
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013
481

PAPER Special Section on Foundations of Computer Science

BlockSum is NP-Complete

Kazuya HARAGUCHI†a), Member and Hirotaka ONO††b), Nonmember

SUMMARY BlockSum, also known as KeisanBlock in Japanese, is a
Latin square filling type puzzle, such as Sudoku. In this paper, we prove
that the decision problem whether a given instance of BlockSum has a so-
lution or not is NP-complete.
key words: NP-completeness, combinatorial puzzle, Latin square, Block-
Sum

1. Introduction

In this paper, we show that BlockSum puzzle is computa-
tionally hard like many other combinatorial puzzles, e.g.,
Sudoku [1], Tetris [2], PuyoPuyo [3], [4], and classic Nin-
tendo games [5]. Let n denote a natural number. An in-
stance of BlockSum puzzle is given as an n×n grid of empty
cells such that the n2 cells are partitioned into disjoint sub-
sets and each subset is assigned an integer. Any subset of
cells is connected, i.e., it consists of side-adjacent cells. We
call a subset of connected cells a block. We call the integer
assigned to a block the demand of the block. A player of
BlockSum puzzle is asked to fill all the n2 cells with inte-
gers in [n] = {1, 2, . . . , n} so that the following conditions
are satisfied.

Latin square condition: The integers assigned to the cells
form an n×n Latin square, i.e., in each row and in each
column, every integer in [n] appears exactly once.

Demand condition: In each block, the sum of the integers
assigned to the cells equals to the demand of the block.

We show a BlockSum instance and its solution (n = 4) in
Fig. 1. In the figure, a block is indicated by a subset of cells
surrounded by boldface lines, and its demand is indicated by
a small digit. In Japan, BlockSum puzzle is often taken up in
various media these days since Tetsuya Miyamoto, who is a
successful private tutoring teacher, uses this puzzle for tutor-
ing elementary school students [6], [7]. This motivates us to
investigate whether or not BlockSum puzzle is essentially
hard as other puzzles in computational sense. For related

Manuscript received March 28, 2012.
Manuscript revised July 25, 2012.
†The author is with the Department of Information Technology

and Electronics, Faculty of Science and Engineering, Ishinomaki
Senshu University, Ishinomaki-shi, 986–8580 Japan.
††The author is with the Department of Economic Engineering,

Faculty of Economics, Kyushu University, Fukuoka-shi, 812–8581
Japan.

a) E-mail: kzyhgc@gmail.com
b) E-mail: hirotaka@en.kyushu-u.ac.jp

DOI: 10.1587/transinf.E96.D.481

(Instance) (Solution)

Fig. 1 A BlockSum instance and its solution (n = 4).

works on BlockSum puzzle, Haraguchi et al. recently pro-
posed an algorithm that automatically produces BlockSum
instances with various difficulty levels [8].

We show the NP-completeness of the decision problem
version of BlockSum puzzle. Given a BlockSum instance,
the decision problem asks to identify whether it has a so-
lution or not. We refer to this decision problem simply as
BlockSum. It is the following theorem that we intend to
prove.

Theorem 1: BlockSum is NP-complete even if every
block consists of at most 2 cells.

We give the proof of Theorem 1 by means of reduction
from Monotone Not-All-Equal 3SAT, a well-known NP-
complete problem [9]. Although the computational hardness
of a recreational puzzle does not necessarily imply its amus-
ingness, it is a common nature of widely accepted recre-
ational puzzles. In the sense, our result might imply that
BlockSum is not only useful for educational purpose but
also potentially fascinating for puzzlers. Preparing termi-
nologies, notations and lemmata in Sect. 2, we present the
proof in Sect. 3. We give concluding remarks in Sect. 4.

2. Preliminaries

2.1 Latin Square

Suppose an n × n grid of cells. We refer the cell in the i-th
row and in the j-th column to (i, j) ∈ [n] × [n]. We denote
an assignment of integers in [n] to the cells by a function
ϕ : [n] × [n] → [n]. The value ϕ(i, j) represents the integer
assigned to cell (i, j). We call ϕ an n × n Latin square, or a
Latin square of order n, if, in each row and in each column,
each integer in [n] appears exactly once, i.e., ϕ(i, j) � ϕ(i, j′)
for any i, j, j′ ∈ [n] (j � j′) and ϕ(i, j) � ϕ(i′, j) for any
i, i′, j ∈ [n] (i � i′). We define the standard Latin square of

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

482
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

Fig. 2 The standard Latin square of order 4.

order n as follows:

ϕ(i, j) =

{
i − j + 1 if i ≥ j,
i − j + 1 + n otherwise.

