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Abstract Monitoring is a task of actual water collection in water quality assessment from lakes. In this
paper, we consider the problem of locating water sampling sites which is a significant issue in the design of
lake monitoring. We formulate the location problem so that it can handle multiple purposes and constraints
arising in monitoring tasks, and design an algorithm based on iterated local search (ILS ). In our experiments,
we apply our formulation to the real situation of Lake Biwa, the largest freshwater body in Japan. The
ILS based algorithm finds such a location of sampling sites from which we can achieve better estimation
of water quality distribution over the entire lake than the existing location, where we assume the existence
of the true distribution and generate it by Lake Biwa Basin Hydrological and Material Cycle Model. Also,
we observe that some points are newly selected in the output solutions more frequently than others; such
points can be interpreted as potential sampling sites.

Keywords: Optimization, mathematical modeling, lake monitoring, iterated local
search

1. Introduction

1.1. Background

Monitoring is one of the significant tasks in water quality assessment from lakes, and refers
to a task of actual collection of water. It is hard to design monitoring in general, and the
strategies should be decided by lake use, lake problems being addressed, and the availability
of resources for undertaking the assessment program [2].

In this paper, we mainly consider the monitoring task in Lake Biwa, the largest freshwater
body in Japan. Lake Biwa is about 670km2 in area, and its maximum depth is more than
100m. Located in Shiga Prefecture, it gives numerous benefits to the 14 million people in
the Kinki region (which contains such big cities as Osaka, Kyoto and Kobe) by supplying
vital water to their households and industries, by providing an abundant source of fishery
products, and by offering tourists and residents a venue for rest and relaxation [16]. In Lake
Biwa, water is sampled at 47 sampling sites once or twice a month. We show the existing
location of the sampling sites (indicated by ∗ or •) in Figure 1. We will explain details of
the figure in later sections.

Location of sampling sites is one of the main concerns in designing lake monitoring. The
existing sampling sites for Lake Biwa were decided at the end of 1970’s; the surface of the
lake is cut simply by approximately parallel lines from the west to the east (see two dashed
lines in Figure 1 for example), and a couple of sampling sites are located on each line, with
an approximately equal distance. However, it has been suggested that the data collected
from these sampling sites do not necessarily contribute to clarification of the water quality
system [4]. Also, if the budget were reduced by the organizer due to financial reasons, we
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Figure 1: The existing location of the sampling sites for Lake Biwa

might need to prune some sampling sites and even to move the remaining ones to other
points for balance. For risk management, we should discuss rearrangement of sampling
sites under various conditions. These motivate us to establish a mathematical model of
computing an “effective” location of sampling sites.

1.2. New contribution

There are some studies that attempt to compute the optimal location of sampling sites in the
literature of water environmental research. In the previous studies, a location is evaluated
only by goodness of water quality estimation. In fact, it is an essential goal to achieve good
estimation of the water quality distribution over the entire lake only from the data collected
at the sampling sites. However, it is not the unique purpose in general, and lake monitoring
is usually conducted for multipurposes (e.g., examination of supplied water quality) under
various constraints (e.g., polluted areas have to be sampled to some degree).

In this paper, we propose a new formulation of the problem of deciding the optimal
location of sampling sites. Our formulation is so general that it can handle multiple purposes
and constraints which often arise in a monitoring task. We refer to the formulated problem
as the sampling site location problem (SLP). In SLP, a solution (i.e., a location of sampling
sites) is represented as a subset S of the candidate point set P . We define the objective
function as the weighted sum of several value functions on S, by which we can deal with
multipurposes. The budget is a simplest constraint of a monitoring task; we restrict the
cardinality |S| to a positive constant. To represent other constraints, we require S to have
overlap with specific point sets to some extent. We design an algorithm based on iterated
local search (ILS ) [7] to solve SLP, which is a general algorithmic framework for hard
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combinatorial optimization problems.

Another contribution of this paper is a case study of SLP on Lake Biwa. We take 3
value functions, each of which evaluates goodness of water quality estimation, continuity
of existing sites, and the number of intakes, respectively. Among these, we define the first
one as the difference (i.e., the sum of the squared error) between the “true” water quality
distribution and the distribution estimated by an appropriate interpolating method where
we use the data on S as the input. The difference appears hard to be evaluated since the
“true” distribution is not available in general. Then we regard the distribution computed
by Lake Biwa Basin Hydrological and Material Cycle Model (LB-Model) [14] as the true
one, and employ 2-dimensional spline method under tension (SPT ) [12] as the interpolating
method. In the computational experiments, our ILS based algorithm can find such a solution
that achieves smaller difference than the existing solution although the number of sampling
sites is smaller. Also, we find that some points are selected as the solution more frequently
than others even though they are not in the existing solution; such points can be interpreted
as potential sampling sites.

