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ESTIMATION OF ABILITY USING PSEUDOCOUNTS IN ITEM
RESPONSE THEORY

Haruhiko Ogasawara*

A method for estimation of ability using pseudocounts in dichotomous item response
models is given when associated item parameters are known or estimated by a separate
calibration sample of examinees with the size of an appropriate order. The pseudo-
count minimizing the asymptotic mean square error is algebraically obtained. Though
the pseudocount depends on unknown ability, a fixed lower bound for the pseudocount
is derived under the logistic model with equivalent items. The lower bound is numer-
ically shown to be reasonable under the 3-parameter logistic model with and without
model misspecification.

1. Introduction

In item response theory (IRT), estimation of the ability or proficiency level of an
examinee is one of the main purposes of the associated ability test. Among various
estimators of ability, the maximum likelihood estimator (MLE; Lord, 1953) has been
a basic one. The maximum a posteriori or Bayes modal estimator (BME; Samejima,
1969, Chapter 2; Bock & Aitkin, 1981) is also familiar, where the standard normal
prior is typically used. The so-called weighted likelihood (WL) by Warm (1989) gives
the WL estimator (WLE) removing the asymptotic bias of the corresponding MLE
when the IRT model is correctly specified. Warm’s (1989) method can be seen as a
special case of the weighted score or the penalized likelihood (see e.g., Firth, 1993).

Ogasawara (2012a) gave the asymptotic properties of the MLE under possible
model misspecification (p.m.m.). Ogasawara (2013a) dealt with the MLE, BME and
WLE as special cases of the estimator by the weighted score with a general weight that
corresponds to the first derivative of the log prior density with respect to the ability
parameter in the case of the BME. Under this unified formulation, Ogasawara (2013a)
gave the asymptotic properties e.g., the asymptotic mean square error (AMSE) of the
estimator with the general weight.

In the above methods, item parameters are assumed to be known or to have fixed
values for estimation of ability. Ogasawara (2013b) gave the asymptotic properties of
the ability estimator when the associated item parameters are estimated by a separate
sample of examinees with size N for item calibration. Ogasawara (2013b) also showed
that when N is of order O(n®?), where n is the number of items, the asymptotic cu-
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mulants up to the fourth order and the higher-order asymptotic variance of the ability
estimator with the general weight using estimated item parameters are identical to
those when the item parameters are known.

In this paper, the dichotomous response model is used, where the 2 x n contingency
table for correct and incorrect responses by an examinee is formulated with n items
being generally distinct. In the table, there are n 1’s and n 0’s. The 2 x 1 collapsed
table for the numbers of correct and incorrect responses can be obtained, where the
sum of the two frequencies is n, though the number-correct score is not necessarily the
sufficient statistic for the ability parameter unless special models e.g., the 1-parameter
logistic model (IPLM) are used. As a special case of the 1PLM, the logistic model
with equivalent items without guessing parameters (LME; Birnbaum, 1969) reduces
to the binomial error model (Lord & Novick, 1968, Chapter 23).

A pseudocount (PC) is an artificial frequency to be added to the cells of the con-
tingency table in order to have “better” estimation of associated parameters. In the
case of the binomial proportion with the 2 x 1 contingency table, various values of the
pseudocount have been used, which will be addressed later. The pseudocount method
can also be seen as a weighted score method, which gives the asymptotic properties
of the ability estimator with the pseudocount.

In this paper, the pseudocount with minimized AMSE is derived. Unfortunately,
the optimal pseudocount depends on the population ability to be estimated. However,
when the LME holds, a fixed lower bound of the pseudocount is found. The lower
bound and other values of fixed pseudocounts are illustrated in the case of the familiar
3-parameter logistic model (3PLM) with and without m.m., where the item param-
eters are assumed to be known or estimated under the condition of N = O(n%?).
Asymptotic and simulated estimation errors in a numerical illustration show that the
lower bound obtained under the LME is reasonable even in the case of the 3PLM with
and without m.m.

2. Estimation using pseudocounts

Let Un(m = 1,...,n) be the dichotomous variable taking values of 1 and 0 for
correct and incorrect responses, respectively to the m-th item by an examinee with
ability 4. In the case of the 3SPLM

1—c¢,
1+ exp{—Dan(0 — by)}’
Qn=1-P, (m=1,...,n), (2.1)

P, =Pr(Uy, = 110, am, b, ) = ¢ +

where D = 1.7; and a,,, b, and ¢, are the item parameters for the m-th item. The
main results in this paper also hold when the item parameters are replaced by the sam-
ple counterparts under the condition N = O(n®?) (Ogasawara, 2013b). The notation
e.g., fixed a,, rather than estimated &, is for simplicity. Under model misspecification
(m.m.), an alternative probability P, for correct response is defined as

PTm EET(Um), QTm = 1—PTm (m= 1,...,’)’1,), (22)
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where Ep(-) is the expectation using the true distribution of U,, at 6 and Pr, # B,
for at least an item (E(:) will be used under correct model specification (c.m.s.)).

