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ESTIMATION OF ABILITY USING PSEUDOCOUNTS IN ITEM 

RESPONSE THEORY 

Haruhiko Ogasawara* 

A method for estimation of ability using pseudocounts in dichotomous item response 
models is given when associated item parameters are known or estimated by a separate 
calibration sample of examinees with the size of an appropriate order. The pseudo-
count minimizing the asymptotic mean square error is algebraically obtained. Though 
the pseudocount depends on unknown ability， a fixed lower bound for the pseudocount 
is derived under the logistic model with equivalent items. The lower bound is num町田
ically shown to be reasonable under the 3-parameter logistic model with and without 
model misspecification. 

1. Introduction 

In item response theory (IRT)うestimationof the ability or proficiency level of an 

examinee is one of the main purposes of the associated ability test. Among various 

estimators of ability， the maximum likelihood estimator (MLE; Lordう1953)has been 
a basic one. The maximum a posteriori or Bayes modal estimator (BME; Samejimaう

1969うChapter2; Bock & Aitkin， 1981) is also familiar， where the standard normal 
prior is typically used. The so-called weighted likelihood (WL) by Warm (1989) gives 

the WL  estimator (WLE) removing the asymptotic bias of the corresponding MLE 

when the IRT model is correctly specified. Warrr山 (1989)method can be seen as a 

special case of the weighted score or the penalized likelihood (see e.g・う Firthう1993). 

Ogasawara (2012a) gave the asymptotic properties of the MLE under possible 

model misspecification (p.m.m.). Ogasawara (2013a) dealt with the MLE， BME and 
WLE as special cases of the estimator by the weighted score with a general weight that 

corresponds to the first derivative of the log prior density with respect to the ability 

parameter in the case of the BME. Under this uni白edformulation， Ogasawara (20l3a) 
gave the asymptotic properties e.g.， the asymptotic mean square error (AMSE) of the 
estimator with the general weight. 

In the above methods， i抗tempa紅ra担metersare assumed七obe k王nownor to have五xed
V刊alu悶e

the a油bi出l日it匂yestimator when the associated item parameters are estimated by a separate 

sample of examinees with size N for item calibration. Ogasawara (2013b) also showed 
th抗 whenN is of order O(η5/2)， where ηis the number of itemsぅtheasymptotic cu-
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mulants up to the fourth order and the higher-order asymptotic variance of the ability 

estimator with the general weight using estimated item parameters are identical to 

those when the item parameters are lmown. 

In this paperうthedichotomous response model is used， where the 2 x n contingency 
table for correct and incorrect responses by an examinee is formulated with n items 

being generally distinct. In the table， there are n 1 's and n 0うs.The 2 x 1 collapsed 
table for the numbers of correct and incorrect responses can be obtained， where the 
sum of the two frequencies is叫 thoughthe number-correct score is not necessarily the 

su伍cientstatistic for the ability parameter unless special models e.g・， the 1-parameter 

logistic model (1PLM) are used. As a special case of the 1PLM， the logistic model 
with eql市 alentitems without guessing parameters (仏LME;Bi註r口I由aurr立叫I
tωot吐h珂ebinomial error model (Lord & N ovicl王ぅ 1968ぅChapter 23). 
A pseudocount (PC) is an artificial frequency to be added to the cells of the con-

tingency table in order to have “better" estimation of associated parameters. In the 
case of the binomial proportion with the 2 x 1 contingency table， various values of the 
pseudocount have been used， which will be addr・essedlater. The pseudocount method 
can also be seen as a weighted score method， which gives the asymptotic properties 
of the ability estimator with the pseudocount. 

In this paperぅthepseudocount with minimized AMSE is derived. Unfortunately， 
the optimal pseudocount depends on the population ability to be estimated. However， 
when the LME holds， a五xedlower bound of the pseudocount is found. The lower 
bound and other values of五xedpseudocounts are illustrated in the case of the familiar 

3-parameter logistic model (3PLM) with and without m.m.うwherethe item param-

eters areassumed to be known or estimated under the condition of N = O(η5/2). 

Asymptotic and simulated estimation errors in a numerical illustration show that the 

lower bound obtained under the LME is reasonable even in the case of the 3PLM with 

and without m.m. 

2. Estimation using pseudocounts 

Let Um(m = 1，・・・ぅη)be the dichotomous variable taking values of 1 and 0 for 

correct and incorrect responses， respectively to the m-th item by an examinee with 
ability 8. In the case of the 3PLM 

1Cm Pm三 Pr(Um= 118ぅαm，br川 Cm)= Cm十イ /n 

Qm三 1-Pm (m = 1ぅ・・・ ，n)う (2.1) 

where D = 1.7; and αm， bm and Cm are the item parameters for the m-th item. The 
main results in this paper also hold when the item parameters are replaced by the sam-

ple counterparts under the condition N = O(η5/2) (Ogasawara， 2013b). The notation 
e.g.う五xedαmrather than estimated am is for simplicity. Under model misspecification 

(m.m.)， an alternative probability Ptm for correct response is defined部

PTm三 ET(Um)ぅ QTm三 1-PTm (m = 1，・・・ぅη)ぅ (2.2) 
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where ET(') is the expectation using the true distribution of Um at e and PTmチPm
for at least an item (E(.) will be used under correct model speci五cation(c.m.s.)). 
De五ne♂ as the total number of the pseudocounts for the 2 x 1 co11apsed contin-

gency tableぅwherec* is not necessarily integer-valued. That is， each ce11 has 0.5c* 
for its pseudocoUI止 Inthe case of the binomial propo凶 on，♂=1 (0.5 for each 

ce11) was derived by Haldane (1956) and Anscombe (1956) such that the asymptotic 
bias of order 0(n-1) for the sample logit vanishes. The value c* = 0.5 (0.25 for each 

ce11) is used by Hitchcock (1962) in the case of logistic regression. Agresti and Cou11 

(1998) (see also Ag1'e凶&Caffo， 2000) proposed ♂=  4 (2 fo1' each ce11) for inte1'val 
estimation of the binomial proportion. Recently:ぅ thevalue 0.1 of the pseudocount for 

each ce11 of the 2 x 2 table was used by Bonett and P1'ice (2007). 