Figure 2 shows the standard Latin square of order 4.
Assume that n = pq holds for two natural numbers p

and q. In the proof, we may partition the n × n grid of cells
into p2 equally sized square subgrids so that each subgrid
has q × q cells. For any a, b ∈ [p], we denote the subgrid
from the cell (q(a − 1) + 1, q(b − 1) + 1) to the cell (q(a −
1) + q, q(b − 1) + q) by S n,p

a,b . We define S n,p
a,b as a set of cells

as follows:

S n,p
a,b = {(q(a − 1) + k, q(b − 1) + �) | q = n/p, k, � ∈ [q]}.

(1)

Let us introduce a systematic way to construct a Latin
square satisfying a certain condition. Let us denote a p × p
Latin square by π. Let us denote a set of p2 Latin squares of
order q by Ψ = {ψa,b : [q] × [q] → [q] | (a, b) ∈ [p] × [p]}.
We define ϕ : [n] × [n]→ [n] as the integer assignment that
is obtained by pasting ψa,b ∈ Ψ to each subgrid S n,p

a,b and by
adding q(π(a, b) − 1) to the integers, i.e., for any a, b ∈ [p]
and any k, � ∈ [q],

ϕ(q(a − 1) + k, q(b − 1) + �)

= ψa,b(k, �) + q(π(a, b) − 1). (2)

Proposition 2: The ϕ given by (2) is an n× n Latin square.

Proof: We show that ϕ satisfies the Latin square condition.
Clearly, the integers that ϕ assigns to the n × n grid are in
[n]. Let us take any two cells (i, j) and (i, j′) that are in the
same i-th row. If they are in the same subgrid S n,p

a,b , they are
assigned different values by ϕ since each subgrid is pasted a
Latin square and all the integers in the subgrid are added the
equivalent value, that is q(π(a, b)−1). Otherwise, i.e., if (i, j)
and (i, j′) are in different subgrids S a,b and S a,b′ respectively,
the two cells are assigned different values since ϕ assigns the
integers of disjoint ranges to these subgrids due to π(a, b) �
π(a, b′). Analogously, any two cells in the same column are
assigned different values. �

Lemma 3: For any natural number z, there is a 2z×2z Latin
square ϕ : [2z] × [2z]→ [2z] such that

ϕ(i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if i = j,
j if i � j and i = 1,
i if i � j and j = 1.

(3)

(z = 1) (z = 2)

(z = 3)

Fig. 3 Latin squares that satisfy (3).

Proof: Prove by induction. When z = 1, we have such
a Latin square, as shown in Fig. 3. For a general z ≥ 2,
assume that we have a 2z−1 × 2z−1 Latin square that satisfies
(3). Let us denote it by πz−1. Then it is easy to see that
a Latin square constructed by (2) with p = 2, q = 2z−1,
π = π1, and ψa,b = πz−1 for any (a, b) ∈ [2]× [2] satisfies (3).
This and Proposition 2 show the lemma. (For example, see
Fig. 3 for z = 2 and 3. We can see that shaded cells surely
satisfy (3).) �

2.2 BlockSum

Two cells (i, j) and (i′, j′) are adjacent if |i− i′|+ | j− j′| = 1.
The adjacency defines the connectivity of cells. A block is a
set of connected cells. Let us denote a block by B ⊆ [n]×[n].
We call B a k-block if |B| = k. In particular, we call B an
(r × c)-block if it is an (rc)-block such that the cells form an
r × c rectangle. Let us denote ϕ : [n] × [n] → [n]. When a
block B is given by B = {(i1, j1), . . . , (ik, jk)}, we denote by
ϕ(B) the sequence (ϕ(i1, j1), . . . , ϕ(ik, jk)) for convenience.

