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SUMMARY  We consider the classification problem to construct a clas-
sifier ¢ : {0,1}* +— {0,1} from a given set of examples (training set),
which (approximately) realizes the hidden oracle y : {0,1}* — {0, 1} de-
scribing the phenomenon under consideration. For this problem, a num-
ber of approaches are already known in computational learning theory;
e.g., decision trees, support vector machines (SVM), and iteratively com-
posed features (ICF). The last one, ICF, was proposed in our previous work
(Haraguchi et al., (2004)). A feature, composed of a nonempty subset
S of other features (including the original data attributes), is a Boolean
function fs = {0, 1Y + (0,1} and is constructed according to the pro-
posed rule. The ICF algorithm iterates generation and selection processes
of features, and finally adopts one of the generated features as the clas-
sifier, where the generation process may be considered as embodying the
idea of boosting, since new features are generated from the available fea-
tures. In this paper, we generalize a feature to an extended Boolean function
fs {0, 1, )5 5 {0, 1, #} to allow partial knowledge, where = denotes the
state of uncertainty. We then propose the algorithm ICF* to generate such
generalized features. The selection process of ICF* is also different from
that of ICF, in that features are selected so as to cover the entire training
set. Our computational experiments indicate that ICF" is better than ICF in
terms of both classification performance and computation time. Also, it is
competitive with other representative learning algorithms such as decision
trees and SVM.

key words: classification, Boolean functions, partially defined Boolean
functions, learning algorithms, iteratively composed features

1. Introduction

We consider the classification problem of learning a hid-
den oracle from a given set of examples. Let us denote
B = {0,1}. In this paper, an oracle y : B” — B is con-
sidered as an unknown Boolean function and each example
x € B” is labeled by the value y(x) € B. We call a set of
given examples a fraining set and denote is as X. We de-
compose X as X = X' U X°, where X! = {x € X | y(x) = 1}
and X° = {x € X | y(x) = 0}. An example x in X' and X° is
called a frue example and a false example, respectively. The
classification problem is to construct a classifierc : B" — B
(i.e., a Boolean function) such that ¢ realizes y exactly or
approximately on the training set X. For this problem, sev-
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eral approaches are known in computational learning theory,
such as decision trees, neural networks, support vector ma-
chines, statistical discriminant functions, and so forth [10],
(14]-[16].

In our earlier work [7], we proposed a learning algo-
rithm called iteratively composed features (ICF). Let A =
{ay,an,...,a,} denote the set of n attributes of data, and we
denote a;(x) = x; for x € B". ICF iteratively generates
features from simple ones composed of a few attributes to
more complex ones composed of already constructed fea-
tures, and finally adopts one of the generated features as
the classifier. The complexity for implementing a given
Boolean function by features is discussed in [8].

Let us consider each attribute ¢ € A as a special type
of features. A feature is in general composed of a nonempty
subset S of other features, and is defined as a Boolean func-
tion fs : BS > B. If S isasingleton S = {g}, then we define
fs = g. (Thus, fiy = afor each a € A.) Once constructed,
fs can be used as a variable of a new feature.

Figure 1 illustrates a feature f = fg with § =
{f', f?,as), where f' and f? are features composed of
some sets of attributes. In the figure, nodes represent fea-
tures whose input variables are depicted by the incoming
arcs. Thus the final feature f has a hierarchical structure
of compositions from other features. Given an input vec-
tor x € B?, its classification proceeds as follows: the values
X1,...,Xs are first given to the corresponding attribute nodes
ai,...,as. Then, we repeat determining the output value
fs(xls) of a feature fs from the input vector x|s, where x|g
denotes the projection of x on S. Here we emphasize that §
may contain not only original attributes but also constructed
features. In the rest of the paper, we abbreviate fs(xls) to
fs(x), if no confusion arises. Then, in this case, after f'(x)
and £2(x) are determined (we already know as(x) = xs), x
is classified into f(x) € B. If f(x) = y(x) holds, we say that
f covers x.

Let Xs, denote the set of examples x € X such that
xls = v holds, and Xé,v and X(S)’U denote the sets of true and
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false examples in Xy ,, respectively. In ICF [7], given a train-
ing set X and a set § of features, fs is determined by:

Ui Ixt,) > X, |
50={ 5 s n

otherwise,

for each input vector v € BS .

In this paper, we generalize the concept of a feature by
allowing it to represent partial knowledge; we define a fea-
ture as fs : M5 — M, where M = {0, 1, x} and * denotes the
state of uncertainty. To be more precise, we define fs(v) = 1
(resp., 0) if |X§70| is decisively larger (resp., smaller) than
IXB,Ul, but define f5(v) = = otherwise. We distinguish the
three cases by a certain statistical test, which is described in
Sect. 2.

In Sect.3, we propose an algorithm ICF* to generate
such generalized features, and describe how to obtain a clas-
sifier ¢ : M" — B from the generated features. Both ICF and
ICF* consist of an iteration of the generation process and the
selection process; in the former, new features are generated
from the already generated features, and in the latter, some
of them are selected to be maintained for the next iteration.
Since they try to generate better features from the available
features, the algorithms may be regarded as embodiments of
the idea of boosting (e.g., [5]). In the last iteration, one fea-
ture from the maintained features is adopted as the classifier.

ICF and ICF* are different not only in feature types but
also in selection processes. Let E(fs) denote the error rate
of fs on X;

mw—[Zmﬁzwq 2)
JSs

(=0 fs@=1

ICF selects features in a greedy way on the basis of E(fs).
ICF* selects features so that the selected features cover the
entire training set well, as measured by the classification
cost, which is also defined in Sect. 3.

The performance of the obtained classifier is evaluated
by the error rate on the fest set of examples. The test set is
different from the training set, but is drawn from the same
domain of the hidden oracle y. The error rate on the test set
is defined by (2), but in this case, X is taken as the test set.
We give some computational results in Sect. 4 to compare
ICF* with ICF, a decision tree generator C4.5 [13], and a
support vector machine (SVM) [6]. The results show that
ICF* outperforms ICF, that ICF* can generate better classi-
fiers than C4.5 in many cases, and that ICF* is competitive
with SVM. We also observe that ICF* takes much less com-
putation time than ICF. Finally, we give some concluding
remarks in Sect. 5.

We note that the usage of the uncertainty value * is not
new in computational learning theory (particularly in pat-
tern recognition). If it is necessary to avoid the classifica-
tion error, we may allow a classifier to output *, meaning “I
cannot decide.” This classification strategy is called a reject
option, and has been studied in [3], [4], [12], for example.
For consistency, we assume in this paper that each example
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x may also contain * as its attribute values. From a theo-
retical viewpoint of Boolean functions, functions M"* = M
have been studied intensively under the framework of par-
tially defined Boolean functions and logical analysis of data

(LAD) (e.g., [11,12]).
2. Composition of Features

Let X denote a training set and S denote a nonempty subset
of the available features (including A). We now consider
how to define the corresponding feature fs : M® — M. For
each v € M®, the value fs(v) is defined so that it reflects
the bias posed by the examples Xs,. The bias is measured
by a statistical test with significance level o, where « is a
parameter specified by the user.

Assume that all examples are identically and indepen-
dently distributed under some unknown distribution. We
write the posterior probability of y(x) = 1 (resp., 0) un-
der x € X5, as qu,v (resp., pg,v), where P}v,v + p(S)’v =1
holds. It may be reasonable to determine fs(v) = 1 (resp.,
0y if wa > pg’u (resp., péju < pgﬁv), and fs(v) =
ps, = Ps, = 1/2,

However, since the exact values of pé‘v and pg,v are not
known, we introduce the statistical test [9] with significance
level @ (0 < @ < 1), in which we test whether or not the
hypothesis p_lg’v = P(s),v = 1/2 is valid from the given |X§,U|
and IX(S) . If the hypothesis is rejected, then we conclude
that there is a sufficient bias and we determine fs()=0or
1 according to whether [X s, vI < | | 0r| > |X0 o

The statistical test is descnbed as follows
H(M, m) by:

W& (M
wam(3 52

s=0

Define

where M = |Xg |+ |Xg,| and m = min{Xg |IX3 [} If
H(M,m) < a/2, then we reject the hypothesis; otherwise,
we accept the hypothesis. (H(M,m) is the probability by
which at most m true (or false) examples are generated in M
examples under the hypothesis p§ = p(s) . =1/2)

Figure 2 shows the area of (IXé ol | ,1) on which the
hypothesis is rejected for & = 0.01, 0.1, 0. 5 1. Ifthe hypoth-
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Fig.2 (X ; o |X2’v|) on which the hypothesis is rejected (and thus fs (v) €
B).
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esis on (IX_%,,,L |X2’UI) is rejected for an ay, then it is also re-
jected for any @ > @¢. Namely, for a larger value of a, f5(v)
is more likely to be set to O or 1. Note that H(M,m) > 1/2
holds if and only if |X§',u| = IXg’vl (i.e., M = 2m), and in this
case, the hypothesis is always accepted for every value of
a € [0,1].

Now, given X, § and o € [0, 1], the value f5(v) for
v e MS is determined by

x if HM,m) > a/2,
fr@y={ 1 if HM,m) < a/2 and |X} | > X2 |
0 if H(M,m) < /2 and |X} | < X7 |

4)

Here we may have |X§70| = IXg’vl = 0. In this case,
H(0,0) = 1> @/2forany a € [0, 1], and the rule (4) implies
Js@) = = 4

Since real examples are not always identically and in-
dependently distributed, the above scheme should be re-
garded as an approximation to real world data sets.

3. Algorithms ICF and ICF*
3.1 Common Framework of ICF and ICF*

We first describe the common structure of ICF and ICF.
Both algorithms consist of two nested iterations. Let us call
the #-th outer iteration (¢ > 1) stage t. Each inner iteration in
each stage consists of the generation process and the selec-
tion process.

Assume that we are in stage t. Let G, denote the set
of features which are generated in stage 7 (0 < 7 < 1) and
are maintained currently, where we let Gy = A. Let G :=
Go U - - UG,_;. In the (d — 1)-st inner iteration (d > 2)
of stage ¢, the generation process generates the set G, , of
features as follows;

Gra={fs 1S CG,SNG; #0,|S| =d}. ®)

In other words, features {fs} are generated in the order of
their sizes |S| = d.

The selection process then selects some features from
G U Gy U -+ Gy by the selection rule, and prunes away
the unselected features. The sets G, G;»,..., G4 are then
reduced to the sets of such features that remain after the se-
lection process. If the new set G,  satisfies G4 # 0, then
the algorithms go to the next d-th inner iteration (and gener-
ate the set G, 44, of features). On the other hand, if G,4 = 0
holds, we consider the following two cases: (i) d = 2 (i.e.,
no new feature is selected). The algorithms output the cur-
rent set G of features and terminate. (ii) d > 2. The algo-
rithms update G := GU G, where G; = G2 U -+ - U Gy,
and go to the next stage (¢ + 1).

The common description of the two algorithms is as
follows.

Common Description of ICF and ICF*
Input: A training set X with »n attributes A = {ay, ..., a,}
and parameters (which are specified in each algorithm).
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Output: A set G of features.
Stepl: G:=Gy:=Aandt:=1.
Step 2: d:=2.

Step 2-1 (Generation) : Generate G, 4 by (5).

Step 2-2 (Selection) : Let G’ denote the features
which are selected from G U G,;, U -+ U G,y
by the selection rule. Update G := G n G,
G2 =GpNG,...,and G,y =Gy NG

Step 2-3: If G, # 0, then let d := d + 1 and return to
Step 2-1.

Step3: If d > 2, then let G, := G, U--- UGy, G =
G UGy, t:=t+ 1, and return to Step 2.
Step 4: Output G and terminate.

ICF and ICF* are different in feature types and in selection
rules. We review ICF in Sect.3.2. In Sect.3.3, we intro-
duce the cost function for ICF*, called classification cost. In
Sect. 3.4, we describe ICF* in more detail.

3.2 Algorithm ICF

In ICF, each fs € G, is treated as a Boolean function fs :
B® 1~ B, and is determined by (1).

Let S = {f',..., f% denote a set of d features, and
let S; = S\ {f/} (j = 1,...,d). Let A(S) denote the set
of attributes used to define the features in S (e.g., A(S) =
{a1, a2, a3, a4, as} for f = fg in Fig. 1). In the (d — 1)-st inner
iteration of stage 7 (d > 2,t > 1), the selection rule of ICF is
described as follows;

Selection Rule (ICF): A set G’ of features is selected from
the given sets G U Gy, U -+ - U G, 4 as follows.

Step 1. G’ := A.

Step 2. For each feature f5 € (G\A)U G;p U--- U G,g,
if fs satisfies all the following three conditions, then
G =G U{fs].

(i) fs,€GUGHU---UGgholdsforall j=1,...,IS].

(i) E(fs) < yE(fs,) holds forall j=1,...,|S|, where E is
defined by (2) and 7y is a parameter (0 <y < 1).

(iii) fs has the smallest error rate on X among the features
in GUG;; U--- UG, having the same A(S).

The following Prop. 1 [7] tells us that the error rate E on X is
non-increasing as the generation proceeds. By (ii) of Step 2,
we put a restrictive condition for a feature fs to be selected.

Proposition 1: Let S and S denote arbitrary sets of fea-
tures such that §  S*. Then, E(fs) > E(fs+) holds for the
features fs and fs+ constructed by (1).

Proof:
I _
EGs) = 2, minl- b XS, )

weBS™

1 ) .
ok Z Z min{[Xg. b 1X8+ )

veBS uEBSﬂS

< é 2 min {Zu: X5 ol zu\: |XO+,<u,u>|}
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1 . 1
- m Z min{|Xg |, [Xg,vl}

= E(fs).
O

The conditions (i) and (ii) say that a feature fy of large §
can be selected under a very tight condition. Due to the
condition (iii), the number of maintained features is kept
" within 2" (i.e., |G| < 2") during the execution of ICE.
Finally, from the output set G of features, the one fs :
B’ — B attaining the smallest error rate on X is adopted as
the classifier.

3.3 Classification Cost in ICF*
We introduce the following cost function ¢ to be used in

the algorithm ICF*, in order to evaluate a feature fs by the
performance on the training set X.

. 1y
o(fs) = (E(fs) +ﬂU(fS))(5(}s_)) , (©)
where E(fs) is defined by (2), and

1

Ufy) = 5= Y. Wsal (M)
X 4G
1

D(fs) = zgiltv € B | fs(0) € B ®)

Here U(fs) denotes the uncertainty rate of fs on X, and
D(fs) denotes the decisiveness rate as a function on the re-
stricted domain B® (whose size is 2!). u and g are pa-
rameters to be set by the user, where i is the cost given to
a decision fg(v) = *. In the computational experiments in
Sect. 4, pis set from 0.2 to 0.5, and B is set from 0.05 to 0.5.

It may appear that a definition ¢ = E + uU (ie., (6)
with 8 = 0) is more natural for the cost function; in fact,
it is used in the pattern recognition algorithms such as [3],
[14]. Howeyver, it tends to give a good score to such a feature
having a high U (i.e., close to 1) ifz is small, even if the
feature does not classify most examples decisively; e.g., if
E=0and U = 1, then ¢ = E + pU = p. To avoid this,
we require that fy should be decisive to some extent, at least
in such inputs v whose components are all decisive (i.e., v €
B%). Based on this observation, we weight the cost E + pU
by (1/D)? with an appropriate parameter 8 > 0.

Given two sets § € S*, we note that v = w|g and
we M5 satisfy [Xs,| > [Xs+ul, since [Xs,| = =0 Xsul-
Thus as a result of introducing the term (1/D)’, we ex-
pect that o(fs) < ¢(fs+) holds, since with a small |Xg- |
fs+(w) = * may hold for many w € B® " under a relatively
small @ (e.g., @ < 0.5), as indicated in Fig. 2; it leads to a
small D(fs+) and thus a large ¢(fs+). In summary, the cost
function (6) with a reasonably large 3 gives an advantage to
such a feature fg that attains a small £ + yU and is com-
posed of a small set S. In this sense, the features selected by
the selection process of ICF* are kept rather robust (i.e., not
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overfitting to the training set X). We discuss the influence of
parameters a, 3, u later in Sect. 4.3.

3.4 Algorithm ICF*

In ICF", each fs € G,  is treated as f5 : MS > M by (4).
Consider the (d — 1)-st inner iteration of stage ¢ (d >
2,1t > 1). For each example x € X, we define

F(x)={fs €(G\NAUGU--- UGy
| fs(x) = y(0)}, )

Le., F(x) is the set of features (not including the attributes)
covering x. The selection process of ICF* tries to maintain a
set of features from G U G5 U - - - U G4 so that the resulting
features, as partial knowledge, cover the entire training set
X. To be more precise, for each example x € X, if F(x) #
@, the feature fs € F(x) which has the smallest ¢(fs) is
selected. Therefore, an fs not selected for any example x €
X is pruned away. The selection process of ICF* is described
as follows.

Selection Rule (ICF*): A set G’ of features is selected
from the given sets G U Gy, U -+ - U G, 4 as follows.

Step 1. G’ := A.

Step 2. If d > 2, for each fs € G4, test if there is an fs, €
Gy 4-1 for some j = 1,...,d. If no, then let G,4 =
Gia \ fs)

Step 3. Using the resulting G, G, 3, . .., G4, construct F(x)
of (9) for all x € X. For each x € X, if F(x) # 0, then
choose fs € F(x) having the smallest o(fs). If f5 ¢ G,
then let G’ := G’ U {fs}.

Note that the attributes A are not pruned by the selection
process. It is due to the empirical reason that maintaining A
makes the obtained features by ICF* better in terms of the
error rates on the training set, and often on the test set.

Since at most one feature is selected for one example
x € X, |G} £ n+1X] holds at the end of the selection process.
This bound is much smaller than the bound |G| < 2" for ICF.

ICF* aims at constructing global knowledge (i.e., the
output classifier) from pieces of partial knowledge. We ex-
pect the features generated in later stages to attain small E
(from Prop. 1) and U, D =~ 1, and thus a small ¢. Here,
boosting (e.g., [5]) is a methodology to construct a better
classifier from a set of classifiers, called weak hypotheses.
In the research of boosting, it is pointed out that weak hy-
potheses covering different examples from each other result
in a good classifier. We expect that our selection rule with
covering condition has a similar effect.

After generating a set G of features by ICF*, we modify
each feature fy € G to afunction fs : M5 — B by determin-
ing fs(v) = 0O or 1 by (1) for all v € M®. The error rate E(fs)
is then computed again, and we adopt the one attaining the
smallest error rate on X as the classifier output by ICF*.

4. Computational Experiments

We construct classifiers by four approaches: ICF*, ICF, a
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decision tree generator C4.5 [13], and a support vector ma-
chine (SVM) [6]. As test instances, we use 10 artificial data
sets and 10 real data sets. For each data set, we first define
a training set and a test set. A classifier is then constructed
from the former, and its performance is evaluated by the er-
ror rate on the latter. All computations are carried out on a
PC (Pentium IV 2.8 GHz, memory 1 GB).

4.1 Data Sets
4.1.1 Artificial Data Sets

Each artificial data set has a linear threshold function as its
oracle y : B" — B defined as follows; for each x € B”,

1
y(X)={ 0

where we use n = 14, and we set each weight w; at random
(lwjl < 1) for ng attributes (ng < n), and set w; = 0 for
the remaining n — ng attributes, in order to allow irrelevant
attributes. Roughly speaking, it is easier to construct good
classifiers on such a data set with a smaller ny. We used
ng = 5,6,...,14, and call each data set art5, arte, ...,
artl4.

For given {w;}, we generate 400 examples from B" at
random and use them as a training set, while we use the
entire set B" (i.e., 2'* examples) as the test set. For each
ny = 5,6,...,14, we generate 10 training sets and test sets
in this way, and take the average of error rates on the 10 test
sets.

it Y wix; >0,

otherwise, (10)

4.1.2 Real Data Sets

We take 10 real data sets from UCI Machine Learning
Repository [11] (i.e., aus, bcw, bupa, car, crx, haber,
heart, iono, pima, ttt). The data sets contain from 250 to
1600 examples, and have from 3 to 34 numerical and/or cat-
egorical attributes. All data sets except car are two-labeled
(i.e., y(x) € B); we modify car data set into a two-labeled
data set. Also, some data sets contain contradicting exam-
ples and examples with missing values. Such examples are
excluded in advance.

Each data set is then partitioned into halves at random,
one for the training set and the other for the test set. We
then binarize all examples by the method in [7] into binary
examples, so that they are treated in our scheme, where the
resulting binary data sets contain from 6 to 16 attributes.
Each data set is partitioned 10 times, and we take the average
of the error rates on the 10 test sets.

4.2 Parameter Values

All the four approaches have some program parameters, and
they have more or less significant influence on the perfor-
mance. In ICF*, we use all combinations of the parame-
ters such that @ € {0.005,0.01,0.05, 0.1,0.25,0.5,0.75, 1},
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B € {0.05,0.1,0.2,0.3,0.4,0.5}, and p € {0.2,0.3,0.4,0.5}.
The influence of «, 8, ¢ on ICF* is discussed in the next sub-
section.

ICF has a single parameter y (0 < y < 1), which con-
trols the number of generated features; if y is larger, then
more features are generated and the computation time gets
larger. We use v € [0.75, 1.00) such that ICF halts within
3600 seconds.

In C4.5 [13], we use the confidence level of.
0.1,0.25,0.5,0.75, which is a parameter to adjust the target
size of the final decision tree.

A nonlinear SVM is formulated in several ways [6],
[10],[15]. The generator [6] adopted here uses a standard
formulation (called a generalized support vector machine in
[10]). In this formulation, the constructed classifier ¢ is rep-
resented as follows;

_ [ 1t B wviK(x, x) 2 6,
c(x) = { 0 otherwise,

)

where m = |X|, x' € Xis the i-th example in X, v; = 2y(x)-1
(ie., v; € {£1}), K : R* X R" — R i3 a kernel function,
each w; is determined by solving the following mathematical
problem;

WY seen

rlnaiyim ; w; — 3 Z wiw v vi K(x', xk)

ik=1
S.t. Z wyv; =0,
i=1
C>w;203G=1,...,m), (12)
and 6 in (11) is determined from the obtained wy,...,w,.

Note that C in (12) is the penalty for softening constraints
in the primal problem. We use C = +oo, implying that all
classifiers attain no error on the training set. In this paper,
we employ RBF Gaussian kernel functions,

K(x,x') = exp(~rlx — x|, (13)
andre{1/4,1/2,1,2,5}.

4.3 Results
4.3.1 Error Rate

We examine the best (i.e., smallest) average error rate of
each approach, obtained from all possible parameter values.
The results are shown in Table 1. We see that ICF" is better
than ICF and C4.5 on almost all data sets, while it is compet-
itive with SVM. We note that ICF* ranks first or second on
all data sets. For the artificial data sets, it is reasonable that
SVM exhibits a good performance, since it generates a clas-
sifier based on a hyperplane, while the oracle is also based
on a hyperplane. We would rather emphasize that ICF* is
much better than ICF and C4.5.

For car and ttt, the original data sets contain all pos-
sible examples. The training set, which is a half of the orig-
inal data set, may contain sufficient information to construct
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Best error rates (XIOZ) of ICF*, ICF, C4.5 and SVM.

Data ICF* ICF C4.5 SVM

art5 0.00 9.29 0.00 0.01

arté 0.16 3.74 0.63 0.26

art7 1.21 14.12 3.03 1.39

art8 2.48 13.50 471 2.79

artificial art9 3.68 1342 6.55 352
data sets artl® 5.77 15.39 10.00 5.35
artll 6.12 16.86 10.66 5.72

art12 8.28 19.08 13.96 6.77

artl3 997  25.08 17.99 713

artl4 1077  20.09 19.65 7.37

aus 15.19  14.58 15.57 18.66

bew 4.09 4.21 4.88 5.00

bupa 3445 3578 3405 37.80

car 1.47 4.57 2.37 0.72

real Ccrx 13.46 13.67 14.95 18.62
data sets haber 26.53 26.80 27.62  29.66
heart 21.78 2370 2333  27.63

iono 15.11 15.17 16.14 16.76

pima 26.25 27.11 26.59 3059

ttt 5.76 17.10 11.09 0.23

Table 1

Table2 Computation time (sec.) of ICF*, ICF, C4.5 and SVM.

Data ICF* ICF C45 SVYM

art5 007 39505 0.00 1.13

art6 0.11 183.51 0.00 1.16

art?7 0.31 241.06  0.00 1.14

art8 0.85 29.59  0.00 1.17

artificial art9 1.81 76.08  0.00 1.17
data sets artl® 223 28.84  0.00 1.16
artll 297 21882 0.00 1.16

artlz 421 157.02  0.00 1.17

artl3 3.13 26552 0.00 1.17

artld  9.89 103.50  0.00 1.16

aus 0.10 0.01 0.00 0.38

bew 0.15 90.94  0.00 0.14

bupa 0.13 072 0.00 0.07

car 433 69490 0.01 11.59

real crx 0.05 0.01 0.00 0.33
data sets haber 0.01 0.18 0.00 0.05
heart 0.11 0.02 0.00 0.04

iono 0.08 009 0.00 0.07

pima 2.14 38.11 0.01 0.44

ttt 1.69 45131 0.01 2.61

a good classifier, and thus a small error rate on the training
set will mean a small error rate also on the test set. Since the
parameter C = +oo for SVM results in a classifier with no
error on the training set, SVM works very well on car and
ttt; on the other hand, SVM appears to overfit to such data
sets as aus and bupa.

For aus and bupa, we empirically know that a classi-
fier with a simple structure is preferable; e.g., fi,) = a for an
attribute a € A is better than almost all the reported classi-
fiers on aus. ICF* generates more complex classifiers than
ICF and C4.5, and thus its performance is worse (but is bet-
ter than SVM).

4.3.2 Computation Time

Table 2 shows the average computation time of the four ap-
proaches. C4.5 outperforms the others in this respect. We
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note that ICF* takes much less computation time than ICF.
In our experience, the computation time of ICF* and ICF
is proportional to |G|, the number of maintained features,
which is bounded as |G| £ n + [X] in ICF* and |G| £ 2"
in ICF. It may explain the difference in the computation
time between ICF* and ICF. In fact, the sizes |G| in ICF are
much larger than those in ICF* in our computational results,
though we omit the details.

43.3 Comparison of ICF* and ICF

As clear from the computational results, ICF* shows much
better performance than ICF. Recall that ICF* and ICF are
different in (i) feature types and in (ii) selection rules.

The effect of (i) can be seen in our observation that,
for almost all data sets, the best ICF* classifiers have
small depths in graph representations (like Fig. 1), and are
achieved by small & from 0.01 to 0.1 (i.e., component fea-
tures output * for a nontrivial portion of inputs).

The effect of (ii) is also significant. ICF* maintains
not only major features covering many examples but also
minor features covering a small number of (exceptional) ex-
amples in the training set; ICF may maintain only major fea-
tures due to its selection rule. We also conducted the com-
putational comparison between ICF* and ICF with features
fs : M5 = M by (4) (i.e., only the selection rules are differ-
ent), and observed that the former gives better performance
than the latter (the details are omitted).

4.3.4 Influence of Parameters

We discuss here the influence of parameters «, 5, u on ICF*.
Let S and S* denote arbitrary sets of features such that S
§*. Take an arbitrary vector w € B " andletv = wls.

We first consider the influence of . If @ is large (e.g.,
a > 0.75), then f5(v) and fs+(w) are likely to be set to 0
or 1, and D(fs) and D(fs+) are close to 1 (hence so are
(1/D(f5)y’ and (1/D(fs+))? in (6)). Then, Prop.1 tells us
that o(fs+) < ¢(fs) approximately holds. fs+ composed of
a large set S is preferred in the selection process, and thus
the inner iteration tends to halt with a large d.

On the other hand, if « is small, then fs-(w) is likely
to be set to *, whereas fs(v) is still likely to be set to 0 or 1
(note that |Xs ,| > |Xs- ). In this case, D(fs+) < D(fs) im-
plies (1/D(fs))? < (1/D(fs+)). Then, unless § is extremely
small, an fs composed of a small set S is preferred in the
selection process, and thus the inner iteration tends to halt
with a small d.

We next consider the influence of § andu. As argued
above, note that U(fs) < U(fs-) and D(fs+) < D(fs) usu-
ally hold. Then, if 8 and y are large, we have ¢(fs+) > @(fs),
and fs composed of a small set S is preferred in the selection
process, (thus the inner iteration tends to halt with a small
d). If B and y are small, the converse would be observed.

Figure 3 illustrates the above discussion about the in-
fluence of @, 8 on the size of 4 in one stage of ICF*, where
a heavier color indicates a large d. Figure 4 gives the re-
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Fig.3 Influence of @, on the resulting 4 of the inner iterations.

O duax < 4 B 4<dna <5
A5 <dmax <6 B 6<dmax <7
B 7 <dmax

sults observed on art8 data set. As the inner iteration may
be executed more than once (i.e., in more than one stage)
in each execution of ICF*, we keep the maximum d,x of d
among all stages, and take the average over 10 training sets
for given @, B, u. In Fig. 4, for each i, we show the average
of dmax by colors (a heavier color means a large dp,,). We
notice that the results show a tendency similar to that antic-
ipated in Fig. 3.

Note that, if d is too large (resp., too small), then the
resulting features may overfit (resp., underfit) to the training
set; in either case, they may attain poor error rates on the test
set. We should determine «, 8, u so that d is “appropriate”
for the considered data set.

To confirm the above observation, we consider the er-
ror rates realized by different values of a, 8, u (leading to
different d) observed on art8 data set. For given a, 8, u1, we
denote the average error rate by e(w, 3, 1) and the smallest
one by e*, which is 2.48 x 1072 on art8. We then define &
by

S(CL’,B,,U) = e(a’lB7/‘[) - 6*- (14)

Figure 5 gives &(a,B,1t) on art8 for all a,S,u. The ten-
dency as discussed above is clearly shown here, since the
middle areas attain rather small error rates, where dpax 18
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e<o0.01 0.01 <e <0.02
B002<e<003 B003<e<0.04
H|oos<e

Fig.5 Difference of error rates ¢ for various , 3, 4 on art8.

from § to 7 approximately.

The results in Table 1 tell that ICF* can produce good
classifiers if we are allowed to tune the parameters appro-
priately, which, however, may be difficult to be attained in
practical situations. It is our future work to examine the cri-
teria for determining appropriate parameter values.

5. Concluding Remarks

We proposed an improvement of the previous algorithm ICF
[7] by introducing features with partial knowledge (i.e., with
an output of x). The computational experiments indicate that
the proposed algorithm ICF* can generate better classifiers.
It is our future work to find an effective rule of determining
appropriate parameter values. It is also desired to establish
a theoretical foundation of ICF and ICF* approaches.
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