Fo1' the 3PLM with genera11y distinct itemsうthetotal numbe1' of pseudocounts is 

もobe equa11y distributed to n items as in the above cases. That is， in the 2 x 'n table， 
each ce11 has n-10.5c* fo1' its pseudocount. Let Lpc be the (pseudo) likelihood of e 
when the pseudocount is used. Then， Lpc is forma11y w1'itten as 

n
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whe1'e L =日二=1PJ1773QUUmis the 田工叫 likelihood01' Lpc with c* = 0; f(e) = 0(1) 
is seen as a prior density or its proportional from Bayesian point of view; and 

fm(e)三 (PmQm)O.5c*is also seen as an independent prior for the m-th item. Note 

that f(e) is the geometric mean of fm(e) (m = 1ぅ・・・ぅ T仏andbecomes equal to f m ( e) 
when items are equivalent e.g・， under吐1eLME. 
Actl凶lyぅfm(e)becomes typical priors in some cases. When the 2-parameter logis-
tic model (2PLM) holds， D2α~PmQm is the Fisher or item information for the m自由
item. Then， (PmQm)O.5 with c* = 1 is proportional to the Jeffreys (1946; 1961ぅSec-
tion 3.10) non-informative prior for the m-th item. That isぅ♂=1 in (2.3) gives the 

geometric mean of the independent Jeffreys priors whereas the usual Jeffreys prior is 

given from the test information i.e.うthesum of the ηitem informations averaged over 

items or the arithmetic mean of the item informations: 

Z三 η-1LPm'2/( (2.4) 

where Pm' =θPm/δe. Under the 2PLMう(2.4)becomes 

I = n- 1D2 乞 α~PmQm (2.5) 

It is known that the Jeffreys Bayes modal estimator (JME) under canonical 

parametrization in the exponential family has zero asymptotic bias of order O(η1) 

when the model holds (Firth， 1993; in the current paper， the BME refers to only the 
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estimator using the standard normal prior). The ability estimator with fixed item pa-

rameters in the 2PLM belongs to this family. However， the corresponding estimator 
in the 3PLM does not belong to it. That is， WarmうsWLE under the 2PLM becomes 
identical to the JME. Since under the LMEぅf(8)with ♂=  1 becomes proportional to 
the usual J effreys priorぅbiasreduc七ionfor the ability estimator even under the 3PLM 

with di宜'erentitems is expected to some extent when c* 1 is used， which will be 
numerically illustrated later. 

It is known that the bias of the MLE of ability is positively correlated with the 

population ability 80 (Lord， 1983; Ogasawara， 2012a). That isぅwhenDo is positive 
(negative)， the MLE tends to be larger (smaller) than Do・ Equalpseudocounts for 
the two cells of correct and incorrect responses have the effect of centering the MLE 

towards O. 

When c* 2， fm(D) PmQm which is proportional to the informative logistic 
prior DαmPmQm， whose cumulative distribution function is Pm under the 2PLM. It 
is known that when αm=lぅ bm= 0 and cm = 0 with D = 1.7， IPm(D) -φ(D)I < 0.01 
for all D (Lord & N ovicl王ぅ 1968ぅ Ineql凶i七y(17.2.2))ぅwhere φ(-) is the cumulative 

distribution function of the standard normal. Thusうf(D)with c* = 2 is reduced to 
an approximate geometric mean of various independent normal priors. In the case of 

the binomial proportion，♂= 2 corresponds to the fiat beta priorうwherethe poste-

rior mean of the binomial proportion is given by (叩+1)/(η 十2)with p being the 
unbiased sample proportion， which is also derived by Laplace's rule of succession (see 
e.g・， Wilson， 1927ぅp.210).
In similar manners， fm(8)ヲswith other c*'s are seen as priors or penalty functions 
for shrinkage estimators (see e.g・う Gruberぅ1998， Chapter 1; Lehmann & C加 ella，1998， 

Chapter 5うSection5)うwhoseeffect is stro時 eras c* becomes larger. 

De五nelpc as 

らc三 η110gLpc= n-11ogL+η110g f(8) 

三 Jι+ 山 kぽ刷*つl叫O
三 l+ η 10.5c♂埼*log己人

う

(2.6) 

where h = 0(1) is the geometric mean of PmQm (m = 1ぅ・・・ ?η)mentioned ear lier 
(compare i of (2.5) under the 2PLM). The estimator Dpc using the pse凶 ocount

(PCE) is given by maximizing Lpc or lpc， which is obtained by the solution of the 
following equation: 

βlpρθ ゅ h'
ーニニェ一一一 +η一上0.5c*.-.:. 
θDpc θDpc 

=η-1会式{九一日-10.5c*ー)}凡， =0， 仰)
where h' = θh/θDpc. From (2.7)， it is seen that the normal equation for the MLE 
denoted by DML is modified for Dpc by replacing the actual observation Um with 
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Um +n-
10.5♂(1 -2Pm) or by replacing Pm in {・}with Pm -n-10.5♂(1-2Pm). Un-

der m.m. with PTm(m = 1，・・・川)， the population 80 is defined as the solution of 
ET(θl/δ8pc) = 0 without j(8). 