We represent a BlockSum instance by IBS = (B, σ),
where B denotes a partition of the n2 cells into blocks and
σ denotes a function σ : B → [n2(n + 1)/2]. For any block
B ∈ B, the value σ(B) denotes the demand of B. We call σ
a demand function. Then the decision problem BlockSum is
formally defined as follows.

BlockSum
Instance: A BlockSum instance IBS = (B, σ), where B is

a partition of n2 cells into blocks and σ is a demand
function σ : B → [n2(n + 1)/2].

Question: Is there an assignment ϕ : [n] × [n] → [n] such
that ϕ is a Latin square (the Latin square condition) and∑

(i, j)∈B ϕ(i, j) = σ(B) holds for any B ∈ B (the Demand
condition)?

When the answer is “yes,” we say that the instance IBS is

HARAGUCHI and ONO: BLOCKSUM IS NP-COMPLETE
483

Fig. 4 A BlockSum instance whose demands are exchanged.

solvable and that the assignment ϕ satisfying the two condi-
tions is a solution of IBS.

Here, we show a technique of transferring a BlockSum
instance by exchanging demands that will be used in the
proof of NP-completeness. Suppose that, in IBS = (B, σ),
four 2 × 1 blocks B1, B2, B3, B4 are in B such that they form

B1 = {(r, c), (r + 1, c)}, B2 = {(r, c′), (r + 1, c′)},
B3 = {(r′, c), (r′ + 1, c)}, B4 = {(r′, c′), (r′ + 1, c′)},

and σ(B1) = σ(B4) = s and σ(B2) = σ(B3) = t. In Fig. 4,
we illustrate how B1, . . . , B4 are located in IBS. Let us con-
struct another instance by exchanging the demands between
B1 and B2 and the demands between B3 and B4. That is, de-
noting the constructed instance by I′BS = (B, σ′), we define
the demand function σ′ as follows:

σ′(B) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t if B = B1 or B4,
s if B = B2 or B3,
σ(B) otherwise.

Assume that IBS has a solution ϕ : [n] × [n]→ [n] such that

ϕ(B1) = ϕ(B4) = (s1, s2), ϕ(B2) = ϕ(B3) = (t1, t2),

s1 + s2 = s, t1 + t2 = t. (4)

Clearly, the following ϕ′ : [n] × [n] → [n] is a solution of
I′BS.

ϕ′(B1) = ϕ′(B4) = (t1, t2), ϕ′(B2) = ϕ′(B3) = (s1, s2),

ϕ′(i, j) = ϕ(i, j) for any (i, j) � B1 ∪ · · · ∪ B4. (5)

Lemma 4: If ϕ is a solution of IBS that satisfies (4), the
assignment ϕ′ given by (5) is a solution of I′BS.

2.3 Monotone Not-All-Equal 3SAT

Let V = {v1, v2, . . . , vN} denote a set of N Boolean variables.
For a variable v ∈ V , v is called the positive literal and v̄
is called the negative literal. A clause is a set of literals
over V . A truth assignment for V is denoted by τ : V →
{True,False}. Given a true assignment τ, if τ(v) = True,
then the positive literal v is true and the negative literal v̄
is false. If τ(v) = False, then v is false and v̄ is true. A
clause is called not-all-equal under τ if the clause has at

least one literal that is true under τ and at least one literal
that is false under τ. The decision problem Not-All-Equal
SAT is defined as follows.

Not-All-Equal SAT
Instance: A Not-All-Equal SAT instance ISAT = (V,C),

where V is a set V = {v1, v2, . . . , vN} of N Boolean vari-
ables, and C is a collection C = {C1,C2, . . . ,CM} of M
clauses over V .

Question: Is there a truth assignment τ : V →
{True,False} such that each Cb ∈ C is not-all-equal
under τ?

We abbreviate Not-All-Equal SAT into NAE-SAT. When
the answer is “yes,” we call ISAT NAE-satisfiable. The prob-
lem NAE-3SAT is the special case of NAE-SAT such that
|Cb| = 3 for any Cb ∈ C. The NAE-3SAT is known to be
NP-complete [10]. Further, the problem Monotone NAE-
3SAT is the special case of NAE-3SAT such that all lit-
erals are positive. The Monotone NAE-3SAT is still NP-
complete [9].