Define ¢* as the total number of the pseudocounts for the 2 x 1 collapsed contin-
gency table, where ¢* is not necessarily integer-valued. That is, each cell has 0.5¢*
for its pseudocount. In the case of the binomial proportion, ¢* = 1 (0.5 for each
cell) was derived by Haldane (1956) and Anscombe (1956) such that the asymptotic
bias of order O(n~1) for the sample logit vanishes. The value ¢* = 0.5 (0.25 for each
cell) is used by Hitchcock (1962) in the case of logistic regression. Agresti and Coull
(1998) (see also Agresti & Caffo, 2000) proposed ¢* = 4 (2 for each cell) for interval
estimation of the binomial proportion. Recently, the value 0.1 of the pseudocount for
each cell of the 2 x 2 table was used by Bonett and Price (2007).

For the 3PLM with generally distinct items, the total number of pseudocounts is
to be equally distributed to n items as in the above cases. That is, in the 2 x'n table,
each cell has n~10.5¢* for its pseudocount. Let Lpc be the (pseudo) likelihood of 6
when the pseudocount is used. Then, Lp¢ is formally written as

n /n
H PU +n10. 5c*Q1 Un4n~t0.5cx _ <H PU Ql Un ) {H (PQO>O.5c*}1

m=1 m=1

= L f(6), (2.3)

where L = [ _, PYnQL-Un is the usual likelihood or Lpg with ¢* = 0; £(6) = O(1)
is seen as a prior density or its proportional from Bayesian point of view; and
Jm(0) = (PrQn)%5 is also seen as an independent prior for the m-th item. Note
that £(0) is the geometric mean of f,,(0) (m =1,...,n), and becomes equal to f,,(0)
when items are equivalent e.g., under the LME.

Actually, f,,(0) becomes typical priors in some cases. When the 2-parameter logis-
tic model (2PLM) holds, D%a2 P,,Q,, is the Fisher or item information for the m-th
item. Then, (P,Qm,)%5 with ¢* = 1 is proportional to the Jeffreys (1946; 1961, Sec-
tion 3.10) non-informative prior for the m-th item. That is, ¢* = 1 in (2.3) gives the
geometric mean of the independent Jeffreys priors whereas the usual Jeffreys prior is
given from the test information i.e., the sum of the n item informations averaged over
items or the arithmetic mean of the item informations:

i= "IZP 2 /(PrQm), (2.4)

where P, = 8P,,/00. Under the 2PLM, (2.4) becomes

n

i=n"1D? Z a2 PrQm. (2.5)

m=1

It is known that the Jeffreys Bayes modal estimator (JME) under canonical
parametrization in the exponential family has zero asymptotic bias of order O(n™!)
when the model holds (Firth, 1993; in the current paper, the BME refers to only the
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estimator using the standard normal prior). The ability estimator with fixed item pa-
rameters in the 2PLM belongs to this family. However, the corresponding estimator
in the 3PLM does not belong to it. That is, Warm’s WLE under the 2PLM becomes
identical to the JME. Since under the LME, f(6) with ¢* = 1 becomes proportional to
the usual Jeffreys prior, bias reduction for the ability estimator even under the SPLM
with different items is expected to some extent when ¢* = 1 is used, which will be
numerically illustrated later.

It is known that the bias of the MLE of ability is positively correlated with the
population ability 8y (Lord, 1983; Ogasawara, 2012a). That is, when 6y is positive
(negative), the MLE tends to be larger (smaller) than 65. Equal pseudocounts for
the two cells of correct and incorrect responses have the effect of centering the MLE
towards 0.

When ¢* = 2, fn(0) = P,,Q, which is proportional to the informative logistic
prior Da,, P, @, whose cumulative distribution function is P, under the 2PLM. It
is known that when a,, = 1, b,, = 0 and ¢,, = 0 with D = 1.7, | P,,(8) — ®(6)| < 0.01
for all # (Lord & Novick, 1968, Inequality (17.2.2)), where ®(-) is the cumulative
distribution function of the standard normal. Thus, f(6) with ¢* = 2 is reduced to
an approximate geometric mean of various independent normal priors. In the case of
the binomial proportion, ¢* = 2 corresponds to the flat beta prior, where the poste-
rior mean of the binomial proportion is given by (np + 1)/(n + 2) with p being the
unbiased sample proportion, which is also derived by Laplace’s rule of succession (see
e.g., Wilson, 1927, p.210). :

In similar manners, f,(6)’s with other ¢*’s are seen as priors or penalty functions
for shrinkage estimators (see e.g., Gruber, 1998, Chapter 1; Lehmann & Casella, 1998,
Chapter 5, Section 5), whose effect is stronger as ¢* becomes larger.

Define lpc as ‘

Ipa =n tlogLpc =n tlog L +n~tlog 1(0)
- n 1/n
— -1 *
= [ +n710.5¢ log (Hm:1 PQO> (2.6)
=1+ n10.5¢" log h,

where h = O(1) is the geometric mean of P,Qy, (m = 1,...,n) mentioned earlier
(compare ¢ of (2.5) under the 2PLM). The estimator fpc using the pseudocount
(PCE) is given by maximizing Lpc or Ipc, which is obtained by the solution of the
following equation:

S S 7
_ 0.50 %
BOpe  Bpg T T,

. L 1 -1 *
- 2 g {Un =Pt n 7050 (1= 2P} P’ =0, (27)

where ' = Oh/00pc. From (2.7), it is seen that the normal equation for the MLE
denoted by Oy, is modified for pc by replacing the actual observation U, with
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Un+n710.5¢*(1 — 2B,,) or by replacing Py, in {-} with P, —n~10.5¢*(1 — 2PF,,). Un-
der m.m. with Pr,(m = 1,...,n), the population fy is defined as the solution of
Er(dl/80pc) = 0 without f(0).