3. Pseudocounts reducing the asymptotic mean square error 

In (2.7) it is found that O.5c叩 /his a special case of the general weight g(8) for 
the weighted score dealt with by Ogasawara (2013a) when 8 = 8pc. The weights for 

the MLE， BME， JMEうWLEand PCE are summarized邸

where 

g(8) = 0 for MLぅg(8)= -8 for BM， g(8) = 1/ /(2I) for JM， 

g(8) = j/(2i) for WL and g(8) = c*h'/(2h) for PC， 

ヲ θZ 一一1十 (2Pm'Pm" (1-2Pm)Pm'3 i ~ __-1 ~ Pm' Pm" 
..一一一
UM-K11凡Qm(PmQm)2y J -jt1凡 Qm

日 β2p~
and P〓一一子工

川 δ8'2

(3.1) 

(3.2) 

Denote the m-th cumulant of the generic estimator 8GW using the general weight 

g(8) by κm (8GW ). Then， their asymptotic cumulants up to the second order are given 
as 

κl(eGW -80) = n-1α1十 O(η-2)，
κ2(eGw) =η1α2+η-2αム2+ O(η-3) (α2=αML2)ぅ

(3.3) 

whereη一1α1is the asymptotic bias of order 0 (n -1);η-1α2 is the usual asymptotic 

variance of order 0 (η-1 )ぅ whichis eql凶 ton-1αML2 by ML; and n-2αム2is the added 
higher-order asymptotic variance of 8GW， respectively. The actual expressions of the 
asymptotic cumulants under p.m.m. are given by Ogasawara (2013a， Equation (3.4)， 
Appendix A.2) 

From (3.3)， the MSE of 8GW is given by 

ET{(eGW -80)2} = {κ1(OGW-Oo)}2十κ2(eGw)

=η1αML2十η-2(αi+αム2)+ O(η3) 

三 MSEO(n-2)(eGw) + O(η3)ぅ
(3.4) 

where MSEo(η-2)(') is the AMSE up to order O(η-2). The actual expression of 

MSEO(n-2)(8Gw) under p.m.m. is given by Ogasawara (20l3a， Equation (3.13)) as 

MSEo(口 2)川二η川L2+η2[…+αLL1 
(- '>- (θJθ2[¥  

-2.¥ -lg'(80)αML2 -2g(80) 1入句T¥明18=80~8; 1日) (3.5) 

一円T(手18=80) 
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where αMLム2and αML1 are defined similarly to αML2;入=ET(θ2[/θ8
2111ニ110);

g'(80) =θg(8)/θ81向。

Under c.且 S・ぅ using αML2 = Zu1， where Zo is Z given by 80ぅαML1 = -.10/(2zO) (Lordぅ
1983; Warm， 1989) and the Bartlett identityぅ(3.5)becomes 

MSEo(n-2)(eGw) =η一1761十η2[αMLム2十α弘L1十2zu2g'(80)

_ZU3(2z0' + .1o)g(80) + zu2g(80?L 
(3.6) 

where zo' and ]0 are defined similarly to Zo・Notethat n-1α2+η-2(αMLム2十αむL1)in 
(3.5) and n-1zü 1 十 η 2(αMLム2 十 α~L1) in (3.6) are MSEo(n-2) (eML)'S， thoughαMLム2
and α1 in (3.5) are generally different from those in (3.6)うrespectively.

When g(80) = c*ho' /(2ho)， where ho' and ho are population counterparts 0ぱfh' a仙n
h九う respectively，(3.6) under c.m.s. is written as 

MSEO(n-2) (epc) = MSEO(n-2) (eML) 

f ..:--2θfd L11 L2 
十η2ぺ2布房副f)=f)o-ZU3(2z0' + ]0)式jH-2C4262ziz'

which is minimized when c* is 

c:':_ 一車/五三 日¥ι豆旦(zn'+ ]0) ・.目・

mm hO'2¥ho hO ) ， ioho'¥"U ， 2) 

hnh円" 2hn (~. 'In¥ 
= -2右子十2十万?14什すj

where ho'チois assumed and io > 0 due to another assumption of五nite80・
In (3.7) and (3.8)， 

2g(80) ho' ~~-1 十 1- 2Pm n ， 
c* h。一山白凡Qm.Lm 

(see (2.7)) and 

2g'(80) θhO'1 δ一一1÷1-2Rnn/l
つ*弱EJ|0=Oozrfニ1τ石山 If)=f)o

一J 十 f 一2仇Pr九凡?灯mJ7ηJfZJf2斗+(ο1一-2P，削m川)~凡町mJfH(ρ1一-2Pr灯~)2
一 一 一唱

. 