Lemma 5: NAE-SAT is NP-complete even if we restrict
an instance ISAT = (V,C) so that

(i) any variable in V appears as 2 positive literals and as 1
negative literal in C,

(ii) any clause in C has either 2 or 3 literals, and
(iii) any clause of 2 literals has one positive literal and one

negative literal, and any clause of 3 literals has only
positive literals.

Proof: We construct a polynomial transformation from a
Monotone NAE-3SAT instance JSAT = (W,D) to a NAE-
SAT instance ISAT = (V,C) so that it satisfies (i), (ii) and
(iii). Let us denote N = |W | and M = |D|. Suppose that, in
D, a Boolean variable wa ∈ W appears as a positive literal
ka times. We take a set of ka Boolean variables, denoted
by Xa = {xa,1, xa,2, . . . , xa,ka }. Taking the set Xa for each
Boolean variable wa ∈ W, we define V = X1 ∪ · · · ∪ XN . We
have |V | = ∑N

a=1 ka = 3M.
We generate a set of clauses over V as follows. For

each Boolean variable wa ∈ W, we replace all ka positive
literals wa’-s inD with ka positive literals xa,1, xa,2, . . . , xa,ka

respectively. We denote the set of clauses generated in this
way by C(3). We have |C(3)| = |D| = M. Each clause in C(3)

has exactly 3 literals since each clause in D does so. For
any variable in V , its positive literal appears in C(3) exactly
once. We do not have any other literals in C(3).

Next, we take another set of clauses over V = X1∪· · ·∪
XN . The set is denoted by C(2) = C(2)

1 ∪· · ·∪C(2)
N , where each

C(2)
a is a set of clauses over Xa for the variable wa ∈ W as

follows:

C(2)
a =
(ka−1⋃

b=1

{{xa,b, x̄a,b+1}}) ∪ {{xa,ka , x̄a,1}}. (6)

We have |C(2)| = ∑N
a=1 ka = 3M. Clearly, each clause in C(2)

has exactly 2 literals. For any variable in Xa, its positive and

484
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

negative literals appear in C(2)
a exactly once respectively.

The NAE-SAT instance ISAT = (V,C) with V =

X1 ∪ · · · ∪ XN and C = C(2) ∪ C(3) satisfies (i), (ii) and
(iii) from the discussion so far. We have only to show
that the above procedure is a polynomial transformation.
Clearly, the construction can be done in a polynomial time
in N and M. We claim that JSAT is equivalent to ISAT,
i.e., JSAT is NAE-satisfiable if and only if ISAT is NAE-
satisfiable. To show the necessity, suppose a truth assign-
ment τ : W → {True,False} such that each clause in D
is not-all-equal. From τ, we construct a truth assignment
ω : V → {True,False} as follows; for each variable x in
Xa, we let ω(x) = τ(wa). Thus all the variables in the same
Xa are assigned the same truth value. From (6), we see that
any clause in C(2) = C(2)

1 ∪ · · · ∪ C(2)
N is not-all-equal under

ω. Recall that any clause C ∈ C(3) has been generated from
a certain clause D ∈ D, by replacing literals over W with
ones over V . From the assumption, there is a positive literal
u ∈ D that is true under τ. If u is a positive literal of a vari-
able wa ∈ W, then τ(wa) should be True. In C, u is replaced
with a certain literal xa,b. Since ω(xa,b) = τ(wa) = True, C
has a literal that is true under ω. Similarly, the clause D also
has a literal that is false under τ, which guarantees that C
has a literal that is false under ω. Hence, C is not-all-equal
under ω. We are done with the necessity. The sufficiency
can be shown in an analogous way. �

3. Proof of NP-Completeness of BlockSum

Now we are ready to prove Theorem 1, the NP-completeness
of BlockSum. It is easy to see that BlockSum is in NP;
given an BlockSum instance and an integer assignment ϕ :
[n]× [n]→ [n], we can verify whether or not ϕ is a solution
of the instance in O(n2) time.

We reduce NAE-SAT to BlockSum. In the reduction,
we establish a polynomial transformation from any NAE-
SAT instance satisfying (i), (ii) and (iii) of Lemma 5 to
a BlockSum instance such that every block consists of at
most 2 cells. Let us denote an NAE-SAT instance satisfy-
ing (i), (ii) and (iii) of Lemma 5 by ISAT = (V,C), where
V = {v1, v2, . . . , vN} is the set of N Boolean variables and
C = {C1,C2, . . . ,CM} is the set of M clauses over V .