The paper is organized as follows. We mention related works in Section 2. In Section 3,
we formulate the problem SLP and also describe LB-Model and SPT. We present the ILS
based algorithm for SLP in Section 4, and then report experimental results in Section 5.
We discuss other models to estimate the true distribution in Section 6, and give concluding
remarks in Section 7.

2. Related Works

We consider lake monitoring in this paper, while river monitoring has been studied since
1970’s. Sanders et al. published a standard book [13] of river monitoring, and discussed
how to design its procedures. They dealt with not only location of sampling sites but also
sampling frequency and water quality indices to be sampled. They stated that, among
these issues, location of sampling sites is the most significant in general. There are several
papers that attempt to compute the optimal location of sampling sites under their own
definitions of optimality. For example, Dixon et al. [5] defined the cost of assigning a
sampling site to a river section as the additional expense needed to find pollution source
when pollution has been detected in the sampling site. To find the optimal location, they
applied simulated annealing to minimize the total cost over all river sections. Alvarez-
Vázquez et al. [1] assumed that the water quality is distributed by a differential equation
system, and proposed an algorithm to find the location that minimizes the squared error
sum between the model distribution and the estimated distribution; their idea is similar to
ours in the sense that the “true” distribution is assumed.

In general, river monitoring problems are not so hard as lake monitoring ones. In the
former, solution spaces can be modeled by such simple structures as 1D line or rooted tree,
and it is not too academic even to assume monotonicity on water flow, by which the problems
become more tractable; e.g., downstream pollution does not affect the water quality of the
upper parts of the river. However, the water pollution mechanism in a lake is more complex.
Lakes have three fundamental characteristics in common; integrating nature, long retention
time, and complex response dynamics [10]. These characteristics make predicting the water
quality changes harder.

For lake monitoring, there are several studies on optimal location of sampling sites.
Matsuoka et al. [11] analyzed the optimal location problem using stochastic estimation.
Fujiwara et al. [6] examined how to prune the existing sampling sites so that the prediction
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ability is not diminished to a large extent. More recently, Hedger et al. [8] investigated to
calibrate the location by the spatial dynamics of the lake observed by remote sensing data.

Most of the previous studies deal with optimization of a single criterion, that is, goodness
of water quality estimation. Our formulation is more general, where we can handle multiple
purposes and constraints arising in lake monitoring. This is the crucial difference between
the previous studies and our work.

3. Sampling Site Location Problem (SLP)

In this section, we formulate the problem SLP and show its ability to handle multiple
purposes and constraints of lake monitoring, by discussing its application to the real situation
of Lake Biwa. We then describe LB-Model and SPT, which we will use in the computational
experiments in Section 5. We generate the true water quality distribution by LB-Model,
and use SPT as the interpolating method to estimate the distribution over the entire lake.

3.1. Formulation

For simplicity, we do not consider the water depth but only the surface of the given lake. We
may partition the surface by 2D grid, and approximate it by a set P = {p1, p2, . . . , pn} ⊆ R2

of n grid points on 2D plane. We specify each pi ∈ P by its coordinate values, and denote
it by pi = (xi, yi). We assume that at most one sampling site is allocated to each pi ∈ P .
Then we refer to any subset S ⊆ P as a solution.

We design SLP as a maximization problem, and define the objective function f : 2P → R
as the weighted sum of several value functions on S. Let us denote by V the set of the value
functions. Each v ∈ V is a function v : 2P → [0, 1], where the value v(S) indicates how S
accomplishes the criterion associated with v. We give a constant weight wv ∈ [0, 1] to each
v ∈ V so that

∑
v∈V wv = 1 is satisfied, showing the relative significance of v.

More sampling sites would deliver more useful information to us, but the monitoring
budget is usually limited. The budget is mainly used for fuel charge of the ships, manpower
cost and reagent cost, which are proportional to the number of sampling sites in general.
We assert that the budget determines the number of sampling sites, and hence we restrict
the cardinality |S| to a positive constant m. To represent other constraints, we introduce
a family C ⊆ 2P of constraint subsets. We require S to have overlap with each C ∈ C to a
certain degree, i.e., b−C ≤ |S ∩ C| ≤ b+

C for constants b−C and b+
C . We formulate the problem

SLP as follows.

Sampling Site Location Problem (SLP)

maximize f(S) =
∑
v∈V

wv · v(S) (3.1)

subject to b−C ≤ |S ∩ C| ≤ b+
C (∀C ∈ C) (3.2)

|S| = m, S ⊆ P (3.3)

An SLP instance is then defined by a 2D point set P , a set V of value functions, weights
wv’s for each v ∈ V , the number m of sampling sites, a family C of constraint subsets, and
lower bounds b−C ’s and upper bounds b+

C ’s for each C ∈ C. We call a solution S ⊆ P feasible
(resp., infeasible) if it satisfies (resp., does not satisfy) both Equations (3.2) and (3.3).

It is possible that an SLP instance has no feasible solution. It must be hard to decide
the feasibility of a given SLP instance efficiently (i.e., in polynomial time); even in the
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restricted case where b+
C = +∞ for each C ∈ C, the decision problem becomes constrained

set multicover problem [17], which is a generalization of set cover problem (SCP), a well-
known NP-hard problem. Then it must be also computationally hard to output a feasible
solution or Null according to whether a given SLP instance is feasible or not.

3.2. Application to Lake Biwa

We consider constructing an SLP instance by following the real situation of Lake Biwa.
We take north-south and east-west grid lines on the surface of Lake Biwa at 1km intervals.
Then the number n of grid points amounts to n = 677, and the bounding box has 37 points
in width and 59 points in height. Taking the point where the lowermost and the leftmost
grid lines meet as the origin (0, 0), we assume that each point pi = (xi, yi) ∈ P is integral,
i.e., xi, yi ∈ Z. Among the 47 existing sampling sites, some 2 sites are close and belong to
the same grid point in this setting (as indicated in Figure 1). In the sequel, we regard them
as one sampling site and the number of the existing sampling sites as 46. We denote by
Sexist ⊆ P the set of existing sampling sites (and thus we have |Sexist| = 46). We may call
Sexist the existing solution, and each pi ∈ Sexist an existing sampling site (or an existing site
for short).

We assert that the following criteria are essential and thus should be taken into account
in evaluating a solution.

• Goodness of water quality estimation.

• Sampling at specific points: existing sampling sites, intakes of supplied water, coastal
areas, and polluted areas.

Based on the interview with technical staffs in Shiga Prefectural Government, we define the
set V of value functions as V = {vest, vexist, vintake}, and the family C of constraint subsets
as C = {S∗

exist, Scoast, Spol}. For V , the 3 value functions vest, vexist, vintake evaluate goodness
of water quality estimation, the number of existing sites in a solution, and the number of
intakes in a solution, respectively. For C, the set S∗

exist ( Sexist denotes the subset of the
existing sites which we have to include in a solution, and Scoast and Spol (Scoast, Spol ⊆ P )
are the sets of coastal points and polluted points, respectively.

We asked the interviewees to give nonnegative weights to the value functions so that the
total weight amounts to 1. Taking the averages over the interviewees, we use west = 0.324
for vest, wexist = 0.581 for vexist, and wintake = 0.095 for vintake; they consider that continuity
of the existing sampling sites is more important than others. In the experiments, we will
try several values for m to observe the change of obtained solutions. We describe the details
of the value functions and the constraint subsets below.

Goodness of water quality estimation

For each sampling site, the sampled water is analyzed to examine its quality indices;
e.g., COD (Chemical Oxygen Demand), TN (Total Nitrogen), TP (Total Phosphorus). The
real values of these quality indices are available only for the sampling sites. To understand
the water quality condition in the entire lake, it is desirable to achieve good estimation of
the water quality distribution over the entire lake by using an appropriate interpolating
method.

Focusing on one quality index, we assume the existence of a true distribution which we
denote by a mapping d : R2 → R. Given a solution S ⊆ P , we assume that we can access
the value d(xi, yi) of any pi = (xi, yi) ∈ S, but cannot access the value d(xj, yj) of any
pj = (xj, yj) /∈ S; this assumption comes from the fact that the real values are available
only for S. We estimate d by using d(xi, yi)’s for each pi = (xi, yi) ∈ S and an interpolating
method. Precisely, an interpolating method is an algorithm that outputs a mapping from R2
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to R by using the set
∪

pi=(xi,yi)∈S{(xi, yi, d(xi, yi))} as the sample. For a given interpolating

method and a solution S, we denote the estimated distribution by a mapping d̂S : R2 → R.
We define ϕest(S) as the sum of the squared errors over all points in P ;

ϕest(S) =
∑

pi=(xi,yi)∈P

(
d̂S(xi, yi) − d(xi, yi)

)2
. (3.4)

We define the value function vest : 2P → [0, 1] by normalizing ϕest as follows;

vest(S) = max{0,−6.81 × 103 × ϕ2
est(S) − 4.13 × 101 × ϕest(S) + 1.0}, (3.5)

where we decide the coefficients based on the interview; We asked the interviewees to give
scores from 0 to 1 to some instance values of ϕest. We compute the quadratic regression by
least squares method to see the scores as a function of ϕest’s, which results in the second
quadratic function in the braces of the righthand in Equation (3.5). A smaller error sum
ϕest(S) would be pleasing to us, and one can readily see that vest(S) is monotone non-
increasing with respect to ϕest(S) ≥ 0.

In the experiments, we focus on TP that is considered one of the most influential water
quality indices upon the ecosystem of Lake Biwa. We generate the true distribution d by
LB-Model, where we compute the averaged distribution over year 2004. (An overview of this
d is shown by shading in Figure 1.) We use SPT for the interpolating method to construct
an estimated distribution. We describe the technical overview of LB-Model and SPT in the
next subsections.

There is no model that can capture the future of the lake perfectly. For example, LB-
Model cannot predict accidental pollution occurred by abrupt increase of plankton. (To
understand such unpredictable phenomena, we need to conduct a monitoring task periodi-
cally.) However, it must be a realistic approach for us to assume the existence of the true
distribution which is generated by a mathematical model. LB-Model can achieve good esti-
mation of a long-term (e.g., 1 year) average of the real water quality [14], which encourages
us to employ it to generate the true distribution.

Sampling at specific points

For Lake Biwa, the monitoring task started more than 30 years ago, and a large amount
of data has been stored so far. For consistency of the data, we should not move too many
existing sampling sites to other points. For a solution S ⊆ P , we define ϕexist(S) as the size
of the intersection between S and Sexist, showing continuity of the existing sites;

ϕexist(S) = |S ∩ Sexist|. (3.6)

We then define the value function vexist : 2P → [0, 1] by normalizing ϕexist as follows;

vexist(S) = −1.55 × 10−4 × ϕ2
exist(S) + 2.89 × 10−2 × ϕexist(S),

where the coefficients are determined based on the interview, similarly to the case of vest.
A larger ϕest(S) would be pleasing to us, and vexist(S) is monotone increasing with respect
to ϕexist(S) ∈ [0, 46]. (|Sexist| = 46.)

We cannot move some existing sites to other points since they are established as envi-
ronmental standard points by law, or are used for sampling of deep water. A constraint
subset S∗

exist ( Sexist is the set of such points. We have |S∗
exist| = 12, and the existing sites

in S∗
exist (resp., Sexist \ S∗

exist) are indicated by ∗ (resp., •) in Figure 1. We set the lower and
the upper bounds as b−exist = b+

exist = |S∗
exist|.
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Besides existing sites, there are some points that should be selected in the solution due
to their own reasons. For example, Lake Biwa serves as a water source for domestic use. To
monitor how the supplied water is affected by change of the water quality in the lake, we
should locate some sampling sites near the intakes. For other example, since coastal water
is more relevant to the scenery than offshore water, we may need to locate some sampling
sites at the coastal areas. Also, we should pay more attention to the polluted areas than to
the rest parts of the lake.

Let Sintake, Scoast, Spol ⊆ P denote the sets of the intake points, the coastal points and
the polluted points, respectively. We have |Sintake| = 14, |Scoast| = 214 and |Spol| = 71 for
Lake Biwa. For a solution S ⊆ P , we define ϕexist(S) as the size of the intersection between
S and Sintake, showing how many intake points S contains;

ϕintake(S) = |S ∩ Sintake|. (3.7)

Then we define the value function vintake : 2P → [0, 1] as follows;

vintake(S) = 7.14 × 10−2 × ϕintake(S),

which is monotone increasing with respect to ϕintake(S).
Many interviewees considered that S should have overlap with Scoast and Spol to some

extent, i.e., |S ∩ Scoast| and |S ∩ Spol| should be neither too small nor too large, compared
with the number m of sampling sites. Then we treat Scoast and Spol as constraint subsets.
The interviewees answered suitable bounds on |S ∩ Scoast| and |S ∩ Spol|, by which we set
b−coast = 0.4m and b+

coast = 0.7m for the coastal points, and b−pol = 0.2m and b+
pol = 0.5m for

the polluted points.

3.3. Lake Biwa Basin Hydrological and Material Cycle Model (LB-Model)

LB-Model consists of three component models; the land model , the lake flow model , and
the lake ecological model . Each model simulates hydrological and/or material cycle in Lake
Biwa Basin, after reading input data about climate, land use, social situation, and so on,
and output data from other models [14]. In other words, LB-Model calculates water quality
and quantity in Lake Biwa Basin by coupling three component models. See Figure 2.

The land model simulates water quality and quantity on the land area (e.g., river dis-
charge, river water quality, and groundwater quality). In this model, rain water is divided
into evapotranspiration, infiltration, and surface runoff by the evapotranspiration model.
Infiltrating water and surface runoff go into the groundwater model and the surface runoff
model respectively, and flow into the river channel model, finally the lake flow/ecological
models. Through this water flow, load from point (e.g., domestic waste water) and non-point
(e.g., waste water from urban area) source are aggregated in each factor model.

The lake flow model simulates flow direction, flow velocity, and water temperature in
the lake. Lake Biwa is divided into 1km meshes horizontally and 8 layers vertically, that is,
3 dimensional model. The base equations used in this model are dynamic equation of each
dimension, water temperature balance equation, and equation of continuity.

The lake ecological model simulates lake water quality (e.g., COD, TN and TP) by
calculating biochemical process, by which we generate the true distribution d. The structure
of Lake Biwa can be approximated by the lake flow model (i.e., 3 dimensional model), and
in this model, food web is simulated among nutrients, plankton, fish, detritus, and so on.

3.4. 2-dimensional spline method under tension (SPT)

In this paper, we employ SPT [12] to compute an estimated distribution d̂S for a given
solution S ⊆ P . SPT is one of the interpolating methods that estimate the distribution of
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Figure 2: Overview of LB-Model

water quality, and has been applied for water pollution studies over 20 years [11]. Based
on the infinitesimal displacement theory on elastic body, SPT proposes to estimate the true
distribution d : R2 → R by such d̂S : R2 → R that minimizes the energy function E(d̂S)
defined as follows;

E(d̂S) =

∫
R

(
(∆d̂S)2 + σ(∇d̂S)2

)
dxdy, (3.8)

among those satisfying d̂S(xi, yi) = d(xi, yi) for any pi = (xi, yi) ∈ S. In Equation (3.8),
R denotes a sufficiently large 2D region containing the considered point set P , σ denotes
a positive parameter controlling the function shape of d̂S (where d̂S becomes smoother if σ
gets smaller) and ∆ and ∇ are operators defined as ∆ = ∂2

∂x2 + ∂2

∂y2 and ∇ = ∂
∂x

ex + ∂
∂y

ey,
where ex and ey are basis vectors. The boundary condition is given as follows;

∂d̂S

∂µ
= ∆d̂S = 0 on ∂R,

where ∂
∂µ

denotes the partial differentiation in the direction of the normal from the boundary
region ∂R to its outside.

The paper [12] considers how to compute d̂S by difference equation system. The system
updates d̂S(pi) of each point pi ∈ P iteratively, based on the d̂S(pj)’s of neighbor points pj’s

and the parameter σ. In the experiments, we set σ = 0.3, by which d̂S becomes smooth
enough, and the number of iteration times to 200 which is sufficient for convergence.

4. Iterated Local Search (ILS) Based Algorithm

In this section, we present our heuristic algorithm based on iterated local search (ILS) [7]
for SLP. The motivation is described as follows: If the number n of grid points and the
number m of sampling sites were relatively small, then we might be able to obtain the
optimal solution by examining all solutions of size m. However, we have n = 677 for Lake
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Biwa, and if we take m = 46 (i.e., the same size as the existing solution), the number of
combinations amounts to

(
677
46

)
> 1071. Then it is smarter to design an efficient algorithm

that delivers a nearly optimal solution.
Our algorithm calls local search as a subroutine iteratively. Let Sinit ⊆ P denote an

initial solution. Starting with S = Sinit, one local search repeats searching the neighborhood
of S for a better solution S ′ (in the sense of the objective) and setting S ← S ′ if such S ′

exists in the neighborhood; otherwise, it returns S to the main routine.
However, as described in Section 3.1, it must be hard to generate a feasible solution

efficiently for Sinit. In order to resolve this issue, we expand the search space into all
solutions of size m (including infeasible ones), by which we can take Sinit as any set of m
grid points. Taking the degree of constraint violation into account, we need to extend the
objective function so that it evaluates not only a feasible solution but also an infeasible one.
For each constraint subset C ∈ C, we introduce the penalty function ρC defined as follows;

ρC(S) =


b−C − |S ∩ C| if |S ∩ C| < b−C ,
|S ∩ C| − b+

C if |S ∩ C| > b+
C ,

0 otherwise.