… tF自二コ~ l PmQr 
Then， (3.8) is rewritten as 

合in 十名古凡'f
η一生(2U2〉fcJ2Mff一 (1;zr12)
吋 (η合云許可rや0'+き)

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 
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Under the 3PLMぅlet申m三 1/[1+ exp{-Dαm(8 -bm)}]. Thenぅin(3.11)， 

Pm'=Dαm(1一cm)宙m(1-¥[1m)う

Pmf/ 二 D2α~(1 一 cm)(l -2雪m)守m(1一世m)'
(3.12) 

In (3.8) or (3.11)ぅC;巾 includesu此nown80 and is not obtained in practice. How-
ever， under the LME， where 

Pm =P= 1 Q =1-P (m=17・・・ぅn)ぅ
1 +exp{-Dα(8-b)}' 一¥/

702ho=PG/(PQ)=D2dPQ?(3.13)  

io' = ho' = jo 

with P' de五ned邸 Pmf?a五xedlower bound for C:Uirr is found as follows. 
Theorem 1. Under the LME of (3.13) with the assumptions of 1，0' = ]1。チoand 
finite 80， a lower bound of c:Uirr is 3. 
Proof. Using (3.13)， c:Uin in (3.8) becomes 

I totoH 
:'nin -2士一十5う

'2 
'/，0 

(3.14) 

where 1，0' = D3a3(1 -2P)PQ and 1，0" =θ21，/δ8218ニ8
0
= D4a4(1 -6P + 6P2)PQ. 

Thenぅ(3.14)is 

(D2a2 PQ){D4a4(1 -6P + 6P2)PQ} ，" ，，1 -6P + 6P2 
cL1iI1=-2+5=2+5  

{D3a3(1-2P)PQP - (1-2P)2 

(1 -2P)2 -2P(1 -P) ，" .." 4PQ 
二一2 九 十5= 3 + (1 --"-;¥2 > 3. Q.E.D. 

(1 -2P) 
(3.15) 

In Theorem 1， the lower bound 3 corresponding to 80 土∞ isnot attained by 
finite 80・Theterm 4PQ/(1-2P)2 in the last ineql凶ityin (3.15) becomes infinitely 

large as 80 approaches O. This corresponds to the zero bias of 8ML at 80 = O. It 
is of interest七o五ndthat the lower bound 3 is the midpoint of the pseudocounts by 

Laplaceうsrule and Agresti and Coull (1998). 

In current ability tests for achievements based on IRTうtheLME is seldom used. 

However， the familiar 3PLM used frequently in practice is similar to the LME in a 
crude sense. Thusぅ七helower bound in Theorem 1 is expected to be of practical use 

to some extent in the case of the 3PLMうwhichis numerically illus七ratedwith and 

without m.m. in the next section. 

4. Numerical illustration under the 3・-parameterlogistic model 

Numerical illustration is given using arti五cialitem parameters of the 3PLM， which 
are ra吋 O宜m均ム

practice (Lord， 1975ぅFigures1-4; Kolen & Brennan， 2004， Table 6.5). The probabili-

ties PTm (m = 1，・・・9η)under m.m. are given by perturbi時 theterm-Dαm(8 -bm) 
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Table 1: Values of C;';1in minimizing the asymptotic mean square error for the 3PLM 

。
n -3 2 -1 O 1 2 3 

20 40.81 19.68 13.91 147.90 6.46 3.35 2.69 

50 41.78 19.48 18.09 96.27 4.07 2.65 2.60 

100 38.48 23.52 25.63 68.40 3.98 3.07 2.83 

Table 2: Asymptotic and simulated errors in estimation of ability when the 3PLM 1叫出 (η=20) 

(Number of 

deleted cases) 
ML BM WL PC(l) PC(2) PC(3) PC(4) PC(8) PC(c;';1in) 

(11) 。=1， C;';1in = 6.46 
ASE .3779 ml ml ml ml ml ml ml ml 

HASE .3989 .3399 .3796 .3789 .3578 .3353 .3113 .1863 .2423 

Sim吐ated(SD) .4075 .3406 .3783 .3809 .3592 .3407 .3246 .2755 .2921 

αム2 6.5 -10.9 .5 .3 -5.9 -12.1 -18.4 -43.2 -33.6 

Simulated 9.3 10.7 .1 .9 -5.5 -10.7 -15.0 -26.8 23.0 

α? .1 6.1 O .1 1.1 3.2 6.3 29.3 18.5 

Simulated .2 5.4 .0 .1 1.1 2.9 5.1 17.0 12.1 

HRMSE .3993 .3618 .3796 .3793 .3617 .3471 .3358 .3285 .3238 

Simulated .4081 .3599 .3783 .3814 .3631 .3510 .3437 .3440 .3398 

(5188) 。=2， C~in = 3.35 

ASE .5003 ml ml ml ml ml ml ml ml 

HASE .6139 .0627 .5332 .5292 .4281 .2940 .2289 

Simulated (SD) .5015 .2852 .4059 .4006 .3412 .3010 .2715 .2029 .2896 

αム2 50.6 98.6 135.6 11.9 -26.8 -65.6 104.3 259.2 -79.2 

Simulated .5 -67.6 34.2 -36.0 -53.6 -63.9 70.7 -83.7 -66.6 

αi 6.8 55.0 O .0 9.3 34.4 75.5 399.2 47.1 

Simulated 2.1 50.2 2.2 3.3 18.0 38.3 61.0 155.7 46.1 

HRMSE .6275 .3759 .5332 .5293 .4544 .4153 .4224 .7748 .4124 

Simulated .5067 .4547 .4128 .4107 .4018 .4316 .4756 .6560 .4462 

Note. ASE =η-1/2α泣2;HASE=(η一1αlvIL2+η← 2αム2)ゆ;HRMSE = {n-1αlvIL2十n-2(αム2十

αi)}1/2; ML: maximum likelihood; BM: Bayes modal; WL: weighted likelihood; PC(c*): esti【
mation using pseudocount ♂. The sign “ml" indicates that the value is identical to that by 
ML. The sign“-" indic前田 th凶 thevalue is imaginary. 

with an added independent variable following N(OぅD2)and keeping ET([) = O. The 

generated item parameters are dealt with as known ones. Sample sizes n = 20， 50 
and 100 are used. 

Table 1 gives c:nin under the 3PLM for e = -3， -2，・・・，3.When e = 0ぅthevalues 
are relatively large which is expected from (3.15). We find that c~由 as a function 

of e is reflected N-shaped rather than unimodal. Some of the values are somewhat 
smaller than the lower bound 3 for the LME. Since most of the values are larger than 

3 or approximately 3うthelower bound seems to be promising. 

Tables 2 to 6 give asymptotic and simulated errors of estimationぅwhenML， BM， 
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Table 3: Asymptotic and simulated errors in estimation of ability when the 3PLM does not hold 
(n = 20) 

(Number of 
ML BM WL PC(1) PC(2) PC(3) PC(4) PC(8) PC(C;';，in) 

deleted cases) 

(2) e = 1， C;';，in = 6.46， Cor(PTm， Pm) = .762 
ASE .3057 ml ml ml ml ml ml ml ml 

HASE .3205 .2716 .3050 .3042 .2869 .2686 .2489 .1455 .1921 

Simulated (SD) .3259 .2756 .3045 .3059 .2892 .2748 .2622 .2233 .2365 

αム2 3.7 -7.9 一.2 一.4 -4.4 8.5 12.6 -28.9 -22.6 

Simulated 5.1 7.0 .3 .1 3.9 -7.2 9.9 -17.4 15.0 

α? .1 6.1 .0 .2 1.2 3.3 6.3 28.2 17.9 

Simulated .1 5.2 .0 .2 1.2 2.8 4.9 16.1 11.4 

HRMSE .3208 .2984 .3050 .3048 .2922 .2834 .2787 .3029 .2858 

Simulated .3263 .2984 .3046 .3067 .2942 .2873 .2848 .3001 .2908 

(8185) 。=2，C2山=3.35， Cor(PTm， Pm) = .290 
ASE .4878 ml ml ml 皿l ml 皿l ml ml 

HASE .6199 .1505 .5426 .5388 .4431 .3200 .0919 .2633 

Simulated (SD) .4387 .2565 .3599 .3567 .3056 .2700 .2435 .1806 .2599 

αム2 58.5 -86.1 22.6 20.9 16.7 -54.2 -91.8 -242.1 -67.5 

Simulated -18.2 -68.9 -43.4 -44.3 57.8 -66.0 -71.5 -82.1 -68.2 
2 α1 6.3 57.5 .0 .1 10.1 36.3 78.6 410.2 49.3 

Simulated .2 56.2 5.0 6.3 23.0 44.3 67.4 162.0 52.3 

HRMSE .6325 .4078 .5426 .5390 .4707 .4394 .4528 .8112 .4389 

Simulated .4393 .4541 .3768 .3783 .3886 .4285 .4774 .6615 .4452 

Note. ASE = n-1/2α昨2;HASE = (η1αML2十η2αム2)1/2;HRMSE = {n-1αML2十η-2(αム2十
ai)}中;ML: maximum likelihood; BM: Bayes modal; WL: weighted likelihood; PC( Cつ:国ti-
mation using pseudocount c*. The sign “ml" indicates that the value is identical to that by 
ML. The sign り indicatesthat the value is imaginary. 

WL， andPC (♂) i.e.， PC with ♂are used， where ♂=1，2，3ぅ4and c:Uin' In addition， 
♂=  5 or 8 is used in Tables 2， 3 and 5 to have c*'s greater than c~巾 when c~巾 is not 

so large. It is easily seen that ML is equivalent to PC (0). No七ethat the results by 

PC (c:Uin) are for comparisonぅwherec:Uin given by 80 is available in the experimental 
da瓜tat吋t吐h削O仇ughunav，刊叩a厄ila油剥bleir叩

standard error， which is robust under m.m.; HASE =(n-1αML2 + n-2αム2)ゆ isthe 
higher-order ASE; HRMSE ={η1αML2十η2(αム2+αi)}1/2= (HASE2十η-2αi)1/2
is the higher-order asymptotic root MSE up to order O(η-3/2). Note that the asymp-

totic root MSE up to order O(η-1/2) is identical to the ASE. 

The simulated SE denoted by SD corresponding to ASE and HASE is the square 

root of the unbiased variance of 105 estimates for each estimator. The simulated 

αム2is n2(SD2 -n-1α2)' The simulatedαi is ポ timesthe square of the simulated 

bias. The simulated root MSE is given by the square root of the simulated mean 

of (eGW  - 80)2. When 8三一2(8三ofor η=  20) and 8 = 3， m出lycases of non-
convergence in estimation occurred. These cases were not employed. In the tables， 
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Table 4: Asymptotic and simulated errors in estimation of abili七ywhen the 3PLM hold日(n= 50) 

(Number of 
deleted cases) 

ML BM WL PC(l) PC(2) PC(3) PC(4) PC(C~in) 

(591) 。=-1. C~.tin = 18.09 

ASE .3601 ml ml ml ml ml ml ml 
HASE .3915 .3023 .3640 .3847 .3779 .3709 .3638 .2422 

Simulated (SD) .3971 .2974 .3463 .3832 .3718 .3617 .3527 .2697 

αム2 58.9 95.7 7.1 45.8 32.7 19.6 6.6 -177.6 

Simulated 70.0 -103.0 -24.4 42.9 21.3 2.9 -13.3 -142.3 
2 2.1 25.3 O .7 .0 .2 1.3 103.5 α1 
Simulated 2.6 27.2 .4 .7 .0 .4 1.7 71.3 

HRMSE .3925 .3187 .3640 .3851 .3779 .3710 .3644 3163 

Simulated .3984 .3152 .3465 .3836 .3718 .3619 .3536 .3182 

(0) 。=0，cE出 =96.27 
ASE .2833 ml ml ml ml ml ml ml 
HASE .2872 .2638 .2840 .2828 .2783 .2737 .2691 

Simulated (SD) .2875 .2650 .2839 .2830 .2786 .2743 .2701 .1140 

αム2 5.5 26.7 1.0 一.8 -7.1 -13.4 -19.7 -601.1 
Simulated 6.0 -25.2 .7 一.5 6.7 12.6 -18.2 -168.2 

αi .0 .0 O .0 .2 .4 .6 304.0 

Simulated .0 .0 .0 .0 .1 .2 .4 48.0 

HRMSE .2872 .2638 .2840 .2828 .2784 .2740 .2695 

Simtuated .2875 .2650 .2839 .2830 .2786 .2744 .2704 .1794 

Note. ASE = n-1/2α;jL;EASE =(n-1αML2 + n-2αム2)1/2;HRMSE={η1向山十
n-2(αLl.2十αi)}1/2;ML: maximum likelihood; BM: Bayes modal; WL: weighted like 
lihood; PC(cつestimationusing pseudocount ♂ The sign “ml" indicates that the 
value is identical to that by ML. The sign “" indicates that the value is imaginary. 

the numbers of deleted cases until 105 regular observations were obtained are shown. 

The nOlト.zeronumbers of the deleted cases when e = 1， 2 are all due to perfect scores， 
where finite eML is u日availableand these cases are not used for other estimators. 

Tables 2
う 4and 5 are given under c.m.s. while Tables 3 and 6 under m.m.， where 

the extent of m.m. is shown by the correlation of PTm and Pm over items. Table 2 

gives the results under c.m.s. with n being as small as 20. When e = 1， the asymp-
totic values are reasonably similar to their corresponding simulated values. The SD is 

closer to the corresponding HASE than the ASE. The results by WL  are reasonable 

in that not only the asymptotic bias is zero by construction (denoted by 0 in the 

associated tables rather than .0 for other rounded numbers)うbutalsoαム2is smaller 

than that by ML with similar simulated values. The results by PC (1) are similar 
to those by WL， which is expected to some extent since they are identical under the 
LME. It is of interest to五吋 thatthe results by PC (3) using the lower bound 3 for 
the LME are similar to those by BM. The HRMSE by PC (4) is smaller than those 
by PC (3) and BM  and greater than by PC (C;;:lin) with similar siml由tedtendencies. 
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Table 5: Asymptotic and simulated errors in estimation of ability when the 3PLM holds (η= 50) 

(Number of 
ML BM WL PC(l) PC(2) PC(3) PC(4) PC(5) PC(C;';un) 

deleted cases) 

(0) 8 = 1， cE山 =4.07

ASE .2733 ml ml ml ml ml ml ml ml 

HASE .2778 .2545 .2743 .2717 .2655 .2591 .2525 .2458 .2521 

Simulated (SD) .2779 .2553 .2735 .2714 .2653 .2595 .2540 .2487 .2536 

αム2 6.2 -24.8 1.4 -2.2 10.6 -19.0 27.4 -35.8 -27.9 

Simulated 6.3 -23.9 .3 -2.7 -10.9 -18.5 25.5 -32.1 -26.0 

αi .3 10.0 O .3 2.6 7.3 14.3 23.7 14.9 

Simulated .4 8.7 .0 .2 2.3 6.4 12.4 20.0 12.9 

HRMSE .2781 .2623 .2743 .2719 .2674 .2646 .2636 .2644 .2636 

Simulated .2782 .2620 .2735 .2715 .2670 .2644 .2635 .2643 .2636 

(26) 。=2う C~in = 2.65 

ASE .3290 ml ml ml ml ml ml ml ml 

HASE .3515 .2617 .3344 .3321 .3116 .2896 .2657 .2396 .2974 

Simulated (SD) .3590 .2740 .3343 .3313 .3095 .2914 .2761 .2628 .2973 

αム2 38.1 -99.4 8.8 5.1 28.0 -61.1 -94.1 -127.2 -49.6 

Simulated 51.6 -'-83.0 8.8 3.8 31.3 -58.4 80.1 -98.0 -49.7 

αi 4.3 76.6 O .7 14.1 44.6 92.0 156.5 32.1 

Simulated 5.4 67.4 .0 .8 14.4 41.8 80.0 126.7 30.9 

HRMSE .3539 .3149 .3344 .3325 .3205 .3189 .3278 .3464 .3182 

Simulated .3620 .3194 .3343 .3318 .3186 .3188 .3290 .3461 .3174 

Note. ASEη-1/2αL22;HASE=(η1αML2十 η-2αム2)1/2;HRMSE {n-1αML2 + 
η2(αLl.2十αi)}1/2;ML: maximum likelihood; BM: Bayes modal; WL: weighted likelihood; 
PC(Cつestimationusi時 pseudocount♂.The sign “ml" indicates that the value is identical 
to that by ML. 

In the table， it is seen thatαム2and αi for PC (c*) are monotonically decreasing and 
increasing， respectively in terms of ♂with similar simulated values. Howeverぅwefind 
that HRMSE and its simulated value are not monotonic with respect to ♂. 

When e = 2うsomediscrepancies appear especially in the results by ML， which is 
primarily due to the large number of deleted cases

う
whichis as many as 5% of the 

regular cases. It is seen in Table 2 that when e = 2， BM  gives the smallest HRMSE 
.3759 while PC (2) yields the smallest simulated RMSE .4018. 
Table 3 gives results under a realistic condition in that the 3PLM is more or less 

misspecified in practice for ability tests. It is encouraging to see that the results are， 
in a crude senseぅsimilarto those in Table 2. Note again that when e = 2， as many 
as 8185 cases corresponding to 8% of the regular cases were discarded due to perfect 

scores. When e = 1ぅthesmallest HRMSE and simulated RMSE are given by PC (4) 
not by PC (c:'nin) owing to m.m・， while they are gi刊 nby BM  and WL， respectively 
when e = 2. 
Tables 4 and 5 show the results with n = 50 under c.m.s. when e = -1う 0，1う 2.
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Table 6: Asymptotic and simulated errors in estimation of ability when the 3PLM does not hold 
(η=，50) 

(Number of 
ML 

deleted cases) 
BM WL PC(l) PC(2) PC(3) PC(4) PC(C~in) 

(83) 。=-1， C~in = 18.09， cor(PT-m， P-m) = .501 
ASE .3608 ml ml ml ml ml ml ml 

HASE .3790 .2812 .3490 .3718 .3644 .3569 .3492 .2130 

Simulated (SD) .3842 .2971 .3433 .3737 .3642 .3555 .3474 .2679 

αム2 33.8 -127.7 -20.9 20.2 6.6 -7.0 -20.6 212.0 

Simulated 43.7 104.7 -30.7 23.8 6.3 -9.4 23.7 -146.0 

α? 1.3 33.9 .2 .2 .1 .9 2.7 128.4 

Simulated 1.7 31.2 .7 .3 .0 .8 2.6 79.7 

HRMSE .3797 .3044 .3491 .3719 .3644 .3574 .3507 .3110 

Simulated .3851 .3174 .3437 .3738 .3642 .3560 .3488 .3219 

(13) 。=2， cLin=2.657 cor(PT-m， P-m) = .470 
ASE .2953 ml ml ml ml ml ml ml 

HASE .3126 .2317 .2972 .2952 .2767 .2569 .2355 .2639 

Simulated (SD) .3181 .2459 .2974 .2950 .2764 .2608 .2476 .2659 

αム2 26.3 -83.8 2.9 一.1 -26.5 52.9 -79.4 -43.8 

Simulated 35.0 66.7 3.2 一.4 27.0 -47.9 -64.7 -41.2 

αi 2.6 87.1 .2 1.8 18.4 52.3 103.7 38.6 

Simulated 3.3 72.9 .2 1.7 17.6 46.8 86.6 35.4 

HRMSE .3142 .2975 .2973 .2964 .2897 .2949 .3113 .2917 

Simulated .3201 .2994 .2976 .2961 .2888 .2946 .3098 .2913 

Note. ASE =η-1/2αば2;HASE = (η1αML2十η-2αム2)1/2;HRMSE = {η一1向山十
n-2(αム2十αi)}ゆ ;ML:皿aximumlikelihood; BM: Bayes modal; WL: weighted like 
lihood; PC(c*): estimation using pseudocount ♂. The sign“ml" indicates that the 
value is identical七othat by ML. 

The smallest HRMSE and simulated RMSE are given by BM  or PC (C:Uin)' When 
8 = -1 and 0， the value of ♂ in PC (c*) corresponding to BM  in Table 4 seems to 
be greater than 4 refiecting the relatively large c:Uin' Table 6 shows the results under 
m.m. when 8 = -1 and 2， which are found to be similar to the corresponding resu1ts 
in Tables 4 and 5. 

5. Remarks 

The results in the numerical i1lustration show that the lower bound 3 is reasonable 

especially when 80 is as large as 2 in data similar to those in this paper. When 80 is 

smaller than or equal to 0，♂= 4 may be more reasonable. In this case， large c* 's 

加 CL巾 maynot always be recommended for use in practice though c:Uin gives the 
smallest HRMSE under c.m.s. in the data. This is because the large c* also gives 

relatively larger biases than those by e.g・， BM. In the tables， BM  is found to give 
small MSEs and in ma可 casescomparable results by PC (c*) with c* = 3 and 4. 
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Howeverうwhenrelatively small bias is desired， WL and PC (c*) with ♂=  1 and 2 
may be used. 

Probably， it is possible to have less biased BMEs by using more relatively vague 
priors in place of the standard normal. However， the prior of the BME is an informa-
tive one based on the subjective probability of 80 from a pure Bayesian point of view， 
whose reasonable one is not always easily obtained. The standard normal prior for 

the BME is reasonable in many cases in that item parameters are estimated typically 

by marginal ML assuming the standard normal for the distribution of ability. The 

author has tried to obtain a fixed lower bound for the BME similar to c:Uin for the 
PCE. So far， howeverぅ七helower bound is not available. Probablyうmethodsdi百'erent
from that using the MSE for 8GW e.g・， empirical Bayes should be investigated. 
In the tablesうthesquared asymptotic bias is shown as a value independent of n. The 
corresponding bias of order O(η 1) is given by e.g・う (αi)1/2/η = (25.3)山 /50土 0.1 

for BM when 8 = -1 and n = 50 in Table 4 with a similar simulated value. The 

value 0.1 may be accepted by many researchers especially when we consider the large 

reduction of the variance by -95.7/502土 -0.038(the corresponding squared asymp-

totic bias is 25.3/502土 0.010)which reduces HASE = 0.3915 by ML to HASE = 

0.3023 by BM with similar simulated values. The corresponding resu1ts by c~lin when 
8 = -1 and η=  50 in Table 4 are (αi)1/2η= (103.5)1/2/50と 0.2and the reduction 
of the HASE = 0.3915 by ML to HASE = 0.2422 by PC (c:Uin) with similar simulated 
values. Though the large c判 sas c:Uin were not always recommended earlier by the 
authorうthevalue of the bias 0.2 may be tolerable for some researchers considering the 

corresponding substa国iallysmall variance. 

The method of estimation using the pseudocount is almost as simple as that by 

ML (recall (2.7)). On the other hand， MSEO(n-2)(8pc) (see (3.7)) is as complicated 
as those for other estimators with various g(8)'s (see (3.6)). It can be shown that an 

estimator with the same asymptotic cumulants up to the fourth order and the same 

added higher-order asymptotic variance as those of 8GW is given by correction of 8IvIL 
as follows: 

。C-GW三 8IvIL+η1aML29(0ML)三 eIvIL-n-1(_δIvIL2g)ぅ (5.1)

where &IvIL2 is the sample version ofαIvIL2. A typical example of -&IvIL2g is &IvIL1ぅ
which is the sample version ofαIvIL1 by ML， yielding the asymptotically bias-corrected 
estimator eIvIL -n-1&IvIL1・Recallthat g( 8) = 3/ (2I) for WLぅwhichunder c.m.s. gives 
一αIvIL2g(8)=3/(2I2 =αIvIL1) . 
The AMSE of 8c-GW in (5.1) is more easily ob切inedthan that of 8Gw. For sim-

plicity， we consider the case under c.m.s. i.e・， 8ιGW= 8IvIL +η 1i，-lg， where i， is the 
sample version of i. Thenう

E{(ec“GW -80?} 
= var(eIvIL) +η-22ηacov(0MLJ19)+{E(dc-GW)Oo}2+0(η-3) 

=η-1%01 +η 2[αIvILム2+2ηacov(8IvIL，I-1g)十{αIvIL1+記長19(80)Pl+ O(η 3)ぅ
(5.2) 
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where acov(・ぅ・)is the asymptotic covariance of order O(η一1)for the two variables. 
Using 

ηacov(eML， :;'-19) = -Iu3IO'g(80) + Iぷ2g'(80)， (5.3) 

(5.2) becomes 

η-Qu
1 
+η2{αMLム2十 αむL1十2Iu2g'(80)-Iu3(2九+30)g(80) + Iu2g(80)2} 

十O(η-3) (5.4) 

= M8EO(n-2) (eGw)十 O(η-3).

The estimator 8c-GW in (5.1) was introduced to have some insight in the involved 

expression of (3.6). Though M8Eo(η2)(-)'S are the same for 8GW and 8c-GWぅthe

latter has a di伍cultyin the cases of zero and perfect scoresうwhereability estimation 

by ML required for 8c【GWdoes not give五nite8ML
うs.On the other handう8GWうare

available in these cases. 

As addressed earlier， since c:Uin depends on unknown 80， c~巾 is not available in 

practice. In order to overcmne the di伍cultyan anonymous reviewer suggested a 

method that takes the expectation 0ぱfc:U山i
density (the author is indebted to the reviewer for the suggestion and associated re同

sults). In practiceぅitemparameters are typically calibrated by using 8 rv N(Oう1)to 

obtain the model identi五cation.80， it is quite reasonable to use the standard normal 
density (denoted byゆ(8))for グ(8)as is used for the prior of the BME. That is， the 
expectation is formerly given as 

出 n(8)}=にω。 (5.5) 

which can be approximated by using Gaussian quadrature: 

則合in(8)}土去芝山n山 Aiう (5.6) 

where Xi is the i-th quadrature point， Ai is the i-七hquadrature weight and lVJ is the 
number of the quadむra剖，tUl町 points(see 8troud & 8echrestう 1966うTableFive， pp.217 
252; Ogasawara， 2012b， Part A， 8ubsection 3.1). 
The author tried this method with M = 10う 15and 20. However， (5.6) becomes 
relatively large e.g・ぅ greater than 50， and tends to be unstable. This is due to the large 
or infi叫telylarge value of c:Uin (8) with 8 being around o. The instability comes from 
the fact that when a quadrature point happens to be close to this value， (5.6) becomes 
large. 80ぅsomemethods to remove the instability are required. A simple method is 

to use c:Uin(O) since 0 is the mean of N(O， 1) though this again gives a large value 
(recall Table 1). Another simple method is to take the mean or minimum of c:Uin ( -1) 
and c:Uin (1) since土1are vah悶 awayfrom the mean by a standard deviation. When 
the minimum is used， we have 3.98 rv 6.46 from Table 1. When some information 
about the possible values of c~巾 is availableうamethod sinular toぅbutdifferent from 
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that suggested by the reviewer is to use the hierarchical Bayesian model. In the五rst

stageぅ C;;:linis seen as a power of a prior (see (2.3)). Then， usi時 thehigher-order 
prior representing the information available for c:nin' c:nin is integrated out over the 
distribution， which can avoid the instability mentioned above. 
Alternatively， we are tempted to use estimates of 80 e.g・， 8ML. Howeverぅ this
is dangerous because the formula of MSEo(η2)(・)for c:n由i
C44白LLL1註in(ゆ6九Mω C4仏LLi泊n(伊0向削0ω)= Op( η 一1ν/2勺).
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