We construct a BlockSum instance IBS = (B, σ) on a
(10MN0) × (10MN0) grid of cells, where N0 = 2	log2(N+1)
.
Since we have

N0 = 2	log2(N+1)
 ≤ 2log2(N+1)+1 = 2(N + 1),

the number of cells in the grid is at most (20M(N + 1))2, a
polynomial in M and N. Let us denote n = 10MN0. The n×n
grid is partitioned into N2

0 equally sized square subgrids so
that each subgrid has 10M×10M cells. Recall that the nota-
tion S n,N0

a,b represents a subgrid defined by (1). In the sequel,

we let S a,b represent S n,N0

a,b for convenience if no confusion
arises. Any block in B is contained in one subgrid, or equiv-
alently, no block crosses more than one subgrid. Each sub-
grid consists of 1-blocks and 2-blocks. Let the caligraphic

Fig. 5 Overview of the n × n grid of the BlockSum instance to be con-
structed (n = 10MN0).

Sa,b denote the partition of a subgrid S a,b into blocks. We
take the partition B as the union of the partitions of the sub-
grids:

B =
⋃

(a,b)∈[N0]×[N0]

Sa,b.

For the demand function σ, we first set σ so that the
instance IBS = (B, σ) surely has a solution, regardless of the
satisfiability of ISAT. Then we will exchange the demands
of some blocks by means of Lemma 4 so that the resulting
instance has a solution if and only if ISAT is NAE-satisfiable.
To guarantee that IBS has a solution, we construct an n × n
Latin square somehow, denoted by ϕ, and set the demand
σ(B) of each block B ∈ B as follows:

σ(B) =
∑

(i, j)∈B

ϕ(i, j). (7)

Clearly, the BlockSum instance (B, σ) has ϕ as a solution.
For ϕ, we take such an n × n Latin square that can be given
by the pasting and adding procedure of Proposition 2; since
N0 = 2	log2(N+1)
, there is an N0 × N0 Latin square that satis-
fies (3) of Lemma 3, denoted by π. We can construct such π
in O(N2) time. Then the n × n Latin square ϕ is constructed
by (2), with π and 10M × 10M Latin squares ψa,b’-s that
are appropriately chosen for each subgrid S a,b. The point is
that we can choose the Latin square ψa,b for the subgrid S a,b

independently from other subgrids.
Now we explain how we define the partition Sa,b and

the Latin square ψa,b for each subgrid S a,b that determines
the demands of the blocks along with π. We illustrate the
roles of the subgrids in Fig. 5. We use S 1,1 as the satis-
faction testing component. In other words, we embed the
blocks into S 1,1 that correspond to the M clauses. For any
a ∈ [N], we use S 1,a+1, S a+1,1 and S a+1,a+1 as the truth as-
signment components for the variable va. These subgrids are

HARAGUCHI and ONO: BLOCKSUM IS NP-COMPLETE
485

Fig. 6 Overview of the partition of S 1,1 that we use as the satisfaction
testing component.

Fig. 7 Overview of Ub when the clause Cb has 2 literals.

contained in our grid properly since we have

N + 1 = 2log2(N+1) ≤ 2	log2(N+1)
 = N0.

We use the other N2
0−1−3N subgrids for garbage collection.

(1) Satisfaction Testing Components

We use the 10M × 10M subgrid S 1,1 as the satisfaction test-
ing component. Let us partition S 1,1 further into M2 sub-
grids so that each subgrid has 10 × 10 cells. We focus on
the M subgrids on the diagonal. We denote the M sub-
grids by U1,U2, . . . ,UM . Formally, each Ub is defined as
Ub = S 10M,M

b,b (b ∈ [M]). We illustrate how U1,U2, . . . ,UM

are located in Fig. 6. A subgrid Ub corresponds to the clause
Cb ∈ C. When Cb has 2 literals (resp., 3 literals), we take the
partition of Ub and the demands of the blocks as shown in
Fig. 7 (resp., Fig. 8). The cell of a 1-block should be filled
with its demand, and we cannot assign the demand value
to any other cell in the same row or in the same column.
For example, in Fig. 7, there are 1-blocks whose demands
are from 5 to 10 in the 1st to 4th rows and in the 1st to 4th
columns. Thus we cannot assign 5 to 10 to the upper-left
4 × 4 subgrid, and thus need to assign 1 to 4 there. We do
not take up the gray 1-blocks any more. We associate each
literal in Cb with a certain cell in Ub, as shown in the fig-
ures. When |Cb| = 2, the clause has one positive literal and
one negative literal from Lemma 5 (iii). We denote the cell

Fig. 8 Overview of Ub when the clause Cb has 3 literals.

Fig. 9 The 2 possible configurations of integers to the 2-blocks in Ub

(|Cb | = 2).

for the positive (resp., negative) literal by u(2)
b,1 (resp., u(2)

b,2).
When |Cb| = 3, the clause has three positive literals, and we
denote the cells for these literals by u(3)

b,1, u(3)
b,2 and u(3)

b,3.
When |Cb| = 2, the 2-blocks in the subgrid Ub admits

only 2 configurations of integers, as shown in Fig. 9. When
|Cb| = 3, the 2-blocks in the subgrid Ub admits 6 × 24 = 96
configurations, as shown in Fig. 10; the cells from the 1st
row to the 6th row admit only 6 configurations. We can ex-
change the integers assigned to two out of the four (2 × 1)-
blocks in the 7th and 8th rows. For example, the assign-
ment of (1, 4) and (4, 1) to the two (2 × 1)-blocks can be
flipped into (4, 1) and (1, 4). This is also true for the four
(2 × 1)-blocks in the 9th and 10th rows. Let us emphasize
that, whether |Cb| = 2 or 3, the cells for the literals are as-
signed either 1 or 2, and they are not-all-equal.

We let every cell out of U1, . . . ,UM form a 1-block.
In any feasible configuration of integers to U1, . . . ,UM , the
integers from 1 to 10 are assigned in all rows and in all
columns of S 1,1. We readily see that we can assign inte-
gers from 11 to 10M to the cells out of U1, . . . ,UM so that
the Latin square condition is satisfied. We use the assigned
integers as the demands of the 1-blocks. Then, the configu-
ration of the integers to these cells is unique.

(2) Truth Assignment Components

For each a ∈ [N], we use the subgrids S 1,a+1, S a+1,1 and
S a+1,a+1 as the truth assignment components for the variable
va ∈ V . From Lemma 5 (i), va appears as 2 positive literals
and as 1 negative literal in C. These 3 literals are associated
with some 3 cells in S 1,1. We denote the 2 cells for the 2
positive literals by ua,1 and ua,2, and the cell for the negative
literal by ua,3. As shown in Figs. 7 and 8, these cells belong
to (2×1)-blocks. We denote the three (2×1)-blocks to which

486
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

Fig. 10 The 6 × 24 = 96 possible configurations of integers to the 2-
blocks in Ub (|Cb | = 3).

ua,1, ua,2 and ua,3 belong by Aa,1, Aa,2 and Aa,3, respectively.
For convenience, let us write:

Aa,1 = {(r1, c1), (r1 + 1, c1)},
Aa,2 = {(r2, c2), (r2 + 1, c2)},
Aa,3 = {(r3, c3), (r3 + 1, c3)},

which means ua,1 = (r1 + 1, c1), ua,2 = (r2 + 1, c2) and ua,3 =

(r3, c3).
In Fig. 11, we show an overview of S 1,a+1, S a+1,1 and

S a+1,a+1. The subgrid S 1,a+1 has three (2 × 1)-blocks. All
the other blocks in S 1,a+1 are 1-blocks. We denote the three
(2 × 1)-blocks by Da,1, Da,2 and Da,3, where we define

Da,1 = {(r1, 10Ma + 1), (r1 + 1, 10Ma + 1)},
Da,2 = {(r2, 10Ma + 2), (r2 + 1, 10Ma + 2)},
Da,3 = {(r3, 10Ma + 3), (r3 + 1, 10Ma + 3)}.

Thus, these 3 blocks are in the same rows as Aa,1, Aa,2 and
Aa,3, respectively. We construct ψ1,a+1, the (10M) × (10M)
Latin square that gives the solution to S 1,a+1 along with π, by
permuting the columns of the standard Latin square of order
10M so that, in the 1st, 2nd and 3rd columns, 1 is in the r1-
th, r2-th and r3-th rows respectively. One can readily see that

Fig. 11 Overview of the partitions of S a+1,1, S a+1,a+1 and S 1,a+1 that we
use as the truth assignment components for the variable va.

this permutation is always feasible. With π and ψ1,a+1, the
demands of all the blocks in S 1,a+1 are determined by (7). In
particular, the demands of Da,1, Da,2 and Da,3 becomes:

σ(Da,1) = σ(Da,2) = σ(Da,3)

= (10Ma + 1) + (10Ma + 2) = 20Ma + 3. (8)

Note that the configuration of integers to the subgrid S 1,a+1

is unique; the 1-blocks need to be assigned their demands.
The 2-block Da,t (t = 1, 2, 3) must be assigned (10Ma +
1, 10Ma + 2) since, in the rt-th row (resp., in the (rt + 1)-th
row), all the integers from 1 to n except 10Ma + 1 (resp.,
10Ma+ 2) need to be assigned to other cells other than Da,t.

We set the partition and the demands of the subgrid
S a+1,1 in the similar way. The subgrid S a+1,1 has three (2 ×
1)-blocks, and all the other blocks are 1-blocks. We denote
the three (2 × 1)-blocks by D′a,1, D′a,2 and D′a,3, where we
define

D′a,1 = {(10Ma + 1, c1), (10Ma + 2, c1)},
D′a,2 = {(10Ma + 3, c2), (10Ma + 4, c2)},
D′a,3 = {(10Ma + 2, c3), (10Ma + 3, c3)}.

Thus, these 3 blocks are in the same columns as Aa,1, Aa,2

and Aa,3, respectively. We construct ψa+1,1 by permuting the
columns of the standard Latin square of order 10M so that,
in the c1-th, c2-th and c3-th columns, 1 is in the 1st, 3rd and
2nd rows respectively. With π and ψa+1,1, the demands of all
the blocks in S a+1,1 are determined by (7). In particular, we
have

σ(D′a,1) = σ(D′a,2) = σ(D′a,3) = 20Ma + 3. (9)

Note that the configuration of integers to the subgrid S a+1,1

is unique.
Finally, we explain the partition and the demands for

the subgrid S a+1,a+1. The key part of S a+1,a+1 is the upper-
left 10×10 subgrid. We show the 10×10 subgrid in Fig. 12.

HARAGUCHI and ONO: BLOCKSUM IS NP-COMPLETE
487

Fig. 12 The upper-left 10 × 10 subgrid in S a+1,a+1.

Fig. 13 The 2 possible configurations of integers to the 2-blocks in the
upper-left 10 × 10 subgrid of S a+1,a+1.

We focus on the three (2 × 1)-blocks, denoted by Ea,1, Ea,2

and Ea,3, which are defined as:

Ea,1= {(10Ma + 1, 10Ma + 1), (10Ma + 2, 10Ma + 1)},
Ea,2= {(10Ma + 3, 10Ma + 2), (10Ma + 4, 10Ma + 2)},
Ea,3= {(10Ma + 2, 10Ma + 3), (10Ma + 3, 10Ma + 3)}.

Recall that the Boolean variable va ∈ V appears as 2 posi-
tive literals and as 1 negative literal in C. We associate the
2 positive literals with wa,1 = (10Ma + 2, 10Ma + 1) and
wa,2 = (10Ma + 4, 10Ma + 2), the lower cells of Ea,1 and
Ea,2 respectively. We also associate the 1 negative literal
with wa,3 = (10Ma + 2, 10Ma + 3) that is the upper cell of
Ea,3. These are represented as shaded cells in Fig. 12. The
2-blocks in the 10×10 subgrid admits only 2 configurations
of integers, as shown in Fig. 13. The point is that wa,1, wa,2

and wa,3 are assigned either 1 or 2 in any configuration, and
that wa,1 and wa,2 are assigned the same integer, while wa,3 is
assigned the different integer from wa,1 and wa,2. We let ev-
ery cell out of the upper-left 10×10 subgrid form a 1-block.
We readily see that we can assign integers from 1 to 10M
to the (10M)2 − 102 cells so that the assