the agents indicates the distribution
of actions. Keynes’ metaphor, which compares the problem of predicting asset
prices to guessing the winner of a beauty contest, can be applied to estimating

the distribution of the expected FLE values.

In the second part of the model, by taking agents’ heterogeneous expec-
tations into consideration, we derive the formula for the expected time path of
the exchange rate with given values for arrival intensities of retail transactions.
In the course of finding the formula, the effects of two demand and supply

components, namely heterogeneous expectations and retail transactions, are

identified.

This distinction of effects 1s then applied to explain, for example, the
positive relationship between volatility and trading volume, which has been
empirically detected in equity markets but not in foreign exchange markets.
The model also suggests that the degree of heterogeneity of expectations affects

the bid-ask spread.
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TERMS, SYMBOLS AND ASSUMPTIONS

TERMS
AGGREGATE RETAIL DEMAND AND SUPPLY : sums of all the agent’s
Ri(t) and R»(t).
ARRIVAL: If an agent quotes his price or if he notifies the broker of his
intention to trade at the price being quoted by someone else, we call such an
event or the agent himself an arrival.
ARRIVAL INTENSITY: The expected number of the arrival per unit time is
called the arrival intensity.
BANKRUPTCY AVOIDANCE: This is a criterion such that an agent always
maintains the probability of bankruptcy below a given level. In other words,
the agent does not speculate, if the probability of catastrophic loss exceeds the
given level.
BEARISH, BULLISH: An agent is called bearish (bullish) at epoch to if £(t)
has an interval [to, Tp) such that £ <o (L& 5 o) for ¢ € [to, To).
EPOCH: A point on a time axis is called an epoch.

CONTINUOUS AUCTION: The continuous auction implies (1) buyers and
sellers may quote their respective prices at any epoch, (2) whenever a buyer
and seller pair agree upon the price, a transaction takes place, and (3) upon
the completion of the transaction, the buyer and seller pair leave the market
and the bidding is continued among the remaining traders and new entrants.
For the continuous auction, there is not a specific length of time during which
quantities of demand and supply are defined.

DAYLIGHT LIMIT: The maximum magnitudes of the open position which
are allowed during the business day. The daylight limit is exogenously given

to the agent by his bank.



FLE: The first local extremum of the agent’s expected time path of the ex-
change rate.

MARKET MAKERS: Agents who quote both buying and selling prices at the
same time.

MARKET RATES: Bid rate and offered rate together are called the market
rates.

OVERNIGHT LIMIT: The restriction on the open position at the end of the
business day is called overnight imit. This is stricter than the daylight limit.
POSITION: We call the agent’s level of inventory his position and zero inventory
level a square position. A nonzero inventory is called an open position.
RESILIENCY OF MARKET: A market has resiliency if temporary price
changes due to temporary order imbalances quickly attract new orders to the
market. (Schwartz, 1988)

SPECIALIST: A member of a stock exchange who maintains a fair and orderly
market in one or more securities; buying or selling for the specialist’s own
account to counteract temporary imbalances in supply and demand. (John
Downes and Jordan Elliot Goodman, Dictionary of Finance and Investment Terms,
Barron’s, 1985 )

STATE OF THE CRYSTAL GLASS: If the agent is in the state of the crystal
glass, he is confident enough of his expectation to speculate based on it.
STATE OF THE FROSTED GLASS: If the agent is in the state of the frosted
glass, he does not want to assume an open position. This is because if the
agent has the open position, there is a substantial possibility that an adverse
shift of the exchange rate will incur loss to the agent.

STATIONARY HETEROGENEITY: A situation where distribution functions
H,(z) and G,(z) coincide.
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TRANSITION 1: An agent’s level of confidence in his own expectation moves

from the state of the frosted glass to the state of the crystal glass.

TRANSITION 2: An agent loses confidence in his expectation. This is a

transition from the state of the crystal glass to the state of the frosted glass.

The agent wants to square his position and he becomes a buyer or seller,

depending on his position at that moment.

[tl, tg}!

A(t):

AH(t):

AR():

ARD(t):

ARS(t):

SYMBOLS

A closed interval between epoch ¢ and ¢,.

The minimum selling prices which are being quoted in the market

at epoch t.

The aggregate heterogeneity transactions AH(t) mean excess trans-
action quantity of buyers over sellers who hit the market rates due
to heterogeneous expectations.

The aggregate retail transactions. AR(t) = ARD(t) — ARS(t) and
E[AR(1)] = (M1 — Asr)t.

The aggregate retail demand (agents’ selling to customers). This is
a cumulative value over an interval [0,1].

The aggregate retail supply (agents’ buying from the customers).
This is a cumulative value over [0,1].

The maximum buying prices which are being quoted in the market

at epoch ¢

The excess demand at epoch t; ED(t)= AR(t)+ AH(t).
Information which the agent has at epoch ¢,. The expectation is

conditional on the information obtained by epoch ¢y, 7, .

A total number of agents in this economy which is given exogenously.
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Nc(2):

Ny (2):
Ry (t):
Ra(2):

S(2):
S1(2):
Sa(2):
51 (1):
Z1():

Zg(t)l

Zx():

AR

Z*(t):

Number of agents who stay in the crystal glass at epoch ¢. This is a

random variable and N = N, + N;.

Number of agents who stay in the frosted glass at epoch 1.
Cumulative quantity purchased from customers during [0,¢].
Cumulative quantity sold to customers during [0,7] .

Price at which the last transaction was made before, and at epoch t.
Transaction price at which an agent sells at epoch ¢.

Transaction price at which an agent buys at epoch t¢.

A desired value for S;(¢) for i =1,2.

Cumulative quantity purchased from the market during [0,1).

Cumulative quantity sold to the market during [0,#]. If dZ;(¢) and
dZ,(t) are not zero, they are quantities which agent bought and sold
in the market at epoch t.

Desired values of Z;(¢t) for i=1,2 .

The agent’s position at epoch t. Z(t) = Z,(¢) — Za(t) + 2z + Ri(t) — Ra(2)
where z, is an initial value of Z(¢) at epoch 0. Z(t) is a random variable
and it takes values from a finite subset of integers, for example,
{-10,-9,..,0,1,...,9,10}.

Desired value of Z(t). The agent can control Z(t) by increasing Z,(¢) or
Z»(t) but an instantaneous adjustment of Z;(t) or Z,(t) is not always
possible. The desired value of Z(t) becomes the agent’s decision
variable, depending on what action the agent takes. The constraints

are imposed on Z*(t).
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X(@) :

Y(¢):

Gt(l') :

Hy(z) :

;.

Bi:

Ph:

/\bI

A value of FLE for an agent who has Transition 1 at epoch ¢. It is
assumed that when the agent determines the value for FLE, it is a

random drawing according to G.(z) .

Middle point of the market rates at epoch t. This is a random

variable.
Distribution function from which the new arrival’s X(¢) is drawn.

H,(z) is a sample distribution function of X(t) of agents who exist in

the market at epoch t.

Arrival intensity of retail transactions. The expected number of

arrivals of retail customers per unit fime.

Compound arrival intensity of retail transactions. g = ;E[C] =
Jy Ri(t)dt  for i=1,2. The expected quantity of the retail trans-

actions per unit time.
A set of feasible actions.

A subset of actions which is feasible when an agent sets his position

at a desired level, hitting the market rate right away.

A subset of actions which is feasible when an agent sets his quotation

at a desired level, waiting for his quotation to be hit.
An arrival intensity of buyers who hit the offered rate. A, = Ag1 + Aa2

An arrival intensity of buyers who hit the offered rate due to the

retail selling.

An arrival intensity of buyers who hit the offered rate due to the

heterogeneous expectations.

An arrival intensity of sellers who hit the bid rate. Ay = Aor + Aoz

X



Abgi

1[0, te]:

£(t):

&a(t):
Eb(t)I

91, 92 :

A(4-1)

An arrival intensity of sellers who hit the bid rate due to retail buy-
ing.
An arrival intensity of sellers who hit the bid rate due to heteroge-

neous expectations.

A finite subset of positive integers whose element is a value which
the exchange rate may take. The exchange rate is the price of US
dollars in terms of the local currency. For the sake of simplicity, the
actual exchange rates with decimal points are redefined to positive
integers. For example, Q; = {1,2,...,200}.

A finite subset of non-negative integers, including 0, whose elements
are values which cumulative quantities of retail and wholesale trans-

actions of the agent may take.

An agent’s profit over [0, o).

Expected value of Y (¢) conditional on information available at a given
epoch, say, to. £(t) = E[Y(t) | Fuo)

Expected offered rate at epoch t.

Expected bid rate at epoch t.

Parameters for the exponential distributions. f1(¢) = 6; exp(~6:¢t) and
fa(t) = 02 exp(—0at) are density functions for the length of time which
individual agents stay in the frosted-glass and the crystal-glass state

respectively.

ASSUMPTIONS

At epoch t, a retail selling price is  A(t)+c¢ and a retail buying

price is  B(t) — ¢, where ¢ is an exogenously given constant.



A(4-2):
A(4-3):
A4 —4):
A(4-5)
A(4-6):
AM-T):
A(4-8):
A(4-9):

Arrivals of retail buyers and sellers constitute respective compound

Poisson processes.
The daylight limit is L.
The overnight limit is 0.

Individual local markets around the world have their specific business
hours. The start and the end of the business hours of a local mar-
ket overlap with neighboring local markets. Some of the agents have
branches in the neighboring local markets. At the end of the business
day, some of the agents who have the overseas branches remains as
market maker. If their positions are open when the transactions in
our local market are completed, these market makers have transac-
tions with their branches. The prices applied for these inter-branch
transactions are the same as the market rates at the last epoch. If
the market maker ends with a short (long) position, he buys from
(sells to) the overseas branch at the last offered (bid) rate of our

local market.

When the agent calculates his expected profit, the set of values which
S;(t) and S3(t) can take at given epoch ¢ in the future consists of &,(2)
and &(t) only.

&(t) 1s not influenced by T.

The agent is risk neutral.

The agent expects that the exchange rate will go up more than the
bid ask spread. The agent’s expectation is as follows: At epoch tq,
there is an interval [¢o,Tp] such that %8 >0 for ¢y < ¢ < Ty and

dt

&(T) > &a(to)-
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A(4—10):

A(4—11):

A(4-12):

A(4-10):
A6 —1):
A(6-2):
A(6-3):
A(6 — 4):
A6 —4)":
A(6-5):
A(6—6):
A(T-1):
A(T—2):

When the offered rate is hit, the bid and offered rates jump upward
by 0, v or 2v with equal probabilities while maintaining the bid and

ask spread at v.

If the agent has a bullish expectation such that foro <¢ <7, %8>

0 and [¢(T) —£(0)] > 2u, then the agent chooses {y:}.

The agent does not expect the exchange rate to move more than
the bid ask spread for a while: At epoch t,, there exists an interval
(to,To) such that £ =0 or %BLg but [¢T)-E() < 2u.
Each arrival trades either one or two units.

The transition between the two states is a renewal process whose
renewal epochs follow exponential distributions.

The quantity of each arrival is unity.

Each agent’s daylight limit is equal to one transaction unit.

H,(z) and G:(z) are not equal.

G:(z) and H.(z) are the same distributions.

Gi(z) and H:(z) are uniform distributions; G(z) = £, H,(2) = 252

All the agents have the same bid-ask spread.

All the agents make the same estimate about the variance of G,(z)

and H.(z) and E[N.].

The aggregate retail demand and supply have the same arrival rates;

Aar = Apt .
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PART 1.

1. INTRODUCTION

This work deals with the intra-day determination of foreign exchange
rates. We have two objectives. The first is to establish a beachhead in the
analysis of the microstructure of the foreign exchange market. The microstruc-
ture consists of studies about details of transaction processes. This subject has
been researched for equity markets. However, only a few models' have been
suggested for the microstructure of the foreign exchange markets. The models
for the equity markets are not directly applicable to the foreign exchange mar-
ket, because the equity market is essentially a retail market while the foreign
exchange market is a wholesale market. The existing models for the foreign

exchange market do not consider interactions between the wholesalers.

Empirically macroeconomic models are not better at approximating the
foreign exchange rate than a random walk hypothesis. Our motivation to study
the microstructure of the foreign exchange market stems from the fact no one
has yet investigated whether individual traders’ optimizations in the market
are consistent with macroeconomic models. Our model shows that optimizing

traders try to exploit any fluctuation of the transaction price no matter what

1See Allen (1977) and Garman (1976). Garman (1976) is applicable al-
though not specialized in the foreign exchange market.
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factor is causing the fluctuation, including misunderstandings of other agents.
It implies that there are not enough stabilizing forces in the market to bring

the exchange rate to a level determined by macroeconomic factors.

The exchange rate is determined by continuous and double-sided auc-
tion. Such an auction constitutes a process of price formation in continuous
time, which is also a process of dissemination of information in a speculative
market. The continuous auction is a subject which is inherently incompatible
with comparative statics equilibrium analysis. Studying the auction process
of the foreign exchange market necessarily prompts a theoretical challenge.
We introduce a queueing-theoretic approach. Namely, instead of demand and
supply per period, we define expected numbers of arrivals of buyers and sellers
per unit time. With this novel approach as a main feature of our beachhead
model, we specify an agent’s optimization problem and develop a model of the

auction among heterogeneous agents.

The second objective of this paper is the application of our model to
empirical issues. Using our model, we explain empirical observations, includ-
ing the relationship between the size of bid-ask spread and price volatility.
As a further application, we expand our model by allowing some agents to
manipulate the market although there are many agents in the market. Then
we suggest that we can construct a model such that Stackelberg behaviors of
some agents can cause bandwagon effects? among the agents. So far the band-
wagon effects in the foreign exchange market have been taken as psychological

phenomena by academicians such as Baillie and McMahon (1989).

2This is described in Section 3.8.
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The following are the empirical observations which we want to explain
with our model: (1) Exchange rate volatility is an important factor in ex-
plaining variations in bid-ask spread (Glassman, 1987). (2) The relationship
between the bid-ask spread and trading volume is sometimes positive and often
statistically insignificant (Glassman, 1987). (3) A clear relationship between
volatility and trading volume does not exist, judging from (1) and (2). On the
contrary, in the equity market, a positive correlation between trading volume
and the absolute values of price change exists (Karpoff, 1987). (4) Bandwagon

effects appear sometimes. (5) A sequence of transaction prices shows a trend.

Figure 1 summarizes the structure of the foreign exchange market of
our model. We call foreign exchange traders of banks agents. The market
i1s a wholesale market and its constituents are one broker and many agents
connected by telephone. Spot US dollars are traded against another currency
and the bidding takes place with a broker during business hours. The market
is located in one country and has specific business hours. There exist overseas
markets whose business hours may or may not overlap with our local market.
Interactions with overseas markets are left implicit in this work as we focus on

our local market.

All agents continuously monitor the bidding, but not all of them are
quoting their buying or selling prices. If an agent quotes his price to the
broker, or if he notifies the broker about his intention to trade at the price
being quoted by someone else, we call such an event, or the agent himself,
an arriwal. The agents arrive at the market as buyers or sellers and leave
the market when their transactions are realized or when they cancel their
quotations. The broker announces to the market the maximum buying price

and the minimum selling price among the valid quotations.
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Our model consists of two parts, firstly, an individual agent’s optimiza-

tion problem with a given expectation about transaction prices and, secondly,
auction which is interactions among heterogeneous agents. The agent’s opti-
mization problem is expected profit maximization with a given expectation.
In our setup, the agent trades in the market and meanwhile he trades with
randomly arriving retail customers. In addition, the auction is continuous and
double-sided. The double-sided auction complicates the agent’s optimization
problem by offering various choices to the agent. There are too many alter-
native actions and the probabilities for the consequences which each choice of
action may bring are intractable. Therefore, we solve the optimization prob-
lem by limiting the set of feasible choices for the agent to a restricted set. As
a conclusion of the individual agent’s optimization problem, we show how the
first local extremum (FLE) of the expected time path of the exchange rate

determines the agent’s action now.

In the second part of the model, optimizing agents interact in the auction
process. They are assumed to be heterogeneous with respect to the expectation
of an intra-day time path of the exchange rate and also with respect to retail
transactions. Since agents’ actions depend on their expected FLE values, the
distribution of the expected FLE values is the distribution of the actions. The
quantity which an agent wants to trade is also treated as a random variable.
The heterogeneous agents constitute a statistical ensemble (Garman (1976)).
Taking the heterogeneity of the agents into account, we derive the expected
time path of the exchange rate and the market maker’s optimal quotations
which have been taken as given in the individual agent’s optimization problem.
In the course of the derivation of the expectations, effects of two sources of

arrivals, heterogeneous expectations and retail transactions are identified. We
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use our model to prove propositions about the empirical issues. and present

our analysis as proofs for propositions.

2. FEATURES OF THE MODEL

2.1. THEORETICAL FEATURES

The continuous double-sided auction in the foreign exchange market can-
not be modeled with comparative statics. In addition, as in other financial
markets, when traders form expectations about the exchange rate, they take
into account what expectations other traders have. Estimates of others’ expec-
tations determine the traders’ actions and, hence, the transaction prices. These
interactions of expectations, which Keynes compared to guessing a winner of
the beauty contest, have not been incorporated into microstructure models.
To establish a beachhead in the analysis of the microstructure of foreign ex-
change markets, we need analytical method which have not been applied in
this context. Our model contains the following features: arrival intensities
of the buyers and sellers; heterogeneity of information; a process of revising
expectations; Poisson arrival processes of the retail customers; agents acting

as super Keynesian; a market maker behavior that depends on expectation.

The auction in the foreign exchange market is continuous and double-
sided. The continuous auction implies (1) buyers and sellers may quote their

respective prices at any epoch; (2) whenever a buyer and seller pair agrees upon
p P Y €p Y P g P
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a price, a transaction takes place, and; (3) upon completion of the transaction,
the buyer and seller pair leaves the market, and the bidding is continued among
the remaining traders and new entrants. For the continuous auction, there is
no specific length of time during which quantities of demand and supply are
defined. Instead of demand and supply, we model randofn arrivals of buyers
and sellers as Poisson processes and we define per-unit-time arrival rates of
buyers and sellers. The expected number of arrivals per unit time is called the

arrival intensity. This describes the first feature of our model.

The second feature deals with how to measuring the heterogeneity of
agents. Since our model is in continuous time, agents form expectations for
continuous time paths, instead of exchange rates of the end of discrete periods.
Agents are heterogeneous in regard to the expected time path. Along the ex-
pected time path, not every point is equally important for the agent’s decision
making. As is argued in the discussion about the agent’s optimization prob-
lem, only the first local extremum (FLE) of the expected time path matters for
an agent’s present transaction decisions. We assign a distribution function to
the values of FLE expected by the agents. Defining a distribution function for
the expected FLE values is the second feature of our model. This distribution
function reflects the percentage of the agents sharing a given expected FLE

value and, hence, the percentage of the agents who will take the same actions.

The third feature of our model is that the agent revises expectations over
time. We assume that the agent’s level of confidence shifts between two states,
which we call state of crystal glass and state of frosted glass, respectively. If
the agent is in a crystal-glass state, he is confident enough of his expectation
to speculate on it. If the agent is in a frosted glass state, he does not want to

assume an open position. When the transition from the crystal glass to the
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frosted glass occurs, the agent loses confidence in his expectation and wants to
square his position. He becomes a buyer or seller, depending on his position
at that moment. When the transition is from frosted to crystal, the agent

becomes buyer, seller or market maker, depending on his new expectation.

We add a further specification to these transitions of expectations. We
assume that for each state the lengths of time the agent stays in this state
can be described by an exponential distribution. In other words, we model
state transitions as a renewal process of switching between two states, where
renewal times follow the exponential distribution assigned to the respective
state. These expectation transitions explain why agents arrive at the market
asynchronously. In practice, not everyone is quoting his prices nor having open
position at any given time. With this formal model of revising expectations,
we can differentiate volatile periods from quiet periods by changing parameter

values of the renewal process.

Agents trade with retail customers who are merchants and investors. The
fourth feature of our model is that the random arrivals of these retail customers
are assumed to constitute Poisson processes which are exogenously given to
the agent. Whenever the retail customer arrives, the agent trades with the
customer and the agent’s position changes. Then the agent may want to adjust
his position by trading in the market. The random arrival of retail customers
provides another reason for agents to arrive asynchronously. By specifying
retail demand and supply as Poisson processes, we can explicitly derive their
expected quantities for a given interval of time. Also Poisson processes have
the convenient property that the sum of Poisson processes is also a Poisson
process whose arrival intensity is the sum of the intensities of the individual

processes. Therefore, when we aggregate the individual agents’ retail demand
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and supply, the aggregated quantities also constitute Poisson process. The
expected values for the aggregate retail demand and supply can be obtained

and used in the analysis.

The fifth feature of our model is super Keynesian. A sequence of the
transaction prices is determined by the individual agents’ perception about
what the transaction prices will be. Formation of the expectation about fu-
ture spot rate involves estimating the other agents’ expectations. Individual
agents’ transaction decisions are based on such estimates. Keynes’s analogy
of guessing a winner for a beauty contest applies here. Everybody is looking
around and trying to guess what others are thinking about the future path of
the exchange rate. In this sense, the agents in our model can be called super
Keynesian.® As long as one can take advantage of the other agents’ expecta-
tions, it does not matter whether their expectations match your forecast. Our
super Keynesian agents estimate the distribution function of expected FLE

values, so they can take advantage of the heterogeneity of the expectations.

The sixth feature of our model is that agents’ decision to act as market
makers depends on their expected FLE values. If an agent’s FLE equals the
current transaction prices, the agent becomes the market maker. In other
words, if the agent expects that the transaction price will remain around the
current level, his optimal action is quoting both buying and selling prices at the
same time, 1n order to take advantage of the different expectations among the
agents. The bid-ask spread will become his profit as the transactions continue.

The sixth feature is not an assumption but a logical consequence of our model.

3This term is coined by Donald Schilling.



2.2. TRADING MECHANISMS TO BE MODELED

Our model’s assumptions are based on a realistic trading mechanism. In
the following, we present the assumptions and our rationale for them. In our
model, the local market has a broker and all auctions take place with the
broker. The agents, who are banks, may assume open positions depending on
their expectations on the time path of the exchange rate. The agent’s cost of
the open position, i.e., the cost of holding nonzero inventory, is zero, except
for an overnight open position. Transactions with overseas banks and forward
transactions are implicit in our model. The overseas banks enter our model
as retail customers of our agents. The forward market is eliminated from the
analysis. Interest rates in US dollars and our local currency are exogenously

given.

In the actual foreign exchange market, there are two methods by which
banks bid and trade. The first method is auctions through brokers. The second
is direct dealings between banks. In the Tokyo market, 50% of the transactions
are through the brokers (Takahashi, 1989) and in New York, 30% are through
brokers. In both methods, delivery of spot currencies is done two business
days after the contract. Therefore, the open position during the business day

does not incur cost to the agent.

In the case of auctions through brokers, banks are connected to brokers
by telephone. When they want to trade, banks notify the broker of their
quotations and some additional information. Among these quotations, the
broker announces to the market the maximum buying price and the minimum
selling price. Names of buyers and sellers are withheld. When a buyer and

seller pair agrees upon the price, the transaction takes place.
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The other method to bidding and trading is direct dealings between
banks. A bank inquires of another bank its quotations (both bid and asked
rates) and if the inquiring bank wants to trade at one of the quotations, a
transaction takes place. Direct dealings are done only between banks which
have contracted to do so bilaterally. Transaction take place in units of 10 mil-
lion US dollars while in the broker’s market most of the transactions are 3 to
5 million US dollars. When a bank inquires about another bank’s quotations,
as a matter of principle, the inquired bank does not refuse to quote. What can
the inquired bank do, if it does not want to buy (or sell) any more because of
its position or expectation? It quotes a less competitive buying (selling) price
and a more competitive selling (buying) price, relative to the other banks’ quo-
tations. However, this strategy does not always work. Even if the quotation
is less competitive, some inquiring banks still may sell (buy) US dollars to the
inquired bank in order to force it to have the longer (shorter) position than the
inquired bank wants. The reason of the inquiring bank’s action is that as an
antagonist of the inquired bank the inquiring bank is wishing that the inquired
bank would start selling (buying) a large quantity so the transaction price will
fall (rise). If the inquiring bank’s strategy works, then it would buy (sell) back
US dollars profitably. As this example shows, direct dealings are dependent
on the other bank’s strategies and they make the trader’s inventory control
more difficult. Besides, the inquiring bank has to shop around in order to find
the most competitive quotation. However, this method saves banks brokerage
fees. Banks who conduct direct dealings are larger ones. They also participate
in a bid process with brokers. Almost all of the transactions between banks

in different local markets take place by direct dealings.



11

Since the best quotations of the brokers are known to all the participat-

ing banks, a less competitive price quoted for direct dealings is not likely to
be realized as a transaction price. On the contrary, the best quotations for
direct dealings are not known to all of the banks. In this paper we avoid this
complication. We assume that our local foreign exchange market consists of
one broker and N banks (N = 100, for exafnple). No direct dealings are allowed
between banks in our local market. Direct dealings with overseas banks are

treated as retail transactions of the agents who are inquired of their quotations.

Banks have restrictions on inventory levels of foreign currencies during
and at the end of a business day. These restrictions are called daylight and
overnight limits. The overnight limit is stricter than the daylight limit. We
model these restrictions. They have significant consequences for the arrival
rate of the buyers and sellers at the market. For example, when you observe one
bank selling a large quantity of US dollars, the bank may be either expending
its inventory or selling short. If it is short selling, the bank will have to buy
back US dollars sooner or later in order to satisfy the overnight limit, even if
the exchange rate changes unfavorably. Other traders can take advantage of

this, if they know that short selling has taken place.

Outright forward transactions do not exist virtually. Almost all of the
forward transactions are done as a part of swap transactions (see Appendix A).
The swap contract is similar to a repurchase agreement of a security. In case
of the most common type of swap transactions, two days after the contract the
currencies are delivered, and the next day the currencies are delivered in the
reverse direction. If a trader wants to sell forward US dollars, then he makes a
swap contract which consists of his buying spot dollars and his selling forward

dollars.
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A trader who has a swap transaction has to have an extra spot transac-
tion. What accompanies the above example of the swap transaction is that
the trader sells the spot dollars which he bought as the spot part of the swap
transaction. Bécause the swap transactions are accompanied by the extra spot
transactions, demand and supply of forward exchanges appear in the spot mar-
ket as the same quantities of demand and supply. We can concentrate on the

spot market without losing the effects of forward exchanges.

Brokerage fees are parts of the transaction costs. It does not seem that
the brokerage fee influences the agent’s speculative decision. Brokerage fees in

Tokyo are as follows (Yamamoto, 1988).

Spot US Dollars
Size of Transaction Fees per Million Dollars
1. one million dollars or greater 4,500 yen
2. smaller than one million dollars,

greater than half a million dollars 7,500 yen

3. smaller than half a million dollars 10,000 yen

The unit of the quotation is 0.01 yen per US dollar. If the exchange rate
changes by the minimum unit, then the change of the value of US dollar in
terms of Japanese yen is 10,000 yen for one million dollars and 5,000 yen for a
half million dollars. Meanwhile, the brokerage fee is 4,500 yen and 3,750 yen re-
spectively. In the case of one million dollars, the brokerage fee is compensated
if the difference of the transaction prices is one unit of the exchange rate in
favor of the agent. In our model we do not consider the effect of the brokerage

fee on the agent’s transaction decisions.



13

3. CONNECTIONS WITH EXISTING LITERATURE

3.1. RELEVANCE OF THE MICROSTRUCTURE

We now discuss how our model of the microstructure of the foreign ex-
change market relates to the existing literature. Key words are random walk,
microstructure, Poisson process, bid-ask spread, heterogeneous agents, and
relationship between price volatility and trading volume. First of all, ex-
change rates seem to follows the random walk. The foreign exchange rate has
not behaved in conformity with open macroeconomics. Frankel and Meese
(1987) summarized the inability of macroeconomic approaches to explain the

exchange rate determination:

No set of macroeconomic variables that have been proposed is
capable of explaining a very high percentage of the variation in the
exchange rate (p. 128).... A variety of different econometric ap-
proaches seem to end up at the same conclusion, that the exchange

rate follows a random walk (p. 122).

Although the movement of the exchange rate can be approximated by a
random walk or, in the continuous case, by a Brownian motion, the movements
are not completely random to those who trade in the foreign exchange market.
A particle in the water shows a Brownian motion as molecules of the water
collide with the particle. In any market, on the other hand, individual traders
are decision makers. Although their transactions look random to econometri-
cians, actions taken by traders are the results of optimizations. Traders col-

lect information, form expectations and, for a given trading mechanism, make
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transaction decisions. However, academicians have not investigated whether
an individual trader’s optimizations in the foreign exchange market are consis-
tent with the macroeconomic models. It may be the case that the traders are
responding to some unknown variables as well as to a set of variables included
in the macroeconomic models and that there is no stabilizing mechanism in the
market forcing exchange rates back to a level determined by macroeconomic
factors. There has not been any formal analysis to answer these questions. In
order to identify sources of the randomness of the exchange rate, we need to

understand the actual trading mechanism.

The details of the trading process are studied as a microstructure analysis
which has been developed mostly for the equity market. Schwartz (1988) states

what is studied as the microstructure:

The major analytical issues ...can be classified under the fol-
lowing headings: (1) decisions of individual participants in the trad-
ing process; (2) advent, dissemination, and impact of information;
(3) returns generation and price behavior of securities; (4) measure
of market performance (price volatility, size of bid-ask spreads, and
correlation patterns in a security’s returns; (5) design features of a

trading system; (6) regulation of the market.

Here we address (1), (2) and (4).

The foreign exchange market is a wholesale market. On the other hand, in
the equity market, a specialist who can be a monopolist faces retail customers.
Models developed for the equity market are not directly applicable to the
foreign exchange market. Boothe (1988, p. 486) states:

The stock market is essentially a retail market where individ-

ual agents confront stock specialist with final supplies and demand
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for equities. The exchange market, however, is more of a whole-
sale market where currency traders (usually banks) deal with each
other primarily to satisfy the demands of their customers but also
for their own account. Thus, rather than modeling the trading
between customer and specialist as in the stock market, in the ex-
change market it is necessary to consider trading among themselves.
The specialist in the stock market often is a monopolist of the stock

which he is dealing.

The quantity traded in the market is much bigger than the aggregate
retail demand and supply. The differences are generated by the agents within
the foreign exchange market. Only 5 percent of the trading volume of foreign
exchanges all over the world correspond to international trades and capital
transactions (See Ruck, 1981). In our model, as suggested in Boothe (1988),
agents’ transaction decisions on their profit motivation, and not just the bal-

ancing the retail transactions, influence the exchange rate.

We presuppose that individual traders are concerned with
daily profit maximizations. The current account of a nation re-
sponds to the exchange rate but the response is too slow to have
any recognizable effect on the daily demand and supply of the ex-
change rate. With these presuppositions, our model shows that
in intra-day price formation there is no mechanism to put the ex-
change rate to the level which is consistent with macroeconomic
models. In this regard, a metaphor with the equity price which

appears in Malkiel (1985, p. 98) is shared by exchange rates:
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...stock prices are in a sense anchored to certain “fundamen-
tals” but the anchor is easily pulled up and then dropped in another

place.

3.2. DOUBLE-SIDED AUCTION

The literature on auction theories is mainly concerned with cases where
either one seller faces many buyers or one buyer faces many sellers. The
double-sided auction has not been investigated in the context of exchange rate
determination.

With regard to difficulties of modeling a sealed and an oral double-sided
auction, McAfee and McMillan (1987, p. 726) stated:

Few results on the double auction exist, because of the diffi-
culties of modeling strategic behavior on both sides of the market.

... The oral double auction, with the bids and offers openly called,

is still more difficult to model because the process takes place over

time and agents do not know what prices will be available if they

wait instead of trading now.

This dissertation cuts across the difficulties mentioned above. Our main
theoretical features, the arrival intensities of the buyers and sellers and the
assigning of an FLE distribution function, make it possible to apply the double-

sided auction’s framework.
3.3. POISSON PROCESS

Auctions in foreign exchange and equity markets are continuous. Buyers
and sellers arrive asynchronously. Garman (1976) was the first to model the
asynchronous arrivals of buyers and sellers as a Poisson process. In his words

(p. 257), “It is assumed that a collection of market agents can be treated as a
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statistical ensemble.” He specified the arrivals of buy and sell orders of a given
stock as a Poisson processes and he presented two models of price determina-
tion. The first one is about the determination of a monopoly dealer’s quotes in
the equity market. Garman’s dealer firm sets quotes to maximize its expected
profits from trading per period time. This second model is a double-sided
auction model where there is no market maker quoting buying and selling
prices concurrently. Garman’s second model is Markov process where a sam-
ple of the quotations and the number of orders associated with these sample
quotations constitute a state space. Using Kolmogorov’s backward equation,
Garman tried to derive a stationary distribution of the states which are defined

as above. However the stationary distribution was intractable.

The foreign exchange market falls somewhere between Garman’s two
models. There is no monopolist market maker as Garman assumed for the
equity market. Instead, there is a possibility that some of the agents will be-
come the market makers. In our model, the agents who are neither bullish
nor bearish may quote both buying and selling prices concurrently as their
optimizing actions. Agents become market makers in order to take advantage
of differences in the expectations among agents. The introduction of the mar-
ket makers into the bidding process reduces the fluctuation of the transaction
prices to a narrower range than the one in Garman’s auction market model.
The reason is that as long as the market maker keeps quoting both buying and
selling prices, the transaction price will never go outside of an interval given

by the market maker’s quotations.

Garman intended to derive the stationary distribution. But the stationary
distribution is ephemeral. It will disappear when someone finds it and tries

to take advantage of it. An agent who figured out the stationary distribution
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can have positive profit by acting as a market maker. Orders which are less
competitive than the market maker’s quotations will not be executed as long
as the market maker maintains his quotations. These orders will not disappear
unless they are canceled. The process from which the stationary distribution

has been derived no longer exists.

In our model, the number of arrivals has a Poisson distribution and the
quantity associated with each arrival is also a random variable. What we have
is a compound Poisson process (see Appendix B). This specification is applied
in two places. First, the arrivals of retail customers at an agent are assumed
to constitute a stationary compound Poisson process. Secondly, the arrivals
of buyers and sellers at the market are modeled as nonstationary compound
Poisson processes. Here nonstationarity means that for a given quotation, the
arrival intensities of agents who would hit that quotation may change from
time to time. This nonstationarity is caused by shifts in the FLE distribution.
The heterogeneity of quotations in Garman’s model is generated by the het-
erogeneity of the individual traders’ reservation prices whose determinations
were left unexplained. Our model’s counterpart of the reservation price is each

agent’s expected FLE value.

Strictly speaking, the number of retail customers and agents is finite.
The arrival process is a collection of binomial decision processes of individual
customers and agents who are finite in number. The Poisson distribution is a
limit of binomial distributions as the number of trials goes to infinity. Since
the number of retail customers per agent and the number of agents in the
market is typically more than 100, we can assume for our analysis that the

arrival process constitutes a Poisson process.
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Specifying asynchronous arrivals of the buyers and sellers as Poisson pro-
cess has wide applicability. An example is Tinic (1972, p. 81), who describes

a spectalist in the equity market:

The level of trading activity in a stock influences the size of
inventories carried by the specialists. In general, the higher the
level of trading, the greater the chance that buy and sell orders will
tend to balance during a trading period. Beyond this, the larger the
turnover, the easier it is for the specialist to make adjustments in his
position, because sizable trading activity reflects traders’ interest in
a stock. To the extent that active markets tend to self-equate, the
need for specialist’s inventory participation is reduced, in terms of

both the average size of positions and the average holding period.

If the arrival processes of buy and sell orders in the above statement are
assumed to be Poisson processes with equal arrival intensities, the expected
number of times in which the specialist’s position becomes square increases as
the orders’ arrival intensities increase. However, at the same time, the proba-
bility that the specialist’s position is square at a given epoch decreases. The

statement in Tinic (1972) is not straightforwardly justified mathematically.
3.4. LIQUIDITY

As an application of a Poisson process, the liquidity of an asset can be
defined in terms of Poisson process. The liquidity can be defined using the
arrival intensities of the buyers and sellers and the heterogeneity of their quo-
tations. Antiques and art works have very low arrival intensities of buyers
and sellers, but a distribution of the heterogeneous quotations is stable over

a long time. Another example of the application of our approach is the price
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of real estate. Real estate has the low arrival intensities of buyers and sellers.
Each real estate transaction has specific characteristics. An individual buyer
is looking for real estate with ideal characteristics. For a given piece of real
estate, the buyer’s quotation is determined, depending on its distance from
these ideal characteristics. If we measure the distributions of ideal characters
among the buyers, then for a given piece of real estate, we can define the dis-
tribution of the heterogeneous quotations. And if, in addition, we define the
arrival rate of the buyers at the market from the general public, then we can
derive the arrival intensities of the buyers who decide to buy the given real
estate. The liquidity of the real estate is defined as the inverse of an expected
waiting time until sold at a mean value of the buyer’s quotation. If the seller

cannot wait, it becomes a fire sale.

According to Schwartz (1988),

Liciuid markets are characterized by depth, breadth, and re-
siliency:

Depth: A market has depth if a sufficient number of orders
exists at prices above and below the price at which shares are
currently trading.

Breadth: A market has breadth, if these orders exist in sub-
stantial volume.

Resiliency: A market has resiliency if temporary price changes
due to temporary order imbalances quickly attract new orders

to the market.

Our model can be described as a market with depth of varying degree.
As the expected number of agents who are quoting (i.e., in the crystal-glass

state) increases or as the variance of FLE values decreases, the market has
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more depth and the more agents are quoting around the current price. In
this case, the batched arrivals cause small disturbances in the sequence of
the transaction prices. The quantity which is associated with a given agent’s
quotation is always equal to the agent’s daylight limit, or to twice as much as
the daylight limit, if the agent is waiting on his quotations. Since the quantity
associated with the quotation does not vary except for the daylight limit and
its double amount,* we cannot describe the breadth of the market. Resiliency
is only partly described in our model at this stage. Unless we have a mechanism
to allow the agents to gradually adjust their position while they have bullish
or bearish expectations, we cannot attribute resiliency to the agents’ decision
making. In our model, the arrival intensities of buyers and sellers do not
respond to temporary price changes. However resiliency can be attributed to

the nonstationarity of the aggregate retail demand and supply.
3.5. DETERMINATION OF BID-ASK SPREAD

Modeling the determination of bid-ask spread is a nontrivial problem.
Amihud and Mendelson (1980) considered a monopolist market maker’s opti-
mization problem. They depicted stochastic demand and supply as a price-
dependent Poisson process. They showed the dependence of the bid-ask prices

on the market maker’s stock inventory position.

Allen (1977) modeled the behavior of a risk-averse bank trader who buys
or sells foreign exchange “with a view to profitably reversing the transaction
in the future”. Allen’s model is the first microstructure model of the foreign

exchange market. He showed that the increased variance of the expected future

4If the position is square, the quantity is equal to the daylight limit. If
the agent has a short (long) position, the quantity to buy (sell) is twice as
much as the daylight limit.
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prices will cause the profit-maximizing, risk-averse trader to widen his bid-ask
spread. Widening the spread can be interpreted as raising the price charged

by the bank for its liquidity service.

Allen treats a bank as a monopolist and do not consider interactions
between the market makers. In the equity markets, market makers are mo-
nopolist but this is not the case in foreign exchange markets. In our model, we
do not assume that the market maker is a monopolist. A wider spread is the

result of a higher degree of heterogeneity of expectations among the agents.

Garman’s model of an auction with a broker (1976) covers the determi-
nation of the bid-ask spread. However, it did not have a clear result because
the multivariate stationary distribution of the quotations and quantities was
intractable. Cohen et al. (1986) analyzed the bid-ask spread in a limit order
market of an equity which is equivalent to Garman’s auction market. First,
they focused on stochastic characteristics of the ask price. They modeled the
market-ask-price generation process as a compound Poisson process (See Ap-
pendix B). The ask price evolves as it jumps randomly. Then they assumed
that each such jump is a random variable that is independently and identically
distributed over time with mean zero and some variance. The assumption can-
not be reconciled with the resiliency of the market (See Section 3.4). Market
resiliency implies that the majority of agents have similar expectations about
the transaction price, and that if transaction prices deviate from their expec-
tations, they respond in a manner that stabilizes the transaction price. As a
characteristic of the stochastic process, the resiliency implies that the distribu-
tion of the jump depends on where the current price is. Our model describes

a limited case of the resiliency where the heterogeneity of the expectation is
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not stationary. If it is stationary, the jump in the transaction price can be ap-
proximated by ¢.7.d. random variables with mean 0. If it is non-stationary, the
distribution function of the jump depends on the current transaction price.
Regarding the distribution of FLE values among the agents, we can distin-
guish two cases. The first case is when the heterogeneity of the expectation is
stationary® and the jump in the transaction price can be approximated by an
i.7.d. random variable with mean 0. The second case is when the heterogeneity

is nonstationary with mean different from 0.

Cohen et al. (1986) showed why a bid-ask spread exists in an auction
market. They assumed that investors make transaction decisions for a given
trading period and that the price is a continuous variable. Summarizing their

work, Schwartz (1988, p. 336) writes:

Can a buyer make the probability of execution infinitesimally
close to unity by writing the buy order at a price infinitesimally
close to, but still below, the market ask? No, he or she cannot;
a non-infinitesimal probability will remain that the ask price will
increase, and that the buy limit that had been infinitesimally close

to it will not be hit in the trading period.

This statement says that a trader who is afraid of missing the current
ask price hits the ask price rather than putting his quote close to the ask
price. Their analysis has three problems. First, that they cannot explain
how someone chose a specific value for the existing ask price. Second, their
model is limited to a given period whose length is left unexplained, and that it

does not consider the possibility that the buyer may optimize over the periods

5The FLE distribution function stays at the same location.
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using dynamic programming method. Third, since the price is not actually a
continuous variable, their argument is not applicable without explanation of

why the bid-ask spread remains more than a unit of measurement of the price.

The basic source of the difficulties in Cohen et al. in modeling the bid-ask

spread is the lack a model for continuous double-sided auctions.

We presuppose that the fluctuations in the transaction price are generated
by two types of the fluctuations: fluctuations within a given FLE distribution
and fluctuations due to shifts of the FLE distribution. As long as the FLE
distribution stays the same (stationary heterogeneity), the agent can profit by
becoming a market maker. Any price in a support of the distribution can be
reached although the expected waiting time may be infinity. The agent will
wait on his quotation rather than hitting the available price in the market. If
other agents recognize what stationary heterogeneity brings, then the bid and
ask spread will converge to the minimum unit as more of the agents quote their
prices and wait on them. However, we will not observe such a situation. It is
possible that the FLE distribution itself shifts. Once this happens, the price
which the agent is waiting on may be outside of the support of the distribution
function from which the new quotations are chosen. Or the arrival intensity of
agents who would hit the agent’s quotation may be greatly decreased. When
the agent observes a price fluctuation, the agent cannot identify its reason.
The agent will hit the available price in the market rather than waiting on his

own quotation.

In our model, since the agents are heterogeneous with respect to FLE

value and their confidence level about their expectations, transactions take
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place before the competition among buyers or sellers (i.e., additional arrivals

of the buyers or sellers) will narrow the spread.
3.6. HETEROGENEITY OF AGENTS

Mendelson (1985) introduced heterogeneity of traders into the microstruc-
ture models. He analyzed a case where the preferences and the endowments
of the traders are heterogeneous. He proved that increasing the number of
traders always reduces the variability of market clearing prices, and that in-
creasing the variability of the traders’ valuations brings about an increase in
price variability. Heterogeneity of preferences is described as a difference in
reservation prices. Randomly the traders have allocation of one unit of an
asset or none at all. Their reservation prices vary according to a underlying
distribution. A market clearing price fluctuates less as the variance of the
reservation prices becomes smaller and as the number of the traders increases.
Our model is similar to Mendelson’s with regard to the randomness of the
endowments of the asset and the heterogeneity of the reservation price. The
difference is that while Mendelson does not allow speculation across periods,
in our model the speculation based on the expected time path of the prices
plays an important role. Mendelson’s model is a multiperiod model without
speculation. Therefore, his model explains only the relationship between the
heterogeneity of the traders and the price fluctuation. In the foreign exchange
market, however, the traders can hold inventory. Mendelson (1985, p. 256)

stated that:

The “market-microstructure” literature typically follows Gar-
man (1976). ...Correspondingly, the elementary building blocks

of the resulting models are stochastic “order generating processes”



which represent aggregate market behavior, rather than the charac-
teristics of individual market agents. This makes it difficult, if not
impossible, to examine how various traders’ characteristics affect
the resulting market outcomes, and to perform meaningful com-
parisons between models with different values of the relevant pa-

rameters (or different models of exchange).

In our model, at random epochs, the agents are randomly characterized
by their expectations (s.e., the states of glass and FLE) and retail transactions.
Individual agents’ characteristics affect market outcomes as in Mendelson. It
is not clear that a sequence of competitive equilibrium converges to the con-

tinuous auction.

Much formal analysis of the security market assumes that different in-
vestors have homogeneous expectations. For example, the standard capital
asset pricing model assumes homogeneous expectations. However, if we as-
sume homogeneity of expectations in the foreign exchange market, we lose an
essential part of the intra-day price formation process. Takahashi (1989, p.
109) states a businessman’s understanding that traders in foreign exchange
markets have heterogeneous expectations:

If US dollar is traded at 125 yen, for example, it implies that
those who want to sell US dollar at 125 yen exist on one hand and
those who want to buy at 125 yen exist on the other hand and that
the exchange rate is equilibrated at it. It is difficult to forecast
a direction for which the exchange rate is heading for. In short,

reasons to buy US dollars are equilibrated with reasons to sell.
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Schwartz (1988, p. 272) justifies the assumption of the heterogeneous

expectations as follows.

Expectations are heterogeneous because information is costly
and investors do not have perfect information. Each investor ob-
tains that quantity of information that is deemed to be optimal,
given his or her cost of acquiring it and efficiency as an informa-
tion processor. The cost of obtaining and the benefit of having

information differ appreciably across investors.

It is not clear what the cost of obtaining information is in the foreign
exchange market. What is meant by “perfect information” or “information
processor” depends on the underlying model. In the capital asset pricing
model for securities, perfect information implies knowledge about the mean
and variance of security returns. For our intra-day price formation process
in the foreign exchange market, many of the variables which influence the
transaction price are not measured daily or are not available to many of the
agents. For example, retail transactions are decisive factors in the agent’s
decision making, but, in general, the agent cannot know the retail transactions
of other agents. Perfect information cannot be obtained in our analysis. The
intra-day price formation process is a process by which information bits are

being disseminated among the agents.

In Schwartz (1988), an information processor seems to mean an econo-
metric model or technique of security analysis, for example. However, such
knowledge can be called information father than information processor. The
definition of information needs further clarification. As will be discussed in

Chapter 5, information is a o-field of a family of subsets and, these subsets
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are defined in a space which has infinite elements. News and an econometric
model are those subsets. Obtaining an information bit is equivalent to a refine-
ment of the o-field. Perfect information means having a o-field generated by
all the subsets which are possessed by the individual agents. It is impossible
to have such a o-field, because there is no mechanism for transferring some
of the information bits between the agents. Thus, agents have heterogeneous

information and expectations.

Figlewski (1978) assumes that market participants possess heterogeneous
information, price expectations and different wealth endowments. Few of the
market participants can predict consistently over time, while some others may
be richly rewarded by chance. In a large population of investors, some may
win often only by chance. We cannot tell who is the most accurate forecaster.
Thus, expectations remain heterogeneous and the market does not completely
achieve accurate prices. This is Figlewski’s rationale to assume persistence of
the heterogeneity of information. Names of traders of individual transactions
are only partially known in the foreign exchange market. The agents in our
model cannot know who was a winner. Their expectations remain heteroge-

neous.

The market described in Figlewski (1978) can be compared to a bet on
a horse race. There exists an underlying mechanism for determining the out-
come of the horse race. Participants in the betting have forecast formulas of
various degree of accuracy. A distribution of the bet on the individual horses
determines the winning return. If you choose a favorite, your rate of return
will be smaller than otherwise, when your forecast turns out to be correct.
However, the forecast and bets do not influence the factors which determine

a winner of the race. But in the foreign exchange market, on the contrary,
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participants’ forecasts influence the outcome of the race. In this regard our

model is essentially different from Figlewski’s.
"3.7. VOLATILITY AND TRADING VOLUME

A positive relationship between price volatility and trading volume in fu-
tures and equity markets is found in empirical studies. Two kinds of stochastic
models have been suggested for the relationship between volatility and trading
volume. One is by Clark (1973) and the other is by Epps and Epps (1976)
and Tauchen and Pitts (1983).

In Clark (1973), the price evolves according to the event time, not by
calender time. An arrival of news measures the time. The news induces trans-
actions and jumps in price. The jump in the price is assumed to be an 7.1.d.
random variable. The daily price change is the sum of these random jumps.
Then the variance of the daily price change is the sum of the variances of the
individual jumps and hence, a random variable whose mean is proportional
to an expected number of daily transactions. Thus the variance of the daily
price change tends to be larger when the trading volume is larger. The posi-
tive relationship between price volatility and trading volume is an immediate
consequence of such a specification of the price evolution. If we assume that
the number of jumps in the price follows a Poisson distribution, then Clark’s
specification implies that the price evolves as it jumps and that the sum of the
jumps constitutes a compound Poisson process. A problem with Clark’s model
1s that it deals with a call market,® instead of a continuous auction market,

although he analyzes the cotton future market where the auction process is

6The essence of a call is that orders that have been accumulated over a
period of time are batched for simultaneous execution, and all the crossing
orders are executed at the same price (Schwartz, 1988, p. 20).
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continuous. It is not clear that a sequence of the transactions in the call mar-
ket can approximate the continuous auction. His model has another problem.
Information cannot disseminate throughout the market instantly. We cannot
assume the jumps in price constitute an 7.4.d. random variable during the
dissemination of the news as we shorten interval of the period for which the

orders are batched together for the call market.

The second type of model of volatility and trading volume is presented
by Epps and Epps (1976) and Tauchen and Pitts (1983). Their specification is
that the change in the market price on each within-day transaction or market
clearing is the average of the changes in all of the traders’ reservation prices.

Tauchen and Pitts (1983) state:

Epps and Epps assume there is a positive relationship between
the extent to which traders disagree when they revise their reserva-
tion prices and the absolute value of the change in the market price.
That is, an increase in the extent to which traders disagree is as-
sociated with a larger absolute price change. The price variability-
volume relationship arises, then, because the volume of trading is
positively related to the extent to which traders disagree when they
revise their reservation prices (p. 485). ... Epps and Epps’s key as-
sumption gives them a nearly exact positive relationship between
the absolute value of the change in the market price and the trading

volume on each within-day market clearing (p. 487).

The price may not jump with a proportionately large trading volume as
assumed in Epps and Epps. In order to overcome this problem, Tauchen and
Pitts (1983) introduced a scheme of variance components into the model. A

change in the reservation price consists of two parts. One part is common to
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all traders and the other part is specific to one trader. If the change in the
reservation price is due to the common part, the marker clearing price jumps

without being accompanied by a large trading volume.

Their model assumes a call market. They never specify how we can define
a Walrasian equilibrium price from the sequence of transaction prices observed
in the continuous auction. Another problem of their model is that there is no
explanation of why the trader’s desired position is given by a constant multiple

of the distance between the transaction price and the trader’s reservation price.

In our model, the jumps in the transaction price are not always i.i.d.. We
show that if the heterogeneity of the expectations is stationary, then the jump
in the transaction price can be approximated by an i.i.d. random variable.
If the heterogeneity of FLE values is not stationary, then the jumps are not
identically distributed. If we increase the expected number of transitions of
expectations, then the expected trading volume increases. If the FLE distri-
bution shifts, then the transaction price will shift without an accompanying
increased trading volume. Our model specifies the process by which the ar-
rivals of buyers and sellers are generated. Also, in our model, information is
translated into the arrival intensities. We can analyze the respective effects
of buyers and sellers who are motivated by heterogeneous expectations or just

by liquidity purposes.



PART 2.

4. THE AGENT’S OPTIMIZATION PROBLEM

4.1. CONSTRUCTION OF OPTIMIZATION PROBLEM

In this chapter we specify an agent’s optimization problem. For a given
expected time path of the exchange rate, agent are assumed to maximize ex-
pected profit over a given time period. We show that an action the agent takes
depends on his expected FLE value. Assuming that the exchange-rate process
is piece-wise stationary, we show that sequences of optimizations using most
recently updated FLE values lead to over all optimization. This implies that
the optimal policy' is to concentrate on profit maximization in each interval
where the expected time path is monotone. By showing the role of FLE val-
ues, we obtain a rationale for assigning a distribution function to the FLE
values held by agents. The solution to the optimization problem will lead to

the derivation of arrival intensities in Chapter 6.

The agent trades in a wholesale market on the one hand and trades with
his retail customers on the other. The difference between selling and buying
prices and the fixed rate of commission for a retail transaction become the

agent’s profit. The agent’s optimization problem is essentially an inventory

LA policy is a contingency plan for choosing actions (Heyman and Sobel,

1984).
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control problem. However, since the auction is double-sided, agents have two
kinds of feasible actions: when the agent wants to trade in the market, the
agent can choose either a price (i.e., waiting on his quotation) or his inventory
level i.e., hitting one of the market rates.? If the agent chooses the price, then
his position becomes a random variable. If he chooses his position, the price
becomes exogenous. Although the agent knows the price when he makes a
transaction decision, this given value of the price is a realization of a random
process. Since the agent can choose either his price or his position, a set of
feasible actions is the product of two subsets: one for choosing the price; and

the other for choosing the position.

In Section 4.1, we will define variables and write out an equation of the
agent’s profit. A closed interval between epoch ¢, and ¢, is denoted by [¢,, t,].
The exchange rate is the price of US dollars in terms of the local currency.
For the sake of simplicity, the actual exchange rates with decimal points are
redefined to positive integers. Let Q, be a finite subset of positive integers
whose elements are values which the exchange rate may take (for example,
Q = {1,2,..,200} ). We define random variables A(t) € Q,, B(t) € Q, and

S(t) €, as

A(t): minimum selling price quoted in the market at epoch t.
This is called the offered rate or asked rate.

B(t): maximum buying price quoted in the market at epoch t.
This is called the bid rate.

S(t): price of the most recent transaction up to and including

epoch ¢.

2see the following paragraph for a definition of the latter
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The bid and offered rates together are called the market rates at epoch ¢t. At
any epoch when a transaction takes place, S(¢) coincides with A(¢) or B(z).
We assume that the agent’s retail prices are determined by the current market
rates, A(t) and B(t), and a constant margin c, with constant ¢ being exogenously
given.
A(4 —1): At epoch t, the retail selling price is A(¢) + ¢ and the retail
buying price is B(t) —c.

The agent trades any quantity with retail customers whenever they want
to. The quantity and the epoch of each retail transaction are random. The
constant margin ¢ becomes a sure profit if the agent buys from (sells to) the
market right away when he sells to (buys from) the customer. Let Q, be a
subset of non-negative integers, including 0. Random variables for the retail

transactions, Ri(t) € Qq and Ry(t) € Q,, are defined as cumulative quantities.

R;(t): cumulative quantity purchased from customers during [0,1].

R»(t): cumulative quantity sold to customers during [0,¢].

Since R, (2) anfi Ry(t) are cumulative quantities, dR;(¢) >0 and dRs(t) >0
signify occurrences of retail transactions at epoch t. We use the following
convention for subscripts of the variables. Variables with subscript 1 give rise
to increases in the agent’s US dollar position, and variables with subscript 2

lead to decreases in the agent’s position.

A(4 —2): the arrivals of retail buyers and sellers constitute compound

Poisson processes (see Appendix B).

The compound Poisson process implies that the number of arrivals is
Poisson distributed and that the quantity of each transaction is a random

variable with some distribution. Let a; (ap) be an arrival intensity of retail
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sellers (buyers) and let C be a quantity traded at each retail transaction. Since
R, and R, are the cumulative quantities generated by the compound Poisson
processes, the expected values of R, and R for epoch ¢, are proportionate to
the length of time. Assuming R;(0) = R2(0) = 0, the expected values are given

by E[Rl(to)] = alioE{C] and E[Rg(io)] = QQiQE[C].

Besides retail transactions, the agent has wholesale transactions in the
market. In order to describe his wholesale transactions, we define random

variables 7, € Q, and Z, € Q, as follows.

Z1(t): cumulative quantity purchased from the market during [0,¢]

Z»(t): cumulative quantity sold to the market during [0,]

If dz,(t) and dZ,(t) are positive, they are quantities which the agent bought
and sold in the market at epoch t. We define the prices applied to dZ;(t) as
follows.

51(t): a price applied to dZ,(t)

Sa(t): a price applied to dZ,(t)

Si(t) € Q, and S»(t) € Q, can be random variables, depending on actions
which the agent takes. 3 $,(¢) and S»(t) are specific to the agent, while S(¢) is

common to all agents.

The Stieltjes integral can be defined for a monotonically increasing, but
not continuous, function like R;(t) and Z;(t). By definition, we have [i° dRi(t) =
Ri(to) and [,° dZ(t) = Zi(to). Using the Stieltjes integral, wholesale revenue and

cost during interval [0,0) are expressed as [,° Sa(t)dZs(t) and [i° Si(t)dZu(1),

3This is explained in Section 4.2.
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respectively and revenue and cost of the retail transactions are [[°(A(t) +

c)dRy(t) and [,°(B(t)—c)dR,(t), respectively.

Let 11[0,7] be the agent’s profit over interval [0,7]. Using the above ex-

pressions for revenues and costs, the agent’s profit during [0,7] is

T T T T
n{o,ﬂ:/o Sg(t)ng(t)—/o sl(z)dzl(t)+/0 (A(®) +¢) ng(t)—-/O (B(t) — c) dRy (2)
T T T T
- /O Sa(t) dZs(2) — /0 Su(t) dZ: (8) + /0 A(t) dRs(t) — /0 B(t)dRy(2)

+ C(RQ(T) + RI(T)). (4-1)

4.2. CONSTRAINTS

Next, we specify the constraints for the profit maximization problem. Let

a random variable Z(¢) denote the agent’s position at epoch ¢, i.e.,
Z(i) -EZl(t)——Zz(t)—{—ZQ-{-Rl(t)—RQ(t), (4-2)

where z; is an initial value of Z(¢) at epoch 0. Z(t) takes values from a finite
subset of integers; Z(t) e {y|y==z1—22+23—24, 2i €Qgi=1,...,4}. Z#0
means an open position and Z >0 ( Z <0 ) means a long (short) position.
The last two terms of (4 — 2), the cumulative retail transactions, are random
and exogenously given to the agent. The agent can control Z(t) by increasing
Z1(t) or Z,(t), but an instantaneous adjustment of Z;(t) or Z»(t) is not always
possible. We distinguish desired values of Z(¢), Z,(¢) and Z»(¢) from their actual
values. This is a variation of the inventory control problem. If the agent wants
to control Z(t), Zi(t) and Z,(t), then his decision is made on the desired values

of these variables. Define,

Z1(1): desired value of Z,(1),

Z5(t): desired value of Z»(t),
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Z*(t): desired value of Z(1).

In order to prevent catastrophic losses, the management does not allow
an agent to assume an infinite open position, no matter what expectations
the agent has. The management of a bank for which the agent works imposes
restrictions on the magnitude of the agent’s open position. These restrictions
are imposed on the desired value of Z(t) instead of the actual value. This is
because the actual value Z(¢) jumps from time to time due to the randomly
arriving retail transactions and it is impossible to control Z(t) completely. If
Z(t) violates the constraint at a certain epoch, the agent tries to adjust Z(z) to

Z*(t) by taking an action which is feasible at that epoch.

The restrictions on the open position are applied during and at the end
of the business day. The restrictions are exogenously given to the agent by his
bank. The maximum magnitude of the open position which is allowed during
the business day is called the daylight limit. Let L denote the daylight limit.
Its value is a positive integer.

A(4-3): Let L be the daylight limit, then [Z*(t)] <L for ¢€[0,7).

The restriction on the open position at the end of the business day is
called the overnight limit. The overnight limit is stricter than the daylight
limit.

A(4 —4): The overnight limit is 0.

If the overnight limit is not zero, then the agent faces an overnight profit
maximization. If the agent has a short (long) position at the end of the
business day, the agent may borrow (lend) overnight. We would like to avoid
the complication of having a loan market in our model at this stage. However,

if all of the market makers’ overnight limits are zero, this constraint introduces
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a complicated dynamic programming problem. Also, almost surely not all

agents will have square positions at the end of the business day, because the

aggregate retail demand and suppb‘/ will almost surely differ, even if their

expected values are equal. We need market makers* who can absorb the excess
of the aggregate retail demand until the very last epoch of the business day.

A(4-5): Individual local markets on the globe have their specific business

hours. Each market has one broker. The start and the end of business

hours of the local market overlap with neighboring local markets. Some

of the agents have branches in the neighboring local markets. At the

end of the business day, some of the agents who have overseas branches

remain as market makers. If their positions are open when the transac-

tions in our local market are completed, these market makers continue

to make transactions with their branches. The prices applied for these

inter-branch transactions are the same as the market rates at the last

epoch. If the market maker ends with the short (long) position, he buys

from (sells to) the overseas branch at the last offered (bid) rate of local

market.
4.3. CHOICE OF FEASIBLE ACTIONS

Expected values for S(t), B(¢) and A(t) have to be derived. Let Y(¢) be
the mid point of the market rates at epoch ¢. The price at which the agent
will trade at epoch ¢ in the future can be either B(¢) or A(t), depending on the

actions the agent takes. Let 2u be an expected bid-ask spread and F,, be

4Agents who quote both buying and selling prices at the same time.
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the information which the agent has at epoch t,. For ¢t > ¢,, the expectation is

conditional on F;,. The expected values of B(t) and A(t) are denoted by:
§(0) = SELAW) + BU) | Fol = E[Y ()| 72,
a(t) = E[A() | Fro]l =€) +u,  &(t) = B[ B(t) | Fio] = &(t) — v

An agent is called bearish (bullish) at epoch to, if ¢(t) has an interval [to, Ty

such that %M <o (%0 5 0), for ¢ € [to, Tn.

The expectation of 1I[t,,T], the profit as defined in (4 — 1), is conditional
on F;,. The expected profit depends on the agent’s choice of actions as well as
the arrival processes of buyers and sellers in the market. We need to specify
a set of feasible actions. Let T be a set of actions which is feasible at epoch .
Then, T is a collection of four coordinate vectors such that T'C Q,xQ,xQ,xQ,
and T = {S;(t),S5(t), Z;(t), Z5(t)}. The action is defined for an epoch. We define
I'y and T, to be subsets of T.

S;(t): Agent’s own quotation at epoch t to havé dZy(t) > 0.
S3(t): Agent’s own quotation at epoch ¢ to have dZ(t) > 0.

Th: A set of actions such that the agent chooses values for
Z;(t) and Z3(¢) and that he adjusts Z;(t) and Z,(t) to Z;(2)
and Z;(t) immediately. dZ;(t) and dZ;(t) are not positive at
the same epoch. S;(t) and S;(t) are equal to the available
quotations in the market.

Tw: A set of actions such that the agent chooses S;(¢) and S;3(t),
quotes one or both of them, and waits for having his quo-

tation hit. dZj(¢) and dZ;(¢) are realized randomly.

', means that the agent hits one of the market rates. It is possible that dZ;(t)
1s larger than the quantity available at the existing market rate. Should this

occur, less competitive quotations may be hit also at the same epoch. Or the
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agent may choose to set dZ;(t) equal to the available quantity at the current

market rate. If the agent chooses Z;(¢), then the price is random.

If the agent chooses 'y, then dZ7(t) and Z;(t) become random. However,
when the agent quotes his prices to the broker, the agent can specify the
maximum quantities which he will trade at his prices: dZ}(t) and Z3(t) are
bounded from above. A pair of variables {S;(t),S;(t)} or {Z;(t),Z5(t)} become

random variables, depending on what action the agent takes.

Since the transition probabilities of the market rates are intractable with
our arrival model, we have only the expected time paths of the market rates
available. Because of this limitation, when we calculate the expected profit,
we restrict feasible actions of the future to the smaller set and find an optimal

action from this smaller set.

A(4—6): When the agent calculates the expected profit, the set of values

which S;(t) and S3(¢) can take consists only of &,(t) and &(¢) .

The decision variables for the optimization are the desired values. In
order to derive the expected profit, we replace S)(t), Sa(t), Z:(t), and Zs(t) in
equation (4—1) by their desired values. A(4-2) determines the expected values
of R;(t), for i =1, 2. With given £(¢), v €T and A(4 —2), and using (4 — 1), at
epoch ty, the conditional expectation of the profit over interval {t5,7) is taken

with regard to R;(t) and R.(t) and is given by

B[ U(to, T] | 7.7, :E{[Tss<t>dzs(t>—[Tsz<t>dzr<t> 7% |

+ [ e@asm) - [ 60 dEmo)
+e{B(T~t0) + A1(T —to) }
:E[/tTS{,‘(t)ng(t)-/tTSI(t)de(t) Iv,fzo}



41

4 B /tha(t) dt - g, /tTéb(t) dt
+e{Ba(T ~t0) + (T~ t0) }.

Ri and R, are random measures. Derivations of their expected values use
Campbell’s Theorem.® In addition, the derivation of the last three terms uses

properties of the compound Poisson process.

E[N[to, T] | 7, Fuo| = EMT sg(t)dz;(t)../f S1(t) dZ; () |7,.7—"t0J

T
+(ﬁz—ﬂ1)/ £ty dt + (c+u) (Bo+ 51) (T —10), (4—3)

where £(t) = E[Y(t) | Fy] and ;= a;E[C) = [y Ri(t)dt, for i=1,2.

4.4. MAXIMIZATION OF EXPECTED PROFIT

The agent’s action may influence £(¢), depending on the quantity the
agent wants to trade. We rule this out by introducing an analogy of perfect
competition by assuming

A(4—-17): £(¢) is not influenced by T.

Moreover, we assume

A(4 ~8): The agent is risk neutral.

Since the agent does not have controls over the last two terms of equation
(4 - 3), profit maximization is equivalent to maximizing the first term. We use
assumptions from A(4 — 1) to A(4-8). The purpose of assuming A(4 - 6) is to
narrow the set of feasible actions. With given daylight and overnight limits, a
given expected time path and a given set of feasible actions, at each epoch, the

agent wants to maximize the expected profit of the rest of the day by choosing

5See Daley and Vere-Jones, 1989, p. 188, the expected value of the ran-
dom integral.
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the best actions either from I’y or Ty, t.e., by choosing the desired values for

Z, and Z,, or by choosing his quotations S;(¢) and S;(2).

T
51,53.01,25 €T E[ e 7 | ft"}

- X E[ /tT S5(t)dZs(t) — /tT Si(t)dZ; () ]f,u]+consta,nt (4—4)

= ma.
5:,53,27,25€r

subject to
~L<Zi{t)—Z5(t)+ 20+ Ri(t) — Ra(t) < L for teto, 7] (daylight limit)

Z3(T) — Z3(T) + 20 + Ru(T) — Ra(T) = 0, (overnight limit)

where zy = Z(t).

First we consider the case where an expected time path £(¢) is monoton-
ically increasing and rises by more than the bid-ask spread by the end of the
day. Second we consider the case where ¢(t) does not increase or decrease by
more than the bid-ask spread. The results obtained in these examples of the
shape of ¢(t) will be applied to the cases where ¢(¢) has more complicated

shapes.

A(4 -9): The agent expects that the exchange rate will go up by more

than the bid-ask spread: At epoch to, there is an interval [to, To] such that

L 50, for tg <t < To and &(T) > Ea(to).

We want to solve the maximization problem (4 — 4), assuming A(4 — 9).
We solve it in three steps. First, we limit the action to the set T'y, and find the
optimal action from T's. Second, we solve the problem by using actions from
the set T,. Third, we compare the results of the first and the second steps and

find the over-all optimal action.
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Using actions of the subset T', implies that we choose Z;(t) and Z;(t),

and that S;(t) and S;(¢) become random variables whose expected values are
exogenously given. By shifting the starting epoch, the maximization problem

(4 — 4) is equivalent to the following problem.

Optimization over I'y: Under A(4 —9) and with ¢, =0,

mee 5[ [ 3047300 - | sz | 7]

~ETH

= g%f{AT €(t) dZ5(¢) - /OT €a(?) de(t)} (4-5)

subject to

Z(O)ZZO
|Z*@¢)| <L, for 0<t<T
Z(T)=0

Solution : If we express the solution in the form of the four coordinate vectors,

{S1(), S5(¢), Z1 (1), Z5(t)}, then it is given by

{ &), &), (L- Z(t))+ + Z1(t), (-L+Z(t))+ + Z5(t) } for t € [0,T),
4-7)
{gﬂ(t), &), Zit) . Z() } for t=T,

where (z)* = max{ 0,z }. The solution implies maintaining the longest position
and selling at the last epoch. The solution means that quantities to trade,

depending on the actual position, are as follow.

o [L—z for t = 0;
le(’f)“{(L._Z(t))“L foro<t<Ty
(4-6)
cn_ [ (2@0)=L)F foro<t<T;
dZ2(t) {Z(t) for ¢ :T;

In (4-6), dZ;(0) = L — 2, means to make the position longest by hitting the
offered rate. dzi(t)= (L- Z@))*, for t € (0,T), means that if the daylight limit
on the long position becomes lax due to retail selling, then the agent hits the
offered rate and puts the position back to the longest. dz;(t) = (2(t) - L)*

means that if the position jumps out above the daylight limit due to retail
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buying, then the agent hits the bid rate to sell and bring the position back to
the daylight limit. dZ;(T) = Z(T) means that the agent sells all he has by

hitting the bid rate.

If weuse T, then we have to specify what happens if the agent’s quotation
is not hit by t};e next arrivals. One policy is that the agent keeps quoting
the market rate whenever the arrivals of the other agents change the market
rate. Another policy is that the agent waits on a given market rate until
the arrivals change the market rates and then the agent hits someone else’s
quotation. In order to choose a policy among those possible policies, we need
transition probabilities of bid and offered rates. The transition probabilities
are intractable with our model for the arrival processes which is developed in
a later cha,p‘ce.:r.6 We introduce an assumption about how the agent organizes
his idea:

A(4-10): When the offered rate is hit, bid and offered rates jump upward

by 0, v or 2v with equal probabilities, while maintaining the bid-ask spread

at v.

With this assumption, we compare the expected profits of actions which are
elements of T, and T'y,. Let v; be the solution (4-6) for epoch 0; v, = {dZ;(?) =
L~ z} be a policy. Let v, be an action such that {S;(¢) = B(¢)} and refer to
{v2,m1} as a policy. This means that in order to buy the agent waits once
and if his quotation is not hit, then he hits the offered rate. We want to
compare policy {y2,71} with policy {y:}. The latter means to hit the offered
rate immediately. If the agent chooses v, and his quotation is hit, then his
profit is larger than the action v; by amount v(= « — ). If his quotation is not

hit, then market rates shift upward and he hits the new offered rate. Then his

5For details see in Section 6.2.
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profit is larger than {y;}, by 0, —v and —2v with equal probabilities. Let ¢ be the
probability that the bid rate is hit by the next arrival. 1 -4 is the probability
that the offered rate is hit by the next arrival. To simplify the argument, we do
not consider the case where the next arrival renews, instead of hitting, one of
the market rates. The expected difference of the profit from {v»,v;:}, compared
with {71}, is given by sv+ (1 =8){ 10+ 1(—v) +1(~2v)} = dv+ (1 =6)v = (26 1) < 0,

because being bullish means 6 < 1. This means that {y:} is better than {y2,v:}.

Next, consider policy {v2,72,71}. As before we use assumption A(4 — 10)
and assume that the transition probabilities remain the same at the first and
second transitions. We extend our analysis backward. We have already found
that {v,} is better than {y2,71}. We apply this result on the last two actions
of {v2,72,71}- Then {vs,71} is better than {vs,v2,71}. When we assume the
transition probabilities as in A(4—10), any policy using actions from T, cannot

be better than {v;}.

Depending on the transition probabilities, it may be possible that a policy
which consists of some actions from T, (quoting both market rates most of the
time, and quoting only one of the rates to square a position sometimes) has a
higher expected profit than {v,} in the example of bullish expectation A(4-9).
Since we can not derive the transition probabilities of the market rates using
our model, we do not pursue an optimal policy of using T, when the agent
has bullish expectation A(4 —9). To conclude the comparison of the expected
profits by using actions either from T, or T',,, we present the solution for (4—5)
as an assumption.

A(4 —11): If the agent has a bullish expectation such that, for 0 < ¢ < T,

i%(t—tl >0 and |&T)-€(0)| > 2u, then the agent chooses {I',} to solve

optimization problem of (4 —5).
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So far assumption A(4 —9) was used. Next we will replace A(4 - 9) with

the assumption that the agent’s expectation is neither bullish nor bearish and

will solve the optimization problem (4—4). Asin the bullish case, we solve the

optimization by using actions first from Iy and second from T'yand compare
the result to choose the overall solution.

A(4 —12): The agent does not expect the exchange rate to move more

than the bid-ask spread for a while. Namely at epoch ¢,, there exists an

interval [to, To] such that dﬁd—(f) =0 or ‘—’%(L‘—) #0 but  |&(To)—£()] < 2u.

First, we apply actions from T's. The use of T, implies that transaction
prices are set equal to expected values of the bid and offered rates: S;(t) = &,(¢)
and  Sy(t) = &(t). Then, we have ftféb(t)dzg(t) - fg&a(t) dz;(t) < 0, for
any dZz(t) > 0 and dZi(t) > 0, because by A(4 —12), &(t1) < &4(t2), for any
t1,t2 € [to,T]. The agent does not have positive profit if he uses actions from

T

Next, we consider using T'y,. Actions from T, imply choosing values for
Si(t) and S3(¢). Z;(t) and Z;(t) are now random variables: Z;(t) = Z;(t), for
i=1,2. When we use T, Z;(t) and Z;(t) become random measures. Besides
of making different variables random, there is another difference between T,
and T,. If we use T, , the constraint on the position at the end of the
day Z*(T) =0 can be almost surely met. On the other hand, Z*(T) =0
can be achieved only randomly, if we use T, . In this case, instead of the
constraint Z*(T) =0 , we introduce a negative final reward or penalty for the
open position. The penalty depends on |Z(T)| and is zero, if Z(T)=0. Let

the (2L +1)x1 vector Wr denote a final reward at epoch T such that Wy,
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means the zth element of the W; and that
Wr.=Wr_, <0, for z=1,...,L,
Wro = 0.
By shifting the origin of the time axis by ¢, and setting z, =0, we solve the

following problem:

Optimization over I',: With assumption A(4 — 12),

g}ag_E[/T S3(t) dZa(t) -—/T Si()dzi(e)+ wr( Z(t) ) lfto}

1072 0 i 0 r

= pax { / S3(t)dE(Z3(0)] - / S3(1) dE[ 25 (1))
+EP%(Z@)]£J} (4—8)

subject to

|Z*@)| <L, for 0<t<T.

Solution: This is a model of a controlled, continuous time Markov process
with finite states. We look for an optimal policy among the time invariant
policies. The position Z(t) is the state in this model. Each jump from
one state to another which signifies a transaction has an associated reward
which signifies profit. A model presented in Yushkevich (1977) is applicable.
{~L,...,0,...,L} 1is the state space. State Z(t) jumps when the arrival of a
buyer or seller occurs. The arrival process is a Poisson process and hence the
inter-arrival time follows an exponential distribution. We have to construct
an infinitesimal state transition matrix. Since we work in continuous time,
we have an infinitesimal matrix instead of a matrix of transition probabilities.
Let @ be the infinitesimal matrix. Assumption A(4 —12), %8 =0, implies
that the arrival intensities of buyers and sellers are the same and we limit the

values of S; and S5 such that if—(ffl =0.’ Let ¢ be the arrival intensity of

the seller or buyer. This is the intensity that Z(t) moves to another state.
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A(4 —13): Each arrival trades either one or two units.”
Let v; and v» be the probabilities that a buyer or seller wants to trade

one unit and two units, conditional on the arrival. Let @ be the infinitesimal

transition matrix. Using the notation and assumptions given above, @ is

written as
-1 (3] (%] 0 0
1 —2 (51 Vo 0
Q=g¢A=q| va v =2 v v (4-9)

0 Ug (%51 -2 1~
0 0 Vo Vi -1

Among the elements of Q, Q,; and Q45 equal 1. Because of the daylight limit
L =2, the agent trades only one unit, even if the arrival wants to trade two
units. The first row of Q means that Z(¢t) =2 originally and the state Z(¢)

jumps to Z(t) =1 with conditional probability v, or to Z(t)=0 with v, .

Each jump is associated with a reward. A jump from Z=2 to Z=1
( Z =0 ) means one unit (two units) of sale. The expected reward when Z =2
is given by vy+2vs, using the bid-ask spread as the unit for measuring revenue.
An upward jump from Z = -2 to, say, Z = -1 is one unit of purchase which
incurs cost. We do not have to assign a negative reward to the purchase jump.
Except for the last downward jump or the last consecutive jumps downward
before the end of the day, the downward jump of Z already signifies a profit,
not just revenue. Let the 5x 1 vector R be the vector of the expected rewards
of jumps, t.e.,
vy + 2vq
vy + 2v4
R=2uqg | vi+2us | . (4 - 10)

1
0

Let the 5x1 vector W(t) denote the expected profit between epoch ¢

and the end of the day 7. The i -th element of W(¢) is the expected profit

"This automatically implies that for an individual agent’s daylight limit
L <2 for every agent.
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the agent has if the state is at the i-th state at epoch t. In our model, the
first element of W(t) corresponds to Z =2 . The expected profit satisfies the
following differential equation and is obtained as the solution of the differential

equation (Yushkevich 1977, Corollary 3.2 and Supplementary Remarks 5.),
Wi(t)=-R-QW(t) (4-11)

with the boundary condition W(T)= Wr. (4—11) is an example of Bellman’s
equation. The elements of R and @ are constant. Since the sum of the
elements in each row of @ 1is zero, @ is singular. The solution of (4 — 11) is
given by

T

W(0) = (/ e’st)R+ Wr (4 —12)

0
where @ =7+ + i—’-g—— o (’Q) SR €I " +.... Since Q is not invertible,
the expression for [} e*@ds cannot be simplified. ff e*?ds = T(I+ L2+ (—T-%ﬁ +

(TP 4 4 I 1+...> .

Next we find optimal quotations S; and S;. Since we have already
limited our argument to the case where £& =0, finding S; and S; is the
same as finding the optimal bid-ask spread 2u*. The arrival intensity of a
buyer and that of a seller is ¢. The value of ¢ depends on the spread. As

shown in (4 -10), R is also a function of u. The value of v which maximizes

(4—12) is the optimal spread. Substitute ¢= f(u) and (4-10) into (4—12) and

differentiate with respect to u. Since ( [T e2Qds )R = T<q1+ a(Tad) 4 o(TeA) |

..+9£1?%k'i+...)u2v, where V——R and Q =¢A,

diu[ /T e*9dsR }
0

a ) ,, (TqA)q  (TqA)q (TqA)—1¢
_T{ 1¢' + (TgA)q + 2 . R Sy +...}u2v
2 k-1
+T{ +q1+q(2<{A)+Q(T§;4) +._.+Q(Tq/1) }2&/

= {TeTQ 'u+q( /OTeSst )}2&/. (4 - 13)
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The optimal value of u makes (4—13) equal to zero. Te9 and [ e*?ds become

proportional to T, as T — co. (4 —13) can be solved for T = .

'@ is the probability distribution of the state in which Z would stay
at epoch ¢, starting at epoch 0 from one of the states. The row gives the
starting state and the column gives the state at epoch ¢t. !9 converges
to a stationary distribution, as ¢ — co. Let C be the stationary distri-
bution which is associated with Q@ , t.e., C = lim—oe'Q? . We can show
that -}f: e*%ds also converges to C. For a given € > 0, , there exists
r such that ||e!9 = C|| < ¢ for t > 7. ||-|| represents the maximum ab-
solute value of the individual elements of a matrix. Using the facts that
LeQds=1[7eQs+1 [ e@s and L[ eQs—C= L[ (e*?—C)ds, we have
lim; oo + 5 (659 = C)ds = limi—oo L f§ (€9 — C)ds +limco L [ (e*? — C)ds. Because
limy oo (|3 fy (62 = C)ds|| =0 and  limy—co |3 f; (@ — C)ds|| < lime—ao 3 [ [|(e°9 —
C)|lds <¢, wehave ||1 [ e*Qds~C||<e and

1 [ . f
lim = [ e%ds=C= Jlim e'9ds (4 -14)
-+ OO

{00 0

Divide (4-13) by T, let T — oo, and in (4 — 14) replace ¢t by T, then (4 — 13)
becomes zero, if ¢'u+¢=0.Let ¢ = f(u)2® Then the necessary condition for

the optimal spread u* for the asymptotic case is given by
Flu+ f=0. (4 - 15)

The optimal quotations are given by Sy =¢&(¢)—u* and S; =¢&(t)+u*, where

&(t) is assumed to satisfy A(4 — 12).

8The explicit form of f(u) will be derived in Section 6.5.
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The solution to the optimization problem when we assume A(4—12) belong

to T, and the solution is as follows. If [Z(t)| < L , then

{e)—w, ) +w, (L-20) +2:0), (2+2@))" +2:0) }. (4-16-a)
If |2(¢)|> L, then

{e)+w, &) -w, (-L-2@0)" + 20), (-L+2())" + Z() }. (4-16-0)

(4 — 16 — a) implies that the agent waits on the market rates and that the
associated quantities are the maximum quantities within the daylight limit.
(4 — 16 — b) corresponds to a situation such that the daylight limit is violated
by retail transactions. (4 — 16 —b) implies that if the position moves beyond
the daylight limit due to retail transactions, the agent hits one of the market
rates to put the position back to the level of the daylight limit. In order for
(4 — 16 — b) to be implemented, we need the existence of market makers who

quote their prices until the last epoch as is assumed in A(4 - 5).

So far the magnitude of the maximum open position is exogenously given
as the daylight limit. If the size of the limit on the open position is also a
choice variable, it is possible that a voluntary limit which the agent chooses
1s smaller than the exogenously given daylight limit. Depending on Wr, this
can happen. The expected profit (4 — 12) consists of two terms. It can be
proved that with infinitesimal matrix @ asin (4-9), <f(;‘r e’st>R increases
as the daylight limit L increases. The negative elements of Wz, which are
penalties on the open position at T, may decrease more than proportionately
as L increases; for example, Wr = (—22,—1,0,—1,—23)T. ® Had this been the

case for finite T, we will have a trade-off between (fOT e’st>R and Wr as

SSuperscript T means transpose.
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L increases. So the voluntary limit may be smaller than the daylight limit
L. This situation matches empirical observations that traders rarely assume
an open position up to the daylight limits. We will not pursue this possibility

here.
4.5. OPTIMAL POLICY

In the preceding section, we solved the optimization problem with the
assumptions A(4 — 9) and A(4 — 12). £(t) was assumed to be monotonically
increasing A(4—9), or more or less horizontal, compared with the bid-ask spread
A(4 - 12). Next, we want to consider the case where £(¢) has local maxima or
minima. Before we do that, we need to provide the notation for the sets of

actions including the solutions of (4 —4) and (4 — 8);

Tw={ &), 60), L-20)" +210), (-L+2)* + @)} (4-17-0)
Tho = { &), 60), (-2 - ZO) +2:(), L+ 2()" + ()} (4-17-0)
Thg = { &), &), (=2M) +2:0) , (20)T+2:0) } (@-17-¢)
Puz = { &), &), (=L - 2@)* + 2:), (-1 + 2®) " + Zo(0)} (4-17-0)
Pm={&®, ., (L-20) +50), ----- fa-17-¢
rwgz{ LG, e <L+Z(t))++Zg(t)} (4 =17 — f)

Puie={ &), &, (2-20)) +20, (L+20))" + 200 -17-9)

'y means that the agent tries to maintain the longest position by hitting
the market rates. I's, means doing the same to maintain the shortest position.
For both Ty and Ty,, the quantities in the coordinates of Z;(t) and Z;(t)
are the quantities about which the agent notifies the broker together with his
quotations. These quantities are the maximum quantities which the agent

trades at his quotations. dZ;(t)= (L-2(t))" of (4—17—a) and dZ3(t) = (L+
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Z(#))* of (4—17—b) are the maximum changes of the position while the daylight
limit is met. dZ3(t) = (—L+2(t))" of (4—17—a)and dZ;(t)= (-L-2@t))" of
(4 — 17 — b) are the minimum quantities needed to put the position back to the
daylight limit. I'n, means maintaining a square position by hitting the market
rate, if the position deviates from 0. T's;2 means keeping the position at the
daylight limit by hitting the market rate, if the position deviates outside the

daylight limit.

I',; and Ty» mean waiting on one of the market rates until the daylight
limit becomes binding; T'y: to have the long position and T,; to have the
short position. Tyi» means to wait on the both market rates. The expressions
in the coordinates for Z;(¢) and Z;(t) in (4—17—g) are the maximum quantities
which the agent trades at his quotations which are equal to the expected bid
and offered rates by assumption A(4 —6). If Z(t) = L, then Ty;2 becomes
dZ;(t) = 0 and dZ;(t) = 2L and the agent quotes &, (t) only. If Z(t) = —L,
then T'y1» becomes dZ;y(t)=2L and dZ;(¢t) =0, which implies that the agent

quotes &,(t) only.

Solution (4 — 7) consists of T'y, for t € [0,T), and Tp,, for t = T. Solution
(4 — 9) consists of T'y;» and Ty, for ¢t € [0,T7). Since solutions (4 — 9) assign
an action to each epoch, contingent on the actual position, solutions (4 — 9)
represent a policy. A summary of the agent’s choices of action is as follows.

Bullish (A(4 — 9) is the case): The agent hits the offered rate, buys until

the daylight limit becomes binding and quotes an expected offered rate

for the end of the monotone period, &(7T), as his selling price, i.e., Tw.

(4 —18)
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Bearish (counterpart of A(4—9)): The agent hits the asked rate, sells the
maximum quantity which the daylight limit allows and now quotes &(7T)
as his buying price, i.e., T4,.

(4 - 19)

Otherwise : The agent quotes both the bid and the asked rates at the
same time unless the daylight limit is binding. If it is binding, then the

agent quotes only one of the rates, Tyia, Tw1 OF Tyo.

(4 - 20)

We want to consider more variations of the shape of the expected time
path besides a monotonically increasing one (A(4 —9)) or a flat one (A(4-12)).
Suppose that £(t) is bullish in the sense of A(4—9) until epoch 7 and that after
T, £(t) becomes horizontal. For interval [0,7), the optimization problem (4 — 5)
is applicable. At epoch 7, the expected profit increases by choosing to wait
on &,(t) rather than hitting the bid rate &(¢). Using the notations defined in

(4 — 17), the solution policy is given by {I‘hl, for t €[0,T); Tya, fort=T }

Next, suppose that £(¢) is bullish before 7 and bearish after r in the sense
of A4 —9). The horizons for the optimization are divided into three periods,

namely [0,7), = and (7,7). Then, we have solution

{1‘,,,, for t €[0,7); Two, for t=7; Th,, for te€(7,T); Thy, for t:T}.

An example is shown in Figure 2. £(t) has a local extremum at ¢;, a local
minimum at t» and the global maximum at epoch 7. Buying at ¢ = 0 and selling
at T 1s not optimal. If the agent divides the horizons into intervals where &(t)

is monotone and chooses the optimal action in each interval, then the agent
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has a larger expected profit than by buying at ¢t = 0 and selling at 7. This is
because by the successive optimizations of the individual intervals, the agent
takes advantage of all of | £(¢;) — €(ti41) | rather than just | £(T) — £(t0) | . The
solution for the case of Figure 2 is given by {I‘h,, for t€[0,¢;); Tya, for t=

t1; Ths, for t€(t1,22); Twi, for t=ts; Tu, for ¢ € (t2,T); Thy, for t:T}.

So far the expected time path £(¢) has been given. However, the expected
time path £(¢) may change its slope from time to time, since the system which
determines the exchange rate in the market is non-stationary. Also, as the
agent continuously updates and refines the information #;, he may recognize
new local maxima or minima as FLE while the previously known extremum
still remains unchanged. As the preceding example showed, the agent can
increase his profit by taking advantage of local minima or maxima. An optimal
policy is that, as the agent recognizes local minima and maxima of £(t), he
should take advantage of such updated FLE values and concentrate on the

optimization of the current interval.

The optimal policy implies that, for a given epoch, the agent’s action
depends on FLE values and not on any other extrema of the expected time
path &(t). The fact that the action depends on FLE values gives a rationale
why, in Chapter 6, a distribution function is assigned to the agents’ FLE values
for a given epoch. Since the FLE value determines an individual agent’s action,
by specifying an FLE distribution function, we can obtain a distribution of the

agents’ actions at a given epoch.

The optimal policy derived here coincides with the rules of thumb in the

foreign exchange business. Judging whether the price has reached the bottom
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or the ceiling based on observations is an important skill for traders who work

in the actual foreign exchange markets.

4.6. TWO STATES OF EXPECTATION

So far the agent has made decisions using expected values. However, an
agent does not always have a clear idea about which way the transaction price
will go. Here we redefine two states of an agent’s level of confidence about his

expected FLE value.

State of the frosted glass: Based on the agent’s information, the transaction
price may jump in either direction. The agent does not assume an open posi-

tion.

State of the crystal glass: The agent thinks that his predicted FLE value is

accurate enough to assume an open position.

As is shown in Figure 3, the agent moves between states of frosted and crystal

glass as he receives news and observes the arrival process.

Our model uses only the expected values, not variances, and assumes the
agent is risk neutral. We need an additional assumption, if we want to explain
why the agents do not always assume the open positions. The criterion of
bankruptcy avoidance is introduced.

A(4 — 13)(bankruptcy avoidance): The agent always maintains the proba-

bility of bankruptcy below a given level.

In other words, the agent does not speculate, if the probability of catastrophic
loss exceeds a given level. The rationale of this criterion is that once bankrupt,

an agent cannot recover, and that even a hint of risky operations by the bank

for which the agent works can cause a run on the bank by its customers.
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If the agent’s expectation about the exchange rate is associated with

a large variance, then the agent will not assume an open position, even if
the action he is considering has a positive expected profit. In this case, the
probability of catastrophic loss from an open position of even one transaction
unit exceeds the given level. The criterion of bankruptcy avoidance is binding

even with an open position of one transaction unit.

Bankruptcy avoidance is also applied to the management of the agent’s
bank. This results in daylight and overnight limits which are exogenously

given to the agent from the management of his bank.
4.7. LIMITATION OF THE MODEL

When the agent assumes an open position based on his bullish or bearish
expectations, the optimal position is at the maximum magnitude within the
daylight limit. This is not what is observed in reality. By assuming risk
neutrality, our model cannot make an intermediate open position the optimal
position. Introducing a voluntary limit while maintaining the assumption of

risk neutrality remains to be done.

5. HETEROGENEOUS INFORMATION

Billions of activities in the economy all over the world generate the de-
mand and supply of the foreign exchange. Knowledge about individual eco-

nomic activities of the past and the present is summarized. The GNP measure
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is an example. Pieces of knowledge may be summarized and analyzed and come
out as econometric forecasts. We interpret information as an o-field generated
by a collection of pieces of knowledge. Knowledge about each individual activ-
ity constitutes an infinite set. This infinite set of pieces of knowledge is covered
by a finite number of subsets. Each subset and the family of the unions and
intersections of these subsets is called information. Information is a o-field of
informational subsets. Knowing a specific informational subset does not mean
knowing an element of the subset unless the element itself is the informational
subset. For example, the agent may know the GNP value for a quarter, but he
may not know the exact figures of each component. Some of the informational
subsets are specific to individual agents. In this regard, an example in our
model is the arrival of retail customers to the individual agents. Since arrival
processes in the market depend on the degree of disagreement among agents
with respect to expectations, agents try to estimate what others are expect-
ing. Agents may disagree in their estimates. They may have equally refined
information but the information is heterogeneous. It is not meaningful to state
that the agent has all the information to estimate the intra-day movement of

the exchange rate. We use F,, to denote the agent’s information at epoch ¢,.

The information which enters the agent’s decision making is grouped in
the following four types:*°
(1) Statistical data which are released by public and private institutions.
(2) Aggregate retail demand and supply of the day.
(3) Identity of buyers and sellers. Agents may take different actions to spec-

ulate, depending on their daylight limits and their retail customers.

10This list is drawn from Oguchi (1983).
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(4) General news, such as the Fed fund rate, Euro dollar interest rates or

political news.

The agents have heterogeneous information (in the sense of the informa-
tional subsets) of the second and third type of information. In general, agents
do not know other agents’ retail transactions, which can be substantial and
variable. Also, some agents may have more refined information for types two
and three than other agents. Refined information of these types helps agents
to form more accurate forecasts about the arrivals of buyers and sellers. We
can interpret this kind of the heterogeneity of information as a difference in
the number of variables which an individual agent’s econometric models uses.
Suppose that the first agent’s econometric model contains variables X, ..., X,
and Y;. The second agent’s model contains X;,...,X,, and ¥, and so forth.
A model for an overall market contains X;,...,X,, and Yi,...,Y,. Individual

agents’ forecasts can be different but equally accurate on average.

As for the first and fourth types of information, the agents may have
heterogeneous interpretations for given news. Agents try to analyze how other
agents interpret news with regard to foreign exchange rates. Since an agent can
take advantage of fluctuations in the exchange rate, whatever the cause, aﬁa—
lyzing other agents’ responses to the news is as important as judging whether

those responses are consistent with the agent’s econometric analysis.

There are examples to tell how the agents’ responses influence the ex-
change rates (see Oguchi, 1983).
(1) Economic indicators which influence the exchange rates when their data

are released vary.
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(2) If the newly released data of the indicators coincide with the agents’
expectations, there is little response in the market.

(3) Even if the release of the data concerning some economic indicators does

not cause reactions in the market immediately, it is not unusual that later

exchange rate moves in a direction which coincides with what the agent’s

econometric model predicts.

The first and third types of information seem to indicate either that agents
are not rational or that a course of events depends on history.!! Whatever
the case, for given economic indicators which are currently influential in the

market, the agents are rational with regard to maximizing daily profits.

6. ARRIVAL PROCESSES OF BUYERS AND SELLERS

6.1. DISTRIBUTIONS FOR THE ENSEMBLE

It was shown in Chapter 4 how FLE values and daylight limit determine
an individual agent’s optimal policy. Here in Chapter 6, we consider the col-
lective actions of a large number of agents. The agents are heterogeneous with
respect to expected FLE values and daylight limits as well as retail transac-
tions. The transitions of expectations take place intermittently among the

agents and so do arrivals of agents. Each arrival has his expected I'LE value

1Tn the sense that who responds first and how may determine the actions
of the other agents.
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and we assign a distribution function over all these values. Also, we assign
distribution functions to the lengths of time during which agents stay in each
state of expectation. With these distribution functions we can derive the dis-
tribution of the actions which the agents may take at a given epoch. The

agents represent a statistical ensemble.

We assume that when an agent determines the FLE value, it is a random
drawing from a distribution which exists at that epoch. Let X, be a FLE value
which is chosen by an agent who revised his expectation at epoch t. Let G.(z)
be the distribution function from which X, is drawn. At any epoch, there is a
sample of X,’s of those who have already arrived but have not yet left. Their
quotations are distributed over some range. Let X,;, for i=1,...N.!? be such
FLE values at epoch t. Let H,(z) be a sample distribution of X,;’s at epoch t.
The agents who are approximated by H.(z) are the ones that are waiting on
their quotations. For a given ¢, G,(z) is the distribution function from which
X, of a new arrival is drawn, while H,(z) is the sample distribution of X, of
those who have already arrived and are quoting in the market. G.(z) and H,(z)
shift from _time to time and have supports which are subsets of Q,. Although
X, takes only positive integer values, we approximate the true G;(z) and H,(z)

by absolutely continuous functions.

Besides the degree of heterogeneity for FLE values, agents, as a statistical
ensemble, are also characterized by the frequency of revisions of their expec-
tations. Another expression of the frequency of the revision is length of time

during which an agent maintains the same expectations. We assume that the

12Definition of N, is given below.
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lengths of time during which individual agents stay in the frosted and crystal
states follow exponential distributions.

A(6 — 1): The transition between the two states is an alternating renewal

process whose renewal epochs follow exponential distributions.

Let fi(t) = 61exp(=01t) and fo(t) = Orexp(—62t) be the density functions
for the length of time ¢ during which individual agents stay in the frosted and
crystal state, respectively. Then, the expected lengths of the stays are given
by 4 and g. Let N be the total number of agents in this economy which
is exogenously given and let N; and N. denote the numbers of agents who
stay in the frosted state and in the crystal state for a given epoch. Then,
their expected numbers are given by E[N;] = ;22N and E[N.] = ;7&_N,

81+82 g,+62

respectively.

For given constants 6; and 6., the expected number of agents in each
state at a given epoch is constant. However, the agents may change values.
Some of the agents who have been quoting leave, and new arrivals join the
existing agents. If G,(z) = H;(z), we say that the heterogeneity is stationary.
Otherwise, we say that the heterogeneity is non-stationary. If = Go(z) # Ho(z) ,
then H,(z) shifts so that |H,(z) - Gi(z)] — 0, for any z€Q,, as t— oo,

because of the agents’ changing values.
6.2. BIDDING AT THE BROKER

Only one broker exists in a local foreign exchange market. Suppose that
at a given epoch, the quotations of buying and selling prices exist as in Figure
4. Among the existing quotations, the broker announces the maximum buying
price and the minimum selling price to all the agents. Although A(¢) and B(¢)

are known to every agent, agents do not know how the other quotations are
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distributed. The agent arrives at the market with his expected FLE value.

Depending on his value, he chooses an action from T, Ts, Or Tyia-

Suppose that the next arrival hits B(t) of Figure 1. B(¢) may remain at
B, jump to B,, or even to Bs, depending on the quantities associated with
the arrival and B; and B,. If the agent who quoted B; was using T,: when
hit, then A(¢) may jump up as he switches to T2, depending on which is
the more competitive, A; or the agent’s selling price. If the agent who quoted
B; was using Tyi2, then A(t) will not jump up. Besides this complication of
transitions of the market rates, quotations are cancelled as agents move from
the crystal to the frosted-glass state from time to time. While we can derive
the expected time path of the market rates, the transition probabilities of the

market rates are intractable.
6.3. ARRIVAL INTENSITIES

When agents move from one state to another state, they want to adjust
their positions. These represent arrivals of agents. Arrivals are also due to
retail transactions. The arrivals of the agents are generated from four situ-
ations. In the following paragraphs we discuss in detail how the arrivals are
generated in each situation. Suppose that G.(z) shifted at epoch 0 and that
G,(z) # Hi(z), t.e., non-stationary heterogeneity. For ¢ > 0, the sample of
FLE values consists of two groups; those drawn from before epoch 0 and those
drawn after epoch 0. We use H(z) to denote a distribution function for a sam-
ple of X, which arrived before epoch 0; and use G(z) to denote a distribution
function for the other sample of X, which is drawn from the new G.(z) after

epoch 0.
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Frosted glass: When the agent is in the state of frosted glass, he does not
assume an open position. So each time the agent has a retail transaction, he
carries out a reverse transaction in the market. The agent is expected to sell 8,
(buy B;) US dollars per epoch to (from) his retail customers. So he is expected
to buy B2 (sell B;) US dollars per epoch in the market. There are N; agents

who are in the frosted state at a given epoch.

Transition 1 : In this transition, the agent leaves the frosted state and chooses
his X, from G.(z) as shown in Figure 4. For a given set of the market rates
B(t) and A¢), if the agent’s X, is greater than A(t) +u, where u is a half
of the expected spread, then the agent becomes a buyer and hits A(t). Now
he has long position and quotes his selling price; taking actions (4 — 18). If the
agent’s X, is smaller than B(¢) —u, the agent becomes a buyer and hits B(t).
He has a short position and quotes his buying price; taking actions (4 — 19). If
the agent’s X, falls between B(t)—u and A(¢)+wu, then the agent quotes both
the buying and selling prices; taking actions (4 — 20). The expected number of
agents per epoch who have Transaction 1 is given by 6, E[N;]. 1—G.(a) of

them hit A(t) and G.(b) of them hit B,(z), where a= A(t)+u and b= B(t) - v

Crystal glass: The agent has been quoting his price or prices. The agent must
have adjusted his position according to his X,. Unless X, falls in the interval
between b and «, the desired position is the maximum open position. The
values of the X.’s of the agents who are in the crystal glass have distribution
function H,(z). Among the agents in the crystal glass, H,(b) of them have
the short positions and 1 - H,(a) of them have long positions. Their daylight
limits are binding. Each one of them is expected to sell B, (buy 8,) US dollars
per epoch to (from) the retail customers. If his actual position deviates from

the desired position due to the arrival of retail customers, he hits one of the
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market rates in order to adjust his position promptly. In this case, the agent’s
policy is either Ty (4—17—a)or T, (4~17-b). If the agent’s X, falls between
b and «, his desired position is equal to his actual position most of time. The
agent’s policy is Ty12 (4—17—g), together with T2 (4—17—d) which is applied
when the daylight limit is violated. Soif b < z; < a, then he does not trade in
the market each time he has the retail transaction, unless the daylight limit

happens to be binding at that epoch.

Transition 2: Transition 2 means that the agent abandons his expectation and
wants to square his position. If he has a long (short) position when Transition
2 occurs, he becomes a seller (buyer) and hits B(t) (A(t) ). The expected
number of agents per epoch who have Transition 2 is given by #,E[N.]. As
is shown in Figure 5, among the agents who are quoting their prices, H,(b)
of them have short positions and will become buyers when Transition 2 takes
place. And 1- Hi(a) of them have long positions and will become sellers. If
G.(z) and H,(z) are not the same, the sample of the agents in the crystal state
consists of two groups of z;’s; those drawn from the old G.(z), for t <0, and
those from new G.(z), for ¢> 0. The agents in both sample groups may have
Transition 2. We have to derive the number of agents whose X, had come from
the new G.(z) and who already have had Transition 2. The expected number
of such agents is given by $422 (1 —e~%*). The expected number of the agents

81+62

drawn from the old G.(z) is given by $&lNe-02t 1 _ G(a) of the respective
g %y 405 p

sample group become sellers and G(b) of them become buyers.

We want to derive the arrival intensities of buyers and sellers who hit the
given market rates. To simplify the calculation, make the following assump-
tion:

A(6 —2): The quantity of each arrival is unity.
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Let H(z) denote H.(z) of before epoch 0, and let G(z) denote the new
distribution function of G,(z) after epoch 0. Then, using the results of the
preceding paragraphs, the arrival intensity of buyers who hit the offered rate

is given as a sum of the following terms.

Frosted glass: g,E[N/] (6—1-a)
Transition 1: 6, E[N/](1 - G(a)) = $85(1 - G(a)) = I(1 - G(a)) (6—1—0b)
Transition 2: 0, E[NJ{e=*H(b) + (1~ e=*)G(b) } (6-1—c)
Crystal glass: g2E[N.], (6-1—4d)

where b=B(1)—u, a=A()+u and [ = hel,

The arrival intensity of sellers who hit the bid rate is given as a sum of

the following terms:

Frosted glass: g, E[N/] (6—2—a)
Transition 1: 6; E[N/]G(b) = $£L.G(b) = IG(b) (6 —~2—0b)
Transition 2: HQE’[NC]{e"’?‘(l — H(a)) + (1 - e~%)( 1 - G(a) )} (6-2—c)
Crystal glass: g, E[N.]. (6—2—d)

Let As(Xs) be the arrival intensity of the agents who hit the offered (bid)

rate. Each arrival intensity consists of two parts,

Ae = Aot +Aaz and s = App + Aso,

Here, A, represents the arrivals of buyers who hit the offered rate in order
to counteract their retail selling which changed their position from the desired
level; A\, is the sum of (6 —1—a) and (6—1—d). A,, represents the arrivals of
buyers who hit the offered rate due to heterogeneous expectations; A2 is the
sum of (6—1—5) and (6 —1—¢). ), represents the arrival intensity of sellers

who hit the bid rate. Ay represents the arrivals of sellers who hit the bid rate
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in order to counteract their retail buying which deviated their position from
the desired level; Ay; is the sum of (6-2—a) and (6—2—d). A\, represents the
arrivals of sellers who hit the bid rate due to the heterogeneity of expectations.

Ab2 is the sum of (6 —2 —6) and (6 — 2 —¢).

Substituting b, ¢ and d of (6-1) and (6 — 2), and using §:E[N.] =1, we

obtain

Mo = A1 +1{1 - G(a) + e ™ H (B) + (1 - e~ G(b) },
(6-3)
Xo = X1 +1{G(B) + e~ (1~ H(a)) + (1~ ™) (1~ G(a)) }.

6.4. DERIVATION OF THE EXPECTED TIME PATH

To derive the expected time path of the exchange rate, we need arrival
intensities of the agents who hit the bid and the offered rates. When the
arrival intensities are not equal, the exchange rate is expected to shift. There
are two sources shifting the exchange rate. The first is unmatched arrivals
of aggregate retail demand and supply. The second source is shifts of G,(z)
which may be caused by the arrival of news or by adaptive expectations as a
response to a trend in the transaction price. The first cause may give rise to
the second cause. Here we do not consider this interaction of the two sources.
We consider the expected time path, depending on whether the heterogeneous
expectations are stationary, or whether aggregate retail demand meets supply.

A(6 —3): Each agent’s daylight limit is equal to one transaction unit.

A(6—4): Hy(z) and Gi(z) are not equal. (Heterogeneous expectations are

non-stationary.)

We continue the example discussed in Section 6.3. We neglect the bid-ask
spread. So let a =b and let z = a. Then,

Ae = Ao +1{1 —Gz)+ e~ H () + (1 — e"gzt)G(x)}

X = Xy +1{G(@) + 7 (1~ H(z)) + (1~ ™) (1~ G(2)) }
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Suppose that during At, the exchange rate changes by Az. The agents
whose expected FLE values fall in [ z,z + Az ] switch from bullish to bearish
or vice versa as the transaction price changes by Ax. These agents’ positions
switch from long to short or vice versa and absorb 2 units of arrivals. There are
h(z)Az of the agents who switch positions. It was assumed that H.(z) = G.(2)
until epoch 0 and that G,(z) shifted at epoch 0. During [0,t], the expected
number of agents who constitute a sample of H(¢) decreased from E[N,] to
e%*E[N.]. Meanwhile the expected number of agents who constitute a sample
drawn from G(t) increases from 0 to (1 —e~%*)E[N;]. The expected excess
arrivals of buyers in [0,¢] is (A, — Ay )At. This excess of buyers is matched
by a change of positions by the quoting agents. These agents consist of those
from the sample of H(z) and those from G(z) . Let hA(z) and g(z) be
density functions of H(z) and G(z) . Then, the expected number of these
agents is h(z)Az and g(z)Az, respectively. The quantity which each agent

absorbs by switching from long to short positions is 2 units. Using equalities

I _ N 3
7 = 757 = B[N:], we obtain

(Aa = o)At = Oie"%‘Qh(x)Ax + Bi(l — e~ ") 2g(2) Az
2 2

= Z—i{e'eﬁh(x) + (1 - e"egt)g(x)}Ax.

Therefore,

Az /\a - )‘b

= = . (6 —4)
At %‘—{e“ezth(:c) +(1- e“’?t)g(a:)}

A(6 —5): Gi(z) and H,(z) are uniform distributions.

Combining A(6 — 4) and A(6 - 5), let G(z) = £, for =z € [0,k], and
H(z) = =2+, for 2 € [mi,m; +k]. Substituting G(z) and H(z) into the
formula for A, and \,, we obtain

- I et _ ety
,\a_/\al-H{l ~ e +(1—e )k}

k
= Aot (1= Tem®)
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and

Ap = Apy +l{% +6"9’t(1 _z —kml) +(1- e_g’t)%}

= 1 +1(1 + T—Z—le_g")

Hence, As— Ao = Aa1 — Aoy — 20 ZLe~%¢ Substituting this into (6 — 4) yields

Az 1 my —6at 62

7 = k(e = - AT 2
k9

ot —é—lz—(Aal — /\bl) - mlege‘a".

We want to solve this differential equation. The answer is given by

k82

ZE(t) = —2—1— (Aal - >\bl>t -+ mle_ezt + ¢o.

Let z(0) = z¢ be an initial condition. Then, ¢y = zy —m; and

k8
z(t) = -2—1“ ()\41 - /\bl>t +mie % + g — my, (6 —5)

where zo is the value of x when the shift of Gi(z) happened. As t — oo,
z(t) — zo — my , provided that A, =X -
A(6 —4): Gy(z) and H,(z) are the same distributions. (Expectations are

heterogeneous but stationary.)

Substitute m; = 0 into the above equation. Then,

k0
2(t) = =2 (A1 = 1)t + 20. (6 - 6)

This holds only while 0 < z(¢t) < k. When we assume A(6 — 4)’, a slope of the
expected time path is determined only by the arrivals which are due to retail

transactions. The arrivals due to heterogeneous expectations do not have an

influence in (6 — 6).

If the heterogeneity of the expectations is stationary (i.e., G.(z) = H,(z)),
then, according to (6 —3), A. — X depends entirely on X, — Ay, since Agp =

A2 = 1= G(a) + G(b). This means that as long as aggregate retail demand and
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supply are expected to be equal, 7.e., As1 = Ap1, the transaction price will
not move to the mean value taken with respect to G(z). In other words, the
agents’ expectations do not determine a kind of stable equilibrium point. If
Aa1 = Ap1, anywhere within the support of G(z) and H(z), the transaction
price is expected to stay at the level at which the random arrivals put it. It is
similar to a Martingale process for the following reason. When heterogeneous
expectations are stationary, the expected number of entries into the crystal
state by Transition 1 which hits the offered (bid) rate is (1 — G(a)) (IG(b))
and the expected number of exits from the crystal glass by Transition 2 which
hits the bid (offered) rate is also (1 — G(a)) (lG(b)). Forces of the same

magnitude affect bid and offered rates.
6.5. THE MARKET MAKER’S OPTIMAL QUOTATIONS

Agents who quote both buying and selling prices at the same time in
order to take advantage of the heterogeneous expectations of other agents are
called market makers. Their policy is {leg if|Z]| < L; Thaif 2] > L}
((4 —17—g) and (4 - 17 — d)). if for a given expected FLE value z;, An agent
becomes a market maker, interval [z, —u,z, + «] overlaps with [B(¢), A(t)).
The market maker wants both of his quotations to be hit by the same arrival
intensity. Among the combinations of such quotations, he chooses the ones

which maximize his expected profit.

The value of u*, which solves (4 — 15), maximizes the long run average
expected profit. To derive (4—15), we treated the arrival intensity ¢ of buyers
and also of sellers as a function of u which is half of the bid-ask spread. In this
section, we derive an explicit form of ¢ = f(u), assuming uniform distribution

for the expected FLE value. It is possible that the agent will choose T2 and
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become a market maker even if he is bullish or bearish in the sense of A(4-9).
Such action may be profitable, if the arrival intensity is large enough compare

to the slope of &(¢t). However, we do not consider such a situation here.

In order to derive the arrival intensity, we consider which actions agents
will take given their expected FLE values. Suppose Agent 0 wants to determine
the arrival intensity for his quotations. Let z, be his expected FLE value and
2u be the bid-ask spread. Let A and B be Agent 0’s selling and buying
prices such that A=z;+u and B=zo—u. As u becomes larger, the number
of competitors whose quotations fall in interval [B, A] will increase. In order
to calculate the expected number of competitors we assume the following.

A(6 —6): All agents have the same bid-ask spread.

Besides Agent 0, any agents whose FLE values happen to fall around the
current market rates would quote the buying and selling prices with the same
spread, provided that their daylight limits are not binding. In addition to

A(6 — 6), we assume A(6— 3), A(6—4) and A(6 - 5) in the following.

Let a=A+u and b= B —u. Thesupports of G and H are divided
into six regions as is shown in Figure 6. Let z be the expected FLE value of
a given agent. Since the bid-ask spread is 2u for every agent, =z =a Iis the
minimum value of z, such that the buying price z —u is greater or equal to
Agent 0’s selling price, A. Among the agents who are arriving with z drawn
from G(z), thosein region Ss which constitute 1-G(a) of the arrivals hitting
A. If z€Ss, then the arrivals quote the buying prices which fall into $4. If
z € Sy, then the buying prices fall into S;. If 2 €53, then the selling prices
fall into S5 If z € S,, then the selling prices fall into S; . Selling prices
z € S» are lower than buying prices =z € S5, cancelling each other. If z ¢ S,

then the arrivals hit B. The expected number of arrivals of those drawn from

i
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G is 6,E[N;]. This is the per-epoch expected number of agents who have
Transition 1 and it can be written as 6, E[N;] = 28X =1 Among the arrivals,

91492

(1=G(a))! of them hit A and (G(zo)—-G(B))l block A.

Next we consider effects of prices which have been quoted. Their asso-
ciated FLE values are distributed according to H. If =z € S5, then agents
have long positions, and their selling prices are less competitive than A. If
z € S5, then the buying prices fall into S;. Meanwhile, if z € S,, then selling
prices fall into Ss;. It is impossible to have a sample of quotations such that
the quoted buying prices quoted are higher than the selling prices. Therefore,
selling prices z € S; must have cancelled buying prices z € S5 and thus are
not blocking A. If z € S4, then buying prices fall into S3. If z €S53, then
selling prices fall into S; and do not cancel the buying prices z € S;. Buying

prices z € S; block A.

Agents who are quoting prices are in the state of the crystal glass. Their

- OGN

expected number is E[ N, | = 520

= 3. The expected number of agents with
z € S5, blocking A, is given by (H(zo)— H(B))y;. Meanwhile, 6,E[N.] of
the agents are expected to have Transition 2, discarding their expectations,
and to square their positions. Among these agents, H(zo) of them have short

positions and become buyers when they have Transition 2. The expected

number of buyers who hit A is given by H(z0)82E[N:] = H(=zo)l.

The daylight limits are binding for the agents who constitute the sample
for H . If due to retail transactions their positions deviate from the daylight
limits, they bring the position to the original level by hitting market rates.
Aggregate retail transactions become the arrivals at the market right away.

The arrival intensity in this case is A,,.
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Combining the preceding discussion, (1-G(a))l+H(:co)l+,\al hit 4 and
(G(20) - G(B))1+ (H(0) — H(B))# block 4. Let ¢ = f(u) be the arrival

intensity of agents who hit A as a function of wu .

F(u) = (1= G@) 1+ H(z0)l + a1 — (G(z0) = G(B) )i = (H(z0) = H(B) ) -

Let G(z)= H(z)=2. Then, 1-G(a)=1- 242 H(ze) =2 and G(zo) —

G(B)= H(zo)— H(B) = £. By substituting these into f(u), we obtain

f(u):l-{-/\al'-é(?)—l--;;)u 6-17)

The necessary condition for the long run average expected profit maximization

according to (4 —15) is f'u+ f = 0. Substituting (6 —7) into (4 — 15), we obtain

*_k 92 /\al

The optimal spread is 2u*, and Agent 0, whose expected FLE value is =z,

will quote A=zp+u* and B =z —u".
6.6. AGENT’S INFORMATION

The exchange rate is determined through the arrival process of agents.
The parameters of this process are determined by aggregate retail demand and
supply, ARD(t) and ARS(t), and the FLE distribution functions,H,(z) and G,(z).
Agents estimate ARD(t), ARS(t), H,(z), and Gi(z). which are all nonstationary.
The agents estimate these parameters with varying degrees of accuracy. Since
ARD(t) and ARS(t) depend on the individual agents’ retail customers, no agent
can estimate ARD(t) and ARS(t) accurately all the time. The market is not

efficient as is discussed in Levich (1985).
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7. PROPOSITIONS ABOUT VOLATILITY AND TRADING VOLUME

Proposition 1.
As Var[ X (t)]increases, E[A(t) — B(t)]increases.

(The more people disagree, the wider becomes the bid and ask spread.)

Proof: We prove the proposition with the following assumptions: A(6 — 4),
A(6—5) and A(6 —6). Also, we need one more assumption:

A(7 - 1): All agents make the same estimate about the variance of G,(z)

and H,(z) and E[N].

In Chapter 6, the optimal spread 2u* is derived with the assumption
that the agents would have the same spread when they quote both buying and
selling prices. We need A(7 — 1) in order for (6 — 8), the formula for w*, to
be consistent with A(6 — 6) with which the derivation of (6 — 8) is started. Let
G(z)=H(z)=2 and o? be a variance of X;. Then, o?= 4. For the sake of
simplifying the calculation, we shifted the support of the distribution functions
to [0,k]. We consider three types of market-rates quotes. The first is when
only one market maker quotes both bid and offered rates. The second is when
more than one market maker is quoting. Market rates consist of quotations
of the different market makers. The third is when no agent is quoting two
rates. We want to show in all three cases that E[A(¢) — B()] increases as

o? increases. Instead of writing the optimal spread as 2u*, let v* =2u*. From

(6'—8)7




Case 1: We want to show that 2% > 0. Since 3 = 5 (1 + Az“) >0

and £ =12>0,
v Ov* Ok

507 = ok 907 > (T-1)

Case 2: Suppose that the first market maker quotes (B, 4;) = (z— 1’24, z+
v), as his buying and selling prices, that the second market maker joins the
first market maker quoting (B,, Az) = (y—%,y+%), and that their quotations
overlap. If their quotations overlap, then B; < A, and B, < A;. Hence,
g—% =B <Ar=y+% and y—% =B, <A =z+%. Fixing z, the density
function of y, conditional on that [B;,4;] and [B,, 4] overlap, is given by
7=, provided v* <z <k—v*, because y can take value from z—v* to z+v".
Within this range, if the value of y is such that z —v* <y <z ,then A(t) = 4,
and B(t) = B;. The offered rate is quoted by the second market maker, the bid
rate is quoted by the first market maker, and A(¢)-B(t) = A2—B; = y—z4v*. If
z<y<z+v", then A(t)=A;, B(t)= B, and A@)-B(t)= A;j—By = —y+z+v".
Provided that v* <z <k —v*, the expected spread is given by

T

1 z+uv"° . 1
E[A(t)_B(t)]:/ _(y-x+v*)§;)-;dy+/ (—-y+x+v)—2—;;dy
v*

R
If z <v*, and if the quotations overlap, it must be the case that 0 <y < z+v*,
because y— % =By <Ay =z+% must hold. If 0<y <=z, then A(t)= A4,
and B(t)=B;. f z<y<z+v",then A®t)=A4, and B(t) = B,. The density

function of y, conditional on their quotation overlap, is given by 1+ The

T4+uT.

expected bid-ask spread, for z < wv*, is given by

T z4uv"
BAW - BO)= [ (y-stv)gmmdvt [ (ute+ o) Sd

T+ v z

T+ v* z+vt

2 z + v*
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Using the above result, we have 3% (&= - Z2) = § + 7%= > 0. Hence, for
two cases of v* <z <k—v* and =z <v*, using (7-1), b—i—y(E{A(t) - B(t)]) =
3{,’—,(E{A(t) - B(t)])gﬁs} >0. If z>k—v" and the quotations overlap, then,
similarly, 32 (E[A(t) - B(t)]) > 0.

If there are more than two market makers who are quoting, then we have

the same result by the similar derivation.

Case 3: No agent is quoting both bid and offered rates at the same
time. And the bid and ask spread in the market is wider than +*. If an
agent’s FLE is z, then his bid rate is =~ % and his offered rate is =+ 4.
Since a support of G(z) and H(z) is [0,k], the bid (offered) rate is dis-

tributed over [ —% k- % ] ([ =k + 25—]) If there is no quotation in a

ko

given interval, [zo,z)), for -% < 2o <k-% and & <z <k+Y%, any
quoted price must fall outside of [zg,z;]. Together with A(6 — 5), it implies
that if any agent is quoting price, his expected FLE value z must satisfy
the following inequality. =z - lz— <=z or z; <z+%. No agent’s expected
FLE value z stays in an interval [zo+ 4,21 —%). Let w = 21— 2o — v
the length of the interval where nobody’s expected FLE value =z is located,
when no price is quoted in [zo,2;]. Then the length of the interval where
nobody’s quotation is located is w+v*. Let wy be an event which is ex-
pressed as intersections of three events, { No agent is quoting both rates. } n
{m agents are quoting their prices. }N{A(t)-B(t) = w+v*}. Event wo is equiv-
alent to { No one’s z is located in the interval of length w when m agents are

quoting their prices. } Hence, the probability of event wq is given by

Pr(wo) = (1_%)'". (7-9)
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We approximate (7 - 2) by Taylor’s expansion. Let f(%) = (1-2)™. Then,
w f 57(0) w

HZ) = fO)+ FO T+ 5=(2)°

_ w m(m =1) w2
=l+m—+ ——2——( k)

Let y=%. Then 0<y<1and w=ky. Given that m agents are quoting, but
that none of them is a market maker, the expected value of the bid-ask spread

is given by

1
E[A(t) - B®)] = / (ky+v7) f(v) dy
m(m—1) ,
/(Ly+v {1+my+ }dy
0
= 52—(3m‘ +5m+12) + —6—(m~ +2m + 6).
For any m, 3m?>+5m+12>0 and m?+2m+6 > 0. ;From the result of the
first case, &~ > 0. We obtain ZE[A(t) — B(t)] > 0. Therefore in all three cases,

Ty

2 E[A() — B@)]>0. Q.E.D.

(4

Proposition 2.
As Var[X(t)]Jincreases, Var[S(t)] increases.

Proof: Arrivals of agents are generated by two causes; heterogeneity of ex-
pectations and retail transactions. In order to prove the Proposition 2, we
have to distinguish arrivals due to two causes. We define three variables,
aggregate heterogeneity transactions, aggregate retail transactions and aggre-
gate excess demand. A definition of aggregate heterogeneity transactions is
cumulative quantity which the offered rate was hit minus cumulative quantity
which the bid rate was hit by those who arrived due to heterogeneous ex-
pectations. Let AH(t) denote aggregate heterogeneity transactions at epoch
t. Its expected value is given by E[AH(t)] = (a2 — Ae2)t. If A(6—4) is as-

sumed, then by (6 —7), X2 = A2, and hence, E[AH(t)] = 0. Second, we
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define aggregate retail transactions. Aggregate retail transactions are excess
of aggregate cumulative retail selling over aggregate cumulative retail buying.
Let ARD(t), ARS(t) and AR(t) denote aggregate retail selling, aggregate
retail buying and aggregate retail transactions at epoch t, respectively. By
definition, AR(t) = ARD(t) — ARS(t) and E[AR(t)] = (Aa1 — Xe1)t. Thirdly, we

define excess demand at epoch t, ED(t), such that ED(t)= AR(t)+ AH(t).

We use the same assumptions as in Proposition 1 and one more assump-
tion.

A(7-2): Aggregate retail demand and supply have the same arrival rates,

Aal = Ap1.
Suppose that the aggregate excess demand equals ¢ at epoch ¢, ED(t) =g
and that, initially, AR(0) = 0 and S(0) = so. Let W = S(t) — E[S(®)],
then Var[W] = Var[S(¢)]. The difference in the arrivals of buyers and sellers
is absorbed by agents who switch their positions. The FLE values of those
agents have distribution H,(z). To simplify the proof, let us suppose that the
agents’ FLE values are deterministically distributed according to H,(z). For
given ¢, and m the number of agents quoting their prices, there is a value for

W, denoted by w, which satisfies
w3
q= 2/ h(u)dum. (7-3)

(7 — 3) implies that excess aggregate retail demand is absorbed by the agents
who switched their positions, for example, from short to long if ¢ > 0, and
that the number of those agents are f:‘;'“" h(u)du percent of m. With A(6-5),

(7-3) becomes ¢ =2(H(w+ so) — H(sp))m =242 Hence, w= 5%;1] holds and

k

2m

W = —ED(1).



79
ED(t) is a sum of the four compound Poisson processes. We assume all four
arrival processes are Poisson processes in order to simplify the proof,!? instead

of assuming compound Poisson.!* Then,
E[ED®)]= (Aa—As)t and  Var[ED(®)]= (Aa + Ao)t.

Since W = £ ED(t),

Var[ W] = (5";)2\/&[30@)]. (7 —4)

Neglecting the bid-ask spread, from (6 — 3), we have
M =d1+! and  Ag =2+, (1-5)

where [ = %i-%giv— Hence, Var[AR(t)] does not depend on the heterogeneity of

expectations. t.e., not depending k, the parameter of the FLE distribution.

Hence, ¥l — _k var[ED(t)] > 0. Therefore, 2501 - aVarlWl ok - ¢

Q.ED.

According to existing theories, during a so-called “turbulent era,” when
Var[S(t)] is larger, the bid-ask spread is widened in order to compensate market
makers who still stand ready to trade with other agents. Contrary to these
theories, in our model the wider bid-ask spread during a volatile period is not
due to compensations for market makers to take additional risks. What makes

the spread wider is the degree of disagreement among the agents.
Proposition 3.

Var[ S(t)]increases, as N |0 (effect of thin market).

13To obtain the expected values of the compound Poisson process, mul-
tiply A, and A, by the expected value of the individual retail transaction,

E[C]. The variance is given by {Var[C] + E[C]Z}(/\a + Xs).

4They are all uncorrelated by assumption.
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Proof: We use the same assumptions as Propositions 1 and 2. So far m is an
arbitrary positive integer. Here, let m denote an expected number of agents
who are quoting. From (7—5), Ao = Ap1+! = Ap1+62m and Az = A1+l = Aa1+62m,
where m = E[N.] = 7%5-N. And Var[AR(t)] = X + Aa = As1 + Aar + 20am. We

differentiate (7 —4) with respect to m, to obtain

OVar W] k2 k \20Var[ AR()]
= — t —_— R Tl 2L )
om 2m3var[AR( N+ ( 2m ) om
k2 k20,
= _27’71- 3(Aal +/\bl) -+ Ime
k2
= o { = (Na1 +201) +mba}.
If Xa1+ Aoy > mbs , or equivalently, if Aap + Ay > 1= $9T, then Ve W] .

avar(S(1)] _ &Var[W] om

om . .
Because —5% 2 logm and €% >0, the variance of the transaction

price increases, as the number of the agents decreases from m = g-(Aa1 + As1).
If m > -(Aa1+2s1), then the variance of the transaction price increases as the

number of the agents increases. Q. E. D.

In the first case above, as the number of market participants becomes
smaller, the variance of the transaction prices increases. This is an effect of
thin markets. For a given H,(z), as N increases from 0, a larger number of
agents are waiting behind the market rates A(t) and B(t). Therefore, jumps
of S(t), caused by batch arrivals of buyers and sellers, tend to be smaller.
Hence the fluctuation of S(t) becomes smaller. However, after N reaches
(Ma1 +Xs1 ) &22) - an increase in N results in further fluctuation of $(t). An
increase in N increases \,» and )y, Since the variance of the number of
arrivals of the Poisson Process is equal to its expected value, the variance
increases as the arrival intensities increase. As the variance of the arrival
number increases, S(t) fluctuates more. This is a destabilizing effect of an

(8:1482)

increase in the number of agents. For N > (Aa1+Xs1 ) 55>, the destabilizing
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effect of AN dominates the stabilizing effect which absorbs more of the

variation in AR(2).

Proposition 4. When Var[S(¢)] is large, the expected value of trading volume is

also large.

Proof: Let TV(T) be the trading volume of the day. The expected trading
volume is equal to max{ AT ,/\g,T}.15 Since the arrival processes are piece-
wise stationary, the arrival intensities defined for an entire day are weighted
averages of the arrival intensities which constitute piece-wise stationarity. The
weights are the lengths of each stationary period divided by T. Excess demand
was defined as ED(t) = AR(t)+ AH(t). We interpret ED(t) as ED(t) =
AD(t) — AS(t). Then with A(6 —4) and A(7-2), E[AD(t)] = E[AS()] = Aat.
From (7-5), A = A +1 for i=a,b, where I = %N. Since 8‘9—9’1 = (%% >0

and £- >0, wehave £¢ >0 and £i>0, for i=aq,s. Then,
2 1 2

OE(TV()] _ E[TV()]8); 8 _ (62°N
30,  0x; 0l 96, (61 +6)°

>0,

where )\; = max{As, A»}. The expected trading volume increases as 6, and 6,
increase. By (7 —5) and (7 — 4), the variance of S(¢) increases as X;, i = a,b,
IN;

increases. And we know 3¢ >0, for i=q,b. Therefore, Var[S(t)] and the

trading volume increase together as 6, and 6., or both increase. .E.D.

When the variance of X, is larger, the agents revise their expectation
more frequently. This frequent revision means that ¢, and 6. are larger. It
implies that the number of times when the transitions between the two states
of expectations occur is larger. For a given H,(z) , the arrival intensities A, and

As become larger and the trading volume becomes larger.

15 Difference (A, — X )T is filled by net aggregate open positions during
the business day and either by flow to or from the markets abroad or by the
loan market at the end of the business day.
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If we introduce the additional assumption that Var[X(t)] is larger when 6,
and 6, are larger, then Proposition 4 has an additional supportive argument:
When big news hits the market, not only the mean value of X, shifts, but also
Var(X,) increases. This is because even if all the agents agree on the direction
of the price shift, they do not agree on the exact quantitative effect of the news.
When the degree of disagreement increases due to the big news, agents tend to
revise their expectations more frequently. As agents revise their expectations
more often, they adjust their position more frequently. The trading volume

increases.

Another argument to support Proposition 4 is possible if we introduce an
adaptive expectation which associates shifts of G.(z) with the movements of
the transaction price. Suppose that if the agents are more uncertain about the
trend of the exchange rate, individual agents tend to revise their expectations
more frequently, i.e., larger ; and 6., and that in such periods, the variance
of X, is larger. When S(¢) moves due to the unmatched arrival of agents,
the change in S(¢) will be faster as 6, becomes larger, because the number of
Transition 1 of expectations for a given interval of time is larger for larger 6,.
For a given 7, which is a length of time during which the moving average is
taken, a given change in S(t) has more effect on the autoregressive terms, which
cause the shift of G,(z). Therefore, if expectations are revised more frequently,
G.(z) shifts more frequently. Due to the more frequent shifts of G.(z) when
the variance of X, is larger, the exchange rate is more volatile. Thus, the
increased volatility of the exchange rate and a wider bid-ask spread can occur

at the same time.
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However, Propositions 1 to 4 together will explain the reason why, in
contrast to the equity market, empirical researches fail to show a clear pos-
itive relationship between price volatility and trading volume in the foreign
exchange market.!® Distribution functions H(z) have different values for their
variances. The trading volume increases by increases in A;, Ay or both. X,
and ), consist of two parts. One represents arrivals originated in the ag-
gregate retail transactions and the other represents arrivals generated by the
heterogeneity of expectations. The aggregate retail transactions may vary,
while Var[ X,] is determined separately. It is possible that on a given day, A,
and )\, are larger than their daily averages while Var[X,] is smaller than its
daily average. Had this situation occurred, then Var[S(t)] would be smaller
than its daily average, while the trading volume would be higher than its daily
average. If Var[X,] is smaller while A,; and ), are larger, Var[S(t)] may stay

the same or even smaller, while the trading volume is higher.

In the equity market,'” on the contrary if A,, or A, increase, then
almost all of increments consist of arrivals due to the heterogeneity of the
expectations. §; and 6, are larger and Var[X;] is larger at the same time.
Therefore, in the equity market an increase in the trading volume is always

accompanied by an increase in Var[S(t)].

16Details are discussed in the introduction.

1"The equity market is a retail market, while the foreign exchange market
is a wholesale market. Interpretation of X,; and X, for the equity market is
arrivals of orders generated by liquidity purpose by the public. X2 and Aps
are generated by revisions of the expected stock prices by the public.
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PART 3.

APPENDIX

A. SWAP TRANSACTIONS

Swap in foreign exchange markets means you trade all at once the for-
eign currency of two different delivery dates with trading of one delivery date
reversing the other. Most swap transactions consist of either buying the spot
and selling the forward or selling the spot and buying the forward. Some
swap transactions consist of other combinations of delivery dates, including

today-tomorrow, tomorrow-spot,* and forward-forward.

As an example of a swap transaction, you may sell spot US dollars against
other currency and buy forward US dollars at the same time. This transaction
can be thought to be a repurchase agreement of a currency or a loan of one
currency with the other currency as a collateral. You have the other currency
instead of US dollars until the due date of the forward delivery. You may
make a loan in the other currency. On the delivery date of the forward, you
receive the principal and the interest on the loan. You use that principal to
complete the swap transaction. You deliver the other currency and receive US

dollars. The forward rate and the relevant interest rate are known when you

1Delivery of the spot currency is two business days after a contract.
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make the swap transaction, except for the spot rate which may be applied on
the interest from the loan. The market makers’ profits are determined today
and the profits are realized on the delivery dates of the forward. The market
makers of swap transactions are not exposed to any exchange risks. They only
take default risks. The default risk of banks is practically negligible. The
market makers stand ready to trade at their quotations without taking into

account of the expectation of the future spot rate.

B. POISSON AND COMPOUND POISSON PROCESSES
B.1. POISSON PROCESSES

A stochastic process {N(t),t > 0} is said to be a counting process if N(t)
represents the total number of events that have occurred up to epoch ¢. A
counting process is said to possess independent increments if the number of
events that occur in disjoint time intervals are independent. A counting process
is said to possess stationary increments if the distribution of the number of
events that occur during any interval of time depends only on the length of
the time interval. The counting process {N(¢),¢ > 0} is said to be a Poisson
process having rate A, A > 0, if

(1) N(O)=0.

( i1) The process has independent increments.

( iii) The number of events in any interval of length ¢ is Poisson distributed
with mean M. In this paper, we call this A an arrival intensity as in

queueing theory.
B.2. COMPOUND POISSON PROCESSES

A compound Poisson process means that the number of the arrival is

a Poisson process and that each arrival has its quantity. An example of a
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compound Poisson process is cumulative insurance payments. Let N(t;) be
the number of insurance claims during an [0,%,]. N(¢) is a random variable
and N(to) follows a Poisson distribution with an arrival intensity «. It implies
E[N(t0)] = ate. The expected number of arrivals is proportionate to the length
of time. Let X; be an amount of the ith insurance claim which is filed with an
insurance company during the interval [0,%0). A sequence of random variables
{X;} are assumed to be independently and identically distributed. Let Y
be the cumulative amount of the insurance claims for the period of [0,¢];
Y =X+ Xo+ Xs+---+ Xny. If we assume X; and N(t) are independent,
Y follows the compound Poisson process. Since E[N(to)] = oty, the E[Y] is

given by
E[Y] = E[X1]E[N(t0)]

= O('toE{Xl}
The expected values of cumulative retail transactions in our model are
derived in an identical manner. Since the arrival process is Poisson, the ex-

pected values of Ry and R, are proportionate to the length of the interval.

Let’s take an example of interval [0,#,]. Assuming R,(0) = R»(0) =0,
E[Rl(to)] = QltoE[X] and E[Rg(to)] = agioE{X]

where o is an arrival intensity of retail sellers, oy is an arrival intensity of

retail buyers, and X is a quantity demanded or supplied by each retail arrival.

The retail transactions between epoch ¢, and T are given by R2(T') — Ra(t0)
and Ry(T) — Ry(to). Their expected values are proportionate to the length of
time of this interval, T —to. Let B = ;E[X], for i=1,2. Then the expected

value is written as

E[Ri(T) — Ri(to)] = B:i(T —to) for i=1,2.
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Figure 1. a Glance at the Market
1. Agentl trades US dollars with his retail customers whenever they want.
2. Agent2 declared his buying price B, to the broker. The broker keeps B,
on the list but he does not announce B, to the agents because B, is not the

maximum buying price among those being quoted.
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Figure 1. a Glance at the Market (Continued)
3. Agent3 declared his selling price 4; to the broker. The broker announce
A, which 1s the minimum of the quoted selling price to all the agents.

The quotation is anonymous.

4. Agentd shouts “4, is taken.” He buys at 4, which has been quoted for a

while.

5. Agent4 finds an identity of the seller who is Agent3. US dollars are

delivered by Agent3 to Agentd4 two days later.
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Figure 2. Successive maximizations
An agent maximizes the expected profit of each monotone subperiod: 1.
buy at S(to); 2. sell at £(t;); 3. buy at £(t2); 4. sell at £¢(T). The maximization

over an entire interval (¢;,7] is obtained by such successive maximizations in

the monotone subperiods.
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Figure 3. Transitions of Expectations

The length of time an agent stays in the state of the frosted glass follow
an exponential distribution 6; exp(~6:t). And 8; exp(—82t) for the state of the

crystal glass. The expected length of stay is for the state of the frosted

5
glass and ;- for the state of the crystal glass.
For a total number N of agents, B[N, ] the expected number of agents
who stay in the state of the crystal glass for a given epoch is given by E(¥,. ] =
W%Q'T/_a;‘v = 5725;-N. When transition 1 occurs, the agent’s z, follows G.(z).
H.(z) 1s the sample distribution of z, for the agents who have already arnved
and are quoting their prices. If G,(z) = H.(z), then the heterogeneity of the

expectations is stationary. When transition 2 occurs, the agent’s squares his

position, ie., eliminating the open position.
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Figure 4. Distribution of z; of New Arrivals

Gi(z) is a distributions function such that when transition 1 occurs with
a given agent, the value of z,1s random drawing with this distribution. Let
a=A(t)+v, b=B(t)-u where 2u is the expected bid-ask spread. If X <,
then an agent will hit the bid rate B(t) upon arrival, since the agent is bearish
in a similar sense of A(4-9). Then the agent quotes =z, —u as his buying
price. If X > a, then the agent will hit the offered rate A(¢) upon arnval,
since the agent is bullish in a sense of A(4—9). Then the agent quotes z,; +u

as his selling poce.
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Figure 5. Distribution of Sample z,

H,.(z) 1s a sample distribution of z, .

being quoted by the agents whose FLE are z,; and z,. Let o

4; and B; are selling and buying prices

i

At) +u,

b= B(t)-uv where 2 1s the expected bid and ask spread. Since 4; =z, +u

and B; = Ty -y,

the support of H,(z) If X <,

the quotations are distributed over the wider range than

then an agent is beansh in a similar sense

of A(4-9). He must have sold US dollars upon armval and he 1s currently

assuming a short position. The agent will become a buyer when transition 2

of his expectation occurs. If X > g,

then the agent 1s bullish in a sense of

A(4 - 9). He must have bought US dollars upon arrival and currently he is

assume a long position. He will become a seller when transition 2 occurs.
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Figure 5. Distribution of Sample z, (continued)

If the heterogeneous expectations are stationary, it.e., (G.(z) = H.(z)),
then the arrival intensity of the new armvals who hit the offered (bid) raie is
equal to the intensity of the agents who are leaving the crystal glass and hit
the bid (offered) rate. As a result, like a Martingale process, the transaction
price is expected to stay at the location where the random arrivals put it.
The transaction price does not converge to the mean value of FLE taken with

respect to H,(z) and G,(z). This result does not depend on the shape of #, (=)

a.nd Gt (I: )
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Figure 6. Actions Depending on Expected FLE Values
A : buying price being quoted.
®m : selling price being quoted.
A @ buying price which x&‘guld be quoted unless the daylight limit is binding.

0O : selling price which would be quoted unless the daylight limit is binding.
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