Then we define an alternative objective function f̃ as follows, based on the original objective
function f defined in Equation (3.1);

f̃(S) = f(S) − M
∑
C∈C

ρC(S), (4.1)

where M denotes a sufficiently large constant. We see that, if S is feasible, then we have
f̃(S) = f(S). Otherwise, f̃(S) becomes much smaller and then S is rated as a poor solution.
Note that penalty function is not a new notion but is frequently used in the optimization
literature (e.g., Chapter 48 of the handbook [7]).

Algorithm 1 shows a summary of our ILS based algorithm. ILS-SLP is the main routine.
It calls the subroutine LS-SLP iteratively, which corresponds to one local search. The τ
and δ are positive parameters, where τ represents the number of iteration times and δ
represents the radius of the neighborhood of a point or a solution. For a given δ, we define
the neighborhood Nδ(pi) ⊆ P of a point pi ∈ P as follows;

Nδ(pi) = {pj ∈ P | ||pi − pj||1 ≤ δ},

where ||pi −pj||1 = |xi −xj|+ |yi − yj| denotes the Manhattan distance between pi = (xi, yi)
and pj = (xj, yj). We then define the neighborhood Nδ(S) ⊆ 2P of a solution S as follows;

Nδ(S) =
{
{S ∪ {pj} \ {pi}} | ∀pi ∈ S, ∀pj ∈ Nδ(pi)

}
.

That is, Nδ(S) is the family of the solutions which can be obtained by shifting a sampling
site on pi ∈ S to a point in its neighborhood, pj ∈ Nδ(pi). The size of the neighborhood
is evaluated as |Nδ(S)| = O(|S|δ2). Clearly we have |S| = |S ′| for any S ′ ∈ Nδ(S). This
implies that, if |Sinit| = m, then LS-SLP exactly returns a solution of size m. In Line 17
in LS-SLP, we search the solutions in Nδ(S) in a random order, and employ the first met
better solution as S ′ (which is called the first admissible move strategy in the literature).

We denote by S(t) (t = 1, 2, . . . , τ) the solution obtained by the t-th LS-SLP, and by Sopt

the incumbent solution. Initially, Sopt is set to S(1) (Line 4). For each t > 1, if S(t) is better
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Algorithm 1 An ILS based algorithm for SLP

1: procedure ILS-SLP(τ, δ)
2: Sinit ← a solution of size m

. Sinit needs to satisfy Equation (3.3), but does not need to satisfy Equation (3.2).
3: S(1) ← LS-SLP(Sinit, δ)
4: Sopt ← S(1)

5: for t ← 2, 3, . . . , τ do
6: Sinit ← a solution obtained by perturbing Sopt

. Sinit needs to satisfy Equation (3.3), but does not need to satisfy Equation (3.2).
7: S(t) ← LS-SLP(Sinit, δ)
8: if f̃(S(t)) > f̃(Sopt) then
9: Sopt ← S(t)

10: end if
11: end for
12: output Sopt

13: end procedure

14: procedure LS-SLP(Sinit, δ)
15: S ← Sinit

16: while Nδ(S) contains a better solution than S (in terms of f̃) do
17: S ′ ← a solution in Nδ(S) with f̃(S ′) > f̃(S)
18: S ← S ′

19: end while
20: return S
21: end procedure

than the incumbent solution Sopt, then it is set Sopt ← S(t) (Line 8). After LS-SLP is called
τ times, the algorithm outputs Sopt.

Let us describe how to select an initial solution. For the 1st local search, we use randomly
chosen m grid points as Sinit (Line 2). For the subsequent ones, we obtain Sinit by perturbing
the incumbent solution Sopt (Line 6). We perturb Sopt by shifting all m sampling sites in Sopt

to their neighborhoods. By this perturbation, we expect the algorithm to search solutions
which are “close” to Sopt, the best solution searched so far, but are hardly reached by a
single local search from Sopt; recall that Nδ(S) is the family of solutions obtained by shifting
only one sampling site in S to its neighborhood.

5. Computational Experiments

In this section, we present the experimental results of applying the algorithm ILS-SLP to
the SLP instance constructed for Lake Biwa. We wrote all source codes in C language, and
conduct all experiments by our PC carrying 2.83GHz CPU, which is not a special computer
nowadays.

Setting M = 100 for the coefficient in Equation (4.1) and τ = 10 and δ = 3 for the
parameters, we perform 50 trials of ILS-SLP by taking initial solutions at random. We
compare the best solution SILS (in the sense of the objective f) with the existing solution
Sexist. We take the number m = |SILS| of sampling sites as m = 46, in order to compare SILS

with Sexist having 46 sampling sites. We confirmed that the constructed SLP instance has
feasible solutions, including Sexist. We show function values of the two solutions in Table
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Table 1: Function values of the existing solution Sexist and the best solution SILS of ILS-SLP
Solution f ϕest ϕexist ϕintake

(3.1) (3.4) (3.6) (3.7)
Sexist 0.904 1.66 × 10−3 46 4
SILS 0.832 1.23 × 10−3 36 6

1, where we display not only the objectives but also ϕest, ϕexist, ϕintake, instead of the value
functions vest, vexist, vintake. We do not discuss the value functions vest, vexist, vintake but their
component functions ϕest, ϕexist, ϕintake here since the latter is easier to comprehend. Recall
that the value function vest is monotone non-increasing with respect to the squared error
sum ϕest, and that the ones vexist and vintake are monotone increasing with respect to the
numbers ϕexist and ϕintake, respectively. As shown in the table, SILS is superior to Sexist in
the squared error sum ϕest and in the number ϕintake of intake points, but is inferior in the
objective f and the number ϕexist of existing sites. This result seems agreeable because Sexist

itself is a good solution in our SLP instance; the number ϕexist(S) takes its maximum 46 if
and only if S = Sexist (see its definition in Equation (3.6)), and the weight wexist given to
the associated value function vexist is larger than others (west = 0.324, wexist = 0.581 and
wintake = 0.095).

We show the sampling sites in Sexist and SILS in Figure 3, along with overviews of the
estimated distributions. We have |SILS \Sexist| = 10, and observe that the 10 sampling sites
in SILS \ Sexist are located in the northern part of the lake, as shown in Figure 3(b). They
may be used for decreasing the squared error sum ϕest or for increasing the number ϕintake

of intake points. For example, SILS is better than Sexist in estimating the TP distribution
of the area Ω. (Compare Figure 3 with the true distribution shown in Figure 1.) Also, SILS

has 2 intake points which Sexist does not have. We will observe this phenomenon in a more
general setting later.

We conjecture that ILS-SLP starts from such an initial solution that is “far from” Sexist

with high probability, which is supported by the following observation: if we disregard the
feasibility, the expectation of the number of existing sampling sites in an initial solution
(which is selected at random) is just 46 × (46/677) = 3.13. Then the output local optima
can be also distant from Sexist. In our experiments, the algorithm ILS-SLP does not output
a better solution than Sexist in the sense of f , mainly due to the weights assigned to the
value functions. However, observing the improvement on ϕest and ϕintake, we conclude that
it can provide alternative solutions by searching a solution subspace distant from Sexist.

We have performed 50 trials of ILS-SLP, and in Figure 4, we show the number of trials
in which each point pi ∈ P is contained in the output solutions. We observe that points in
the area Ω are selected more frequently than others although they are not existing sampling
sites. On the other hand, the 4 existing sampling sites in Ω′ are selected fewer times. This
phenomenon comes from the characteristics of SPT. As SPT is an interpolating method of
2D functions, to decrease the squared error sum ϕest, it must be more effective to locate
sampling sites near critical points in the true distribution (e.g., Ω) than on its slopes (e.g.,
Ω′). (See Figure 1 for the true distribution.) Then the points in Ω can be regarded as
potential sampling sites so long as we employ SPT to compute an estimated distribution.

Next, we take different numbers for m in order to observe the change of the tendency
of the obtained solutions. Here we take m = 20, 30 and 40 in addition to m = 46, and
perform 50 trials of ILS-SLP for each m. (For each m, we confirmed that the constructed

Copyright c© by ORSJ. Unauthorized reproduction of this article is prohibited.



300 K. Haraguchi & Y. Sato

S exist S ILS(a) Existing solution             (b) Best solution            of ILS-SLP 

≤  0.005
≤  0.006
≤  0.007
≤  0.008
≤  0.009
≤  0.010
≤  0.011
≤  0.012
≤  0.013
≤  0.014
≤  0.015
≤  0.016

> 0.016

TP (mg/L)

Ω

Sampling site not in             S exist
*

Sampling site in             S exist
*

Intake point             

Sampling site in             S exist

Figure 3: Sampling sites and the estimated distributions

SLP instance has feasible solutions.) We show the distributions of f , ϕest, ϕexist, ϕintake over
the 50 trials in Figure 5. In each figure, the horizontal (resp., vertical) axis represents the
function value (resp., the density). In the figures (a), (b) and (d), the vertical dotted line
represents the function value of the existing solution Sexist; in the figure (c), the vertical
dotted lines represent ϕexist(S) = m, which gives the upper limits on ϕexist(S).

As shown in the figure (a), the existing solution Sexist achieves a better objective value
f(Sexist) = 0.904 than all solutions obtained by ILS-SLP. As discussed before, the main
reason is that the weight wexist assigned to the value function vexist is larger than others.
Let us observe the figure (c). When m = 20 and 30, ϕexist(S) is nearly m, meaning that an
obtained solution S is almost a subset of Sexist. On the other hand, when m = 40 and 46, S
contains about 5 to 10 sampling sites which are not in Sexist. We consider that these newly
selected sites are used for improving ϕest and ϕintake, as shown in the figures (b) and (d). In
the figure (b), it is interesting to see that Sexist is not superior even to the average case of
m = 30.

Finally, let us mention the computation time of ILS-SLP. We show the averaged com-
putation time over the 50 trials in Table 2. It is agreeable that the time is proportional to
m and δ. We note that the solutions obtained for δ > 3 are not much better than those for
δ = 3 (in both the objective and the value functions) in our preliminary experiments.

6. Discussion on Water Quality Estimation

To evaluate goodness of water quality estimation, one can choose other methods in place
of SPT; e.g., support vector regression [15] and krigging [3]. The estimating method affects
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Figure 4: The number of trials in which each point is selected as the solutions by ILS-SLP

Table 2: Averaged computation time (sec.) of ILS-SLP (τ = 10) over 50 trials
δ m = 20 30 40 46
1 104.1 293.7 500.5 676.4
2 199.6 465.4 920.1 1348.4
3 301.3 655.6 1068.5 2113.3

not only the squared error sum ϕest(S) but also which points are preferably selected in the
solution.

In our preliminary research, we tried to estimate the true distribution based on set cover
problem (SCP), which is not in the framework of iterated local search. The key idea is
described as follows: Suppose that a solution S ⊆ P is given. Expecting that the water
quality of close points is similar, we consider estimating the water quality of neighbor points
of a sampling site pi ∈ S by d(pi) (which we have assumed to be accessible).

For a point set P , a subset family F ⊆ 2P and a cost function c : F → R, SCP in
general asks to compute such F ′ ⊆ F that minimizes the total cost

∑
X∈F ′ c(X) among

those covering P , i.e.,
∪

X∈F ′ = P . In our case, each subset X ∈ F is defined by a center
point pi ∈ P and its neighbor points, and the cost c(X) is defined as the squared error sum
over X. For a feasible solution F ′ of SCP, we can obtain the location of sampling sites as
the set of the center points in F ′.

Taking other value functions and constraint subsets into account, we formulated the
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Figure 5: Distribution of function values of the obtained solutions

problem of locating sampling sites as an extension of SCP. Solving the problem by IBM
ILOG CPLEX 12.1 [9], we compared the obtained solutions with those computed by ILS-
SLP, and found that they are competitive in both the objective and the value functions,
but that sampling sites are located differently. The SCP approach tends to cover planes
(i.e., the area having small difference in the true distribution) by one large subset in F , and
slopes by plural pieces of small subsets. This tendency is different from ILS-SLP with SPT,
which prefers to locate sampling sites on critical points rather than slopes.

7. Concluding Remarks

In this paper, we mainly considered the monitoring task for Lake Biwa, and formulated the
sampling site location problem (SLP) so that it can handle multiple purposes and constraints
arising in the task. We designed an algorithm ILS-SLP to solve SLP, which is based on
iterated local search (ILS). In the computational experiments, we observed that ILS-SLP
can find such a solution by which we can make better estimation of the true distribution
(generated by LB-Model) than the existing solution, even if the number of sampling sites is
smaller. Also, some points are selected in the solution more frequently than others, which
can be interpreted as potential sampling sites.

We should refine the proposed model to put it into practice, by taking other significant

Copyright c© by ORSJ. Unauthorized reproduction of this article is prohibited.



Sampling Site Location Problem 303

elements into account; e.g., time variation of the true distribution, water depths, other water
quality indices. Our goal in this paper includes providing introduction of lake monitoring
problems to OR researchers who are good at designing mathematical models and algorithms.
It would be the authors’ pleasure if some researchers are interested in our problems and even
work on them. We will open the data used in this paper at some website in the near future.
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