3. Pseudocounts reducing the asymptotic mean square error

In (2.7) it is found that 0.5¢*h//h is a special case of the general weight g(4) for
the weighted score dealt with by Ogasawara (2013a) when 6 = 0pg. The weights for
the MLE, BME, JME, WLE and PCE are summarized as

g(0) =0 for ML, g() = —6 for BM, g(8) =7'/(27) for IM,

- - - 3.1
g(6) =7/(21) for WL and g(#) = ¢*h’//(2h) for PC, (3-1)
where |
= 32 ~ P (1—2P,)P, /3} } o 'P "
= om=n { - e j=n"t Z (3.2)
2 )
0?PB,
and P, = 502

Denote the m-th cumulant of the generic estimator favw using the general weight
g(8) by km(Baw). Then, their asymptotic cumulants up to the second order are given
as

k1 (Baw — 0g) = n"tay + O(n~2),
ko(faw) = n"tas + n"2ans + O(n3) (a2 = amre),
-1

(3.3)

where n 1oy is the asymptotic bias of order O(n™1); n"tay is the usual asymptotic
variance of order O(n_l), which is equal to n a2 by ML; and n™2aas is the added
higher-order asymptotic variance of bew, respectively. The actual expressions of the
asymptotic cumulants under p.m.m. are given by Ogasawara (2013a, Equation (3.4),
Appendix A.2)

From (3.3), the MSE of Ocw is given by

Er{(faw — 60)?} = {’ﬁ(éGW —6p)}? + Ko (Oaw)
=n"tayre +n7%(e? + ans) + O(n~3) (3.4)
= MSEo -2y (faw) + O(n™?),

where MSEq(,-2y(-) is the AMSE up to order O(n~2). The actual expression of
MSEO(n~z)(§GW) under p.m.m. is given by Ogasawara (2013a, Equation (3.13)) as

NISEO(nfz)(éGW) = n_l(l’MLQ + n=? |:01MLA2 + aIQ\/ILl
1 3 0%
. —
—2X7 g (Bo)anir2 — 29(6o) {)\ Er < 89|9 % 552 lo= 90> (3.5)

0931 _ ~
—A7? Er (aeg |e_90> amrLz + A 1aML1} + A QQ(GO)QJ :
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where amraz and oy are defined similarly to amre; A = E(821/0602|p=s,);
§00) = 09(0) /D80y o o
Under c.m.s., using are = i+, where 4 is i given by 6o, amr1 = —Jjo/(2:2) (Lord,

1983; Warm, 1989) and the Bartlett identity, (3.5) becomes

MSEO(H~2)(égw) == n_lggl +n2 [aNILA2 + a%/[m + 2%0_2.9/(90)
—io° (240" + Jo)g(8o) + 15 % 9(60)?,
where 7o’ and jp are defined similarly to 79. Note that n™ag+n"2(amraz + o) in
(3.5) and n7Yigt +n "2 (amLaz + odp,) in (3.6) are MSEO(n—z)(éML)’s, though anmpas
and oy in (3.5) are generally different from those in (3.6), respectively.
When g(f) = c*ho’/(2hg), where hy' and hg are population counterparts of A’ and
h, respectively, (3.6) under c.m.s. is written as V

MSEO(n‘Q)(éPC) = MSEO(n*Q)(éML)

(3.6)

o i ]_7, ! h 2 (37)
272 2% —2,%27-2
+n { i 892]1]6 60 — 10" (210’ + Jo) h0}+n 0" gz
which is minimized when c* is
2h3 (ho"  ho? 2ho (-,
Chin = 7 Z (ﬁi - 7‘%2‘) T ]tLO, <ZO’+ ]§O>
0 0 0 oho (3.8)

EOBOH 277’ = 30
= —2—= 24 = —
holQ e ’Loho ‘0 + 2 ’

where hy’ # 0 is assumed and 49 > 0 due to another assumption of finite 8.
In (3.7) and (3.8),

20(60)  ho 4 i 1—2P, .,
—~ == =7 P, (3.9)
c hO =1 PQO

(see (2.7)) and

29'(00) 9 hy' 0 i ~~1—2P,
o TRy T 50" Z Ty, Ll

3.10
. Z { —2P,"” + (1 — 2P ) B (1 — 2Pm)2Pm'2} (3:10)
PrnQum (Pn@m)®  J
Then, (3.8) is rewritten as
" 1-2P ”
¥ -1 — mP !
Choin 2 <n Z 7.0 m)
. Z 2P 2+ (1-2P,)P," (- 2P,.)2P,,? 311
P (Brr)? (3-11)

+2igt [ n7t 125 Ly (%’Jrifl).
0< ;4:41 PrQn ° T
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Under the 3PLM, let U,, = 1/[1 + exp{—Da,,(0 — b,,)}]. Then, in (3.11),

P, = Day(l —cn)¥n(l —¥,),

3.12
By = D22 (1 — ) (1 — 20 ) Uy (1 — W), .

In (3.8) or (3.11), ¢&,;, includes unknown 6y and is not obtained in practice. How-
ever, under the LME, where

1
P,=P= , =1-P =1,...,n),
TFop{—Dag =0} © (m n)

%0 = ho = P?/(PQ) = D?a?PQ, (3.13)
- — 73/ i _ s
0 0 = Jo

with P’ defined as P,/, a fixed lower bound for ¢ is found as follows.

Theorem 1. Under the LME of (3.13) with the assumptions of iy’ = jy # 0 and
finite 6y, a lower bound of ¢} ; is 3.

Proof. Using (3.13), ¢}, in (3.8) becomes
&= _22552 +5 (3.14)

where ig’ = D3a3(1 — 2P)PQ and 4" = 8%i/80?|4—p, = D*a*(1 — 6P + 6P%)PQ.
Then, (3.14) is

*a’ ta*(1 — 6P + 6P%)P - 2
et _ _(D*aPPQUDYM(1 - 6P+ 6P)PQ} | 1-6P+ 6P
" {D3a3(1 — 2P)PQ)? (1—2P)?
(1—2P)> —2P(1 - P) 4PQ
= -2 1 2p) T5=3+ g 5pp >3 QED.

(3.15)

In Theorem 1, the lower bound 3 corresponding to y = =+ oo is not attained by
finite 6p. The term 4PQ/(1 — 2P)? in the last inequality in (3.15) becomes infinitely
large as Oy approaches 0. This corresponds to the zero bias of 9ML at 0p = 0. It
is of interest to find that the lower bound 3 is the midpoint of the pseudocounts by
Laplace’s rule and Agresti and Coull (1998).

In current ability tests for achievements based on IRT, the LME is seldom used.
However, the familiar 3PLM used frequently in practice is similar to the LME in a
crude sense. Thus, the lower bound in Theorem 1 is expected to be of practical use
to some extent in the case of the 3PLM, which is numerically illustrated with and
without m.m. in the next section.

4. Numerical illustration under the 3-parameter logistic model

Numerical illustration is given using artificial item parameters of the 3PLM, which
are randomly generated as in Ogasawara (2012a, 2013a) and mimic actual values in
practice (Lord, 1975, Figures 1-4; Kolen & Brennan, 2004, Table 6.5). The probabili-
ties Py, (m =1,...,n) under m.m. are given by perturbing the term —Da,, (6 — by,)
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Table 1: Values of cl,;;, minimizing the asymptotic mean square error for the 3PLM

0
n —3 -2 -1 0 1 2 3
20 40.81 19.68 1391 147.90 6.46 3.35 2.69
50 41.78 19.48 18.09 96.27 4.07 2.65 2.60
100 38.48 23.52 25.63 68.40 3.98 3.07 2.83

Table 2: Asymptotic and simulated errors in estimation of ability when the 3PLM holds (n = 20)

(Number of ML,  BM WL PC(l) PC(2) PC(3) PCM4) PCE) PC(chm)
deleted cases)

(11) 0=1, c,=06.46

ASE 3779 ml ml ml m] m] ml ml ml
HASE 3080 .3399 .3796 .3789 .3578 .3353  .3113  .1863 2423
Simulated (SD) .4075 .3406 .3783 .3809 .3592 .3407  .3246  .2755 2021
Az 6.5 —10.9 5 3 59 -—12.1 184 —43.2 —33.6
Simulated 9.3 —10.7 1 9 55 —107 —150 —26.8 —23.0
of 1 6.1 0 1 1.1 3.2 6.3 29.3 18.5
Simulated 2 54 0 1 1.1 2.9 5.1 17.0 12.1
HRMSE 3993 .3618 .3796 .3793 .3617 .3471  .3358  .3285 3238
Simulated 4081 .3599 .3783 .3814 .3631 .3510  .3437  .3440 3398
(5188) 6=2, ¢ =335

ASE .5003 ml ml ml ml ml ml ml ml
HASE 6139 0627 5332 5292  .4281  .2040 - - 2289
Simulated (SD) .5015 .2852 .4059 .4006 .3412 3010  .2715  .2029 .2896
aas 50.6 —98.6 1356 11.9 —26.8 —65.6 —104.3 —259.2 ~79.2
Simulated 5 —67.6 —342 —36.0 —53.6 —63.9 —70.7 —83.7 —66.6
o? 6.8  55.0 0 0 9.3 344 755 3992 47.1
Simulated 2.1 502 22 3.3 180 383 610 1557 46.1
HRMSE 6275 .3759 5332 5293 4544 4153 4224 7748 4124
Simulated 5067 4547 4128 4107 4018 4316  A756  .6560 4462

Note. ASE = na1/20411\4/€2; HASE = (n_lOZI\/IL2+n_2O£A2)l/2; HRMSE = {n ‘oar2+n~? (ana+
a%)}l/ %, ML: maximum likelihood; BM: Bayes modal; WL: weighted likelihood; PC(c*): esti-
mation using pseudocount ¢*. The sign “ml” indicates that the value is identical to that by
MI. The sign “” indicates that the value is imaginary.

with an added independent variable following N (0, D?) and keeping Er(l) = 0. The
generated item parameters are dealt with as known ones. Sample sizes n = 20, 50
and 100 are used.

Table 1 gives c;, under the 3PLM for § = —3,—2,...,3. When § = 0, the values
are relatively large which is expected from (3.15). We find that ¢,
of # is reflected N-shaped rather than unimodal. Some of the values are somewhat
smaller than the lower bound 3 for the LME. Since most of the values are larger than
3 or approximately 3, the lower bound seems to be promising.

Tables 2 to 6 give asymptotic and simulated errors of estimation, when ML, BM,

as a function
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Table 3: Asymptotic and simulated errors in estimation of ability when the 3PLM does not hold
(n = 20)

(Number of
deleted cases)

ML BM WL PC(1) PC(2) PC(3) PC(4) PC(8) PC(cm)

(2) =1, Chn =646, cor(Prm,Pn)=.762

ASE .3057 ml ml ml ml ml ml ml ml
HASE 3205 2716 .3060 .3042 .2869 .2686 .2489 -.1455 L1921
Simulated (SD) .3259 .2756 .3045 .3059 .2892 2748  .2622 2233 .2365
QA2 3.7 =79 —.2 —.4 —4.4 —8.5 —12.6 —28.9 —22.6
Simulated 51 7.0 - -3 1 —-3.9 —7.2 -99 174 —15.0
ol 1 6.1 .0 2 1.2 3.3 6.3 28.2 17.9
Simulated 1 5.2 .0 2 1.2 2.8 4.9 16.1 11.4
HRMSE 3208 .2084 3050 .3048 .2922 2834 .2787  .3029. .2858
Simulated 3263 .2984  .3046  .3067 @ .2042 2873  .2848 .3001 .2908
(8185) =2, chin=2335, cor{(Prm,Pm)=.290

ASE 4878 ml ml ml ml ml ml ml ml
HASE 6199 .1505 .b426  .5388  .4431 .3200 .0919 - .2633
Simulated (SD) .4387 .2565 .3599 .3567 .3056 .2700 .2435 .1806 .2599
Qa2 58.6 —86.1 22.6 209 -16.7 —54.2 —91.8 —242.1 —67.5
Simulated —18.2 —68.9 434 —44.3 —-57.8 —66.0 —-71.5 —82.1 —68.2
a? 6.3 57.5 .0 1 10.1 36.3 78.6  410.2 49.3
Simulated 2 56.2 5.0 6.3 23.0 44.3 67.4 162.0 52.3
HRMSE 6325 4078 5426 .5390 4707 4394 4528 8112 4389
Simulated 4393 4541 .3768 .3783 .3886 4285 .4774 6615 4452

Note. ASE = n~1/2a11v{12)2; HASE = (n 'amre+n % aa2)*/?;, HRMSE = {n" amr2+n "% (caz+
af)}l/ 2, ML: maximum likelihood; BM: Bayes modal; WL: weighted likelihood; PC(c*): esti-
mation using pseudocount c¢*. The sign “m!” indicates that the value is identical to that by
ML. The sign “-” indicates that the value is imaginary.

WL, and PC (¢*) i.e., PC with ¢* are used, where ¢* =1, 2, 3, 4 and ¢, . In addition,
c* =5 or 8 is used in Tables 2, 3 and 5 to have c*’s greater than c}; when ¢! isnot
so large. It is easily seen that ML is equivalent to PC (0). Note that the results by
PC (¢t ,,) are for comparison, where c};, given by 0q is available in the experimental
data though unavailable in practice. In the tables ASE =n~1/ zaigﬁ is the asymptotic
standard error, which is robust under m.m.; HASE =(n"tamre + 7’1,_2OZA2)1/ 2 ig the
higher-order ASE; HRMSE ={n"'anrz + 1 %(aas + o2)}Y? = (HASE? + n~202)1/?
is the higher-order asymptotic root MSE up to order O(n“?’/ 2). Note that the asymp-
totic root MSE up to order O(n~1/2) is identical to the ASE.

The simulated SE denoted by SD corresponding to ASE and HASE is the square
root of the unbiased variance of 10° estimates for each estimator. The simulated
aps is n%(SD? — n~lay). The simulated of is n? times the square of the simulated
bias. The simulated root MSE is given by the square root of the simulated mean
of (Baw — 00)?. When 6 < —2 (§ < 0 for n = 20) and 0 = 3, many cases of non-
convergence in estimation occurred. These cases were not employed. In the tables,
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Table 4: Asymptotic and simulated errors in estimation of ability when the 3PLM holds (n = 50)

(Number of ML BM WL PC(l) PC(2) PC(@3) PCA) PC(chu)
deleted cases)

(591) 6=—1, cm=18.09

ASE .3601 ml ml ml ml ml ml ml
HASE 3915 .3023  .3640 .3847 .3779 .3709  .3638 2422
Simulated (SD) .3971  .2974 3463 .3832 3718 .3617 .3527 .2697
oAs 58.9 —95.7 71 458 327 196 66  —177.6
Simulated 70.0 —103.0 —24.4 429  21.3 2.9 -13.3  —142.3
o 2.1 25.3 0 7 0 2 1.3 103.5
Simulated 2.6 27.2 4 7 .0 4 1.7 71.3
HRMSE 3925 3187 .3640 .3851 .3779 .3710 .3644 3163
Simulated 3984 3152 .3465 .3836 .3718 .3619 .3536 .3182
(0) 6=0, Ccy,=9627

ASE 2833 ml  ml ml ml ml ml ml
HASE 2872 2638 2840 .2828 2783 .2737  .2691 -
Simulated (SD) .2875  .2650 .2839 .2830 .2786 .2743 .2701 1140
ans 55 —26.7 1.0 -8 —71 -—134 197  —601.1
Simulated 6.0 —25.2 ¢ —~5 —6.7 —126 -182  —168.2
ol .0 0 0 0 2 A4 .6 304.0
Simulated .0 .0 .0 .0 1 2 4 48.0
HRMSE 2872 2638 2840 .2828 2784 2740  .2695 -
Simulated 2875 2650 .2839 2830 2786 .2744 2704 1794

Note. ASE = n~V/2ay/2,: HASE = (" lamra + n”2aa2)"?; HRMSE = {n~'amr2 +
n*(aaz + a;f)}l/Q; ML: maximum likelihood; BM: Bayes modal;, WL: weighted like-
lihood; PC(c*): estimation using pseudocount ¢*. The sign “ml” indicates that the
value is identical to that by ML. The sign “-” indicates that the value is imaginary.

the numbers of deleted cases until 10° regular observations were obtained are shown.
The non-zero numbers of the deleted cases when 6 = 1, 2 are all due to perfect scores,
where finite éML is unavailable and these cases are not used for other estimators.
Tables 2, 4 and 5 are given under c.m.s. while Tables 3 and 6 under m.m., where
the extent of m.m. is shown by the correlation of Py, and P,, over items. Table 2
gives the results under c.m.s. with n being as small as 20. When 8 = 1, the asymp-
totic values are reasonably similar to their corresponding simulated values. The SD is
closer to the corresponding HASE than the ASE. The results by WL are reasonable
in that not only the asymptotic bias is zero by construction (denoted by 0 in the
associated tables rather than .0 for other rounded numbers), but also aas is smaller
than that by ML with similar simulated values. The results by PC (1) are similar
to those by WL, which is expected to some extent since they are identical under the
LME. Tt is of interest to find that the results by PC (3) using the lower bound 3 for
the LME are similar to those by BM. The HRMSE by PC (4) is smaller than those
by PC (3) and BM and greater than by PC (¢, ) with similar simulated tendencies.

min
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Table 5: Asymptotic and simulated errors in estimation of ability when the 3PT.M holds (n = 50)

(Number of

ML BM WL PC(1) PC(2) PC(3) PC(4) PC(5) PC(chin)
deleted cases)
(0) 0=1, ch, =407
ASE 2733 ml ml ml ml ml ml ml ml
HASE 2778 .2645 2743 2717 2655 2591 2525  .2458 2521
Simulated (SD) .2779 .2553 .2735 2714 .26563 .2595 .2540 2487 .2536
QA2 6.2 —24.8 1.4 —-22 -10.6 -19.0 —-274 —35.8 —27.9
Simulated 6.3 —23.9 3 =27 -109 -—18.5 —255 —32.1 —26.0
s 3 100 0 3 2.6 7.3 14.3 23.7 14.9
Simulated 4 8.7 .0 2 2.3 6.4 124 20.0 12.9
HRMSE 2781 2623 2743  .2719 2674 .2646 .2636 .2644 .2636
Simulated 2782 2620 .2735 2715 2670 .2644 .2635 = .2643 .2636
(26) =2, chy,=265
ASE .3290 ml ml ml ml ml ml ml ml
HASE 3515 2617 .3344 3321 .3116 .2896  .2657 .2396 2974
Simulated (SD) .3590 .2740 .3343 .3313 .3095 .2914 .2761 .2628 2973
QA2 38.1 —99.4 8.8 51 —28.0 —61.1 —-94.1 -—127.2 —49.6
Simulated 51.6 —83.0 8.8 3.8 —-31.3 -—-584 —80.1 —98.0 ~49.7
af 4.3 76.6 0 7 14.1 44.6 92.0  156.5 32.1
Simulated 54 674 .0 .8 14.4 41.8 80.0  126.7 30.9
HRMSE 35639 3149 .3344 3325 .3205 .3189 .3278  .3464 .3182
Simulated 3620  .3194 .3343 .3318 .3186 .3188  .3290 .3461 3174

Note. ASE = n_l/QallvfI%Q; HASE = (n lamre + n 2aa2)Y? HRMSE = {n 'amws +
n" (a2 + of)}?; ML: maximum likelihood; BM: Bayes modal; WL: weighted likelihood;
PC(c*): estimation using pseudocount ¢*. The sign “ml” indicates that the value is identical
to that by ML.

In the table, it is seen that aas and af for PC (¢*) are monotonically decreasing and
increasing, respectively in terms of ¢* with similar simulated values. However, we find
that HRMSE and its simulated value are not monotonic with respect to ¢*.

When 8 = 2, some discrepancies appear especially in the results by ML, which is
primarily due to the large number of deleted cases, which is as many as 5% of the
regular cases. It is seen in Table 2 that when § = 2, BM gives the smallest HRMSE
3759 while PC (2) yields the smallest simulated RMSE .4018.

Table 3 gives results under a realistic condition in that the 3PLM is more or less
misspecified in practice for ability tests. It is encouraging to see that the results are,
in a crude sense, similar to those in Table 2. Note again that when 0 = 2, as many
as 8185 cases corresponding to 8% of the regular cases were discarded due to perfect
scores. When 0 = 1, the smallest HRMSE and simulated RMSE are given by PC (4)
not by PC (c,,) owing to m.m., while they are given by BM and WL, respectively
when 0 = 2.

Tables 4 and 5 show the results with n = 50 under c.m.s. when 6§ = —1, 0, 1, 2.
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Table 6: Asymptotic and simulated errors in estimation of ability when the 3PLM does not hold
{n =50)

(Number of
deleted cases)

ML  BM WL PC(1) PC(2) PC(3) PC4) PC(chw)

(83) 0=—1, chn=18.09, cor(Prm,Py)=.501

ASE .3608 ml ml ml ml ml ml ml
HASE 3790 2812 .3490 .3718 .3644 .3569  .3492 2130
Simulated (SD) .3842  .2971 .3433 .3737 .3642 .3555 .3474 2679
QA2 33.8 —127.7 —20.9 202 66 —7.0 —20.6 —212.0
Simulated 437 —104.7 —30.7  23.8 6.3 —9.4 —237 —146.0
o 1.3 33.9 2 2 1 .9 2.7 128.4
Simulated - 1.7 31.2 - N 3 .0 .8 2.6 79.7
HRMSE 3797 3044 3491 3719 3644 3574 .3507 .3110
Simulated 3851 3174 .3437 3738 .3642 .3560 .3488 .3219
(13) 0=2, =265 cor(Prm,Pn)=.470

ASE .2953 ml ml ml m] ml ml ml
HASE 3126 2317 2972 2052 2767 .2569 .2355 .2639
Simulated (SD) .3181  .2459 .2974 .2050 .2764 .2608 .2476 2659
®A2 26.3 —83.8 2.9 —1 —265 =529 -79.4 —43.8
Simulated 35.0 —66.7 3.2 —4 =270 —479 —64.7 —41.2
a? 2.6 87.1 .2 1.8 184 523 103.7 38.6
Simulated 3.3 72.9 2 1.7 176 468  86.6 35.4
HRMSE 3142 2975 2973 2064 2897 2949 .3113 2917
Simulated 3201 .2994 2976 .2961 .2888  .2946  .3098 2913

Note. ASE = n"20y/7,: HASE = (n *ampz +n " 2aa2)?% HRMSE = {n " amiz +
n"? (a2 4 o3)}?; ML: maximum likelihood; BM: Bayes modal; WL: weighted like-
lihood; PC(c*): estimation using pseudocount ¢*. The sign “ml” indicates that the
value is identical to that by ML.

The smallest HRMSE and simulated RMSE are given by BM or PC (¢!, ). When
0 = —1 and 0, the value of ¢* in PC (¢*) corresponding to BM in Table 4 seems to
be greater than 4 reflecting the relatively large ¢ ;. Table 6 shows the results under
m.m. when 6 = —1 and 2, which are found to be similar to the corresponding results

in Tables 4 and 5.

5. Remarks

The results in the numerical illustration show that the lower bound 3 is reasonable
especially when 8y is as large as 2 in data similar to those in this paper. When 6 is
smaller than or equal to 0, ¢* = 4 may be more reasonable. In this case, large ¢*’s
as Cp, may not always be recommended for use in practice though ¢}, gives the
smallest HRMSE under c.m.s. in the data. This is because the large ¢* also gives
relatively larger biases than those by e.g., BM. In the tables, BM is found to give

small MSEs and in many cases comparable results by PC (¢*) with ¢* = 3 and 4.
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However, when relatively small bias is desired, WL and PC (¢*) with ¢* = 1 and 2
may be used.

Probably, it is possible to have less biased BMEs by using more relatively vague
priors in place of the standard normal. However, the prior of the BME is an informa-
tive one based on the subjective probability of 8y from a pure Bayesian point of view,
whose reasonable one is not always easily obtained. The standard normal prior for
the BME is reasonable in many cases in that item parameters are estimated typically
by marginal ML assuming the standard normal for the distribution of ability. The
author has tried to obtain a fixed lower bound for the BME similar to ¢} for the
PCE. So far, however, the lower bound is not available. Probably, methods different
from that using the MSE for few e.g., empirical Bayes should be investigated.

In the tables, the squared asymptotic bias is shown as a value independent of n. The
corresponding bias of order O(n™1) is given by e.g., (a?)*2/n = (25.3)1/2/50 = 0.1
for BM when § = —1 and n = 50 in Table 4 with a similar simulated value. The
value 0.1 may be accepted by many researchers especially when we consider the large
reduction of the variance by —95.7/50% = —0.038 (the corresponding squared asymp-
totic bias is 25.3/50% = 0.010) which reduces HASE = 0.3915 by ML to HASE =
0.3023 by BM with similar simulated values. The corresponding results by ¢! . when
# = —1 and n = 50 in Table 4 are (o?)Y/?n = (103.5)1/2/50 = 0.2 and the reduction
of the HASE = 0.3915 by ML to HASE = 0.2422 by PC (c,;,) with similar simulated
Y i were not always recommended earlier by the
author, the value of the bias 0.2 may be tolerable for some researchers considering the
corresponding substantially small variance.

The method of estimation using the pseudocount is almost as simple as that by
ML (recall (2.7)). On the other hand, MSEO(n_z)(épc) (see (3.7)) is as complicated
as those for other estimators with various g(6)’s (see (3.6)). It can be shown that an
estimator with the same asymptotic cumulants up to the fourth order and the same
added higher-order asymptotic variance as those of égw is given by correction of N
as follows:

values. Though the large ¢*’s as ¢

éC—GW = Oyip, + ’I"L_lézML2g(éML) = Oy, — nﬂl(“&Mm@), (5.1)

where Gymre is the sample version of ayre. A typical example of —dmred is dmri,
which is the sample version of a1 by ML, yielding the asymptotically bias-corrected
estimator Oy, —n Ay, Recall that g(0) = 7/(23) for WL, which under c.m.s. gives
—ov29(0) = 5/(2?2 = aML1)- X

The AMSE of fc.gw in (5.1) is more easily obtained than that of fgw. For sim-
plicity, we consider the case under c.m.s. i.e., éc_GW = Oy, + n=1i-1 g, where i is the
sample version of 4. Then,

E{(Oc-aw — 60)*} )

= var(Our.) + n22nacov(Omr, i 19) + {E(@c.aw) — 00 }2 + O(n3)

=n"Ygt + n72amrnas + 2nacov(Our, i19) + {amm1 + 15 9(00)}2] + O(n~3),
(5.2)



144 H. Ogasawara

where acov(-,-) is the asymptotic covariance of order O(n~1) for the two variables.
Using X
nacov(fuw, i 1§) = —i°10'9(00) + 1529 (fo), (5.3)

(5.2) becomes

n~Hgt +nm? {ammaz + ofpy + 26579 (60) — i5° (240 + Jo)9(00) + 152 9(00)%}
+0(n3) (5.4)
= MSEg(y-2) (0aw) + O(n?).

The estimator fc.qw in (5.1) was introduced to have some insight in the involved
expression of (3.6). Though MSEqp(,-2)(-)’s are the same for faw and éo_gw, the
latter has a difficulty in the cases of zero and perfect scores, where ability estimation
by ML required for dc.gw does not give finite fyr,’s. On the other hand, fgw’ are
available in these cases.

As addressed earlier, since c};, depends on unknown 6y, ¢,
practice. In order to overcome the difficulty an anonymous reviewer suggested a
method that takes the expectation of ¢l over a distribution of 8, say ¢g*() for its
density (the author is indebted to the reviewer for the suggestion and associated re-
sults). In practice, item parameters are typically calibrated by using 6 ~ N(0,1) to
obtain the model identification. So, it is quite reasonable to use the standard normal
density (denoted by ¢(8)) for g*(8) as is used for the prior of the BME. That is, the
expectation is formerly given as

*
min

is not available in

mmw:fﬁmwma (5.5)

which can be approximated by using Gaussian quadrature:

M
Blhun(} = 7= 3 chun(VE2i) s (5:)

where z; is the i-th quadrature point, A; is the i-th quadrature weight and M is the
number of the quadrature points (see Stroud & Sechrest, 1966, Table Five, pp.217—
252; Ogasawara, 2012b, Part A, Subsection 3.1).

The author tried this method with M = 10, 15 and 20. However, (5.6) becomes
relatively large e.g., greater than 50, and tends to be unstable. This is due to the large
or infinitely large value of ¢, (8) with 6 being around 0. The instability comes from
the fact that when a quadrature point happens to be close to this value, (5.6) becomes
large. So, some methods to remove the instability are required. A simple method is
to use &, (0) since 0 is the mean of N(0, 1) though this again gives a large value
(recall Table 1). Another simple method is to take the mean or minimum of ¢, (—1)
* in(1) since 1 are values away from the mean by a standard deviation. When
the minimum is used, we have 3.98 ~6.46 from Table 1. When some information

about the possible values of ¢

and ¢

£
min

is available, a method similar to, but different from
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that suggested by the reviewer is to use the hierarchical Bayesian model. In the first
stage, ¢}, is seen as a power of a prior (see (2.3)). Then, using the higher-order
prior representing the information available for ¢}, , ¢k, is integrated out over the
distribution, which can avoid the instability mentioned above.

Alternatively, we are tempted to use estimates of 6y e.g., N However, this

is dangerous because the formula of MSEqp,-2y(-) for ¢ (6o) no longer hold since
Chin (OML) — Cin(00) = Op(n™'72).

min

e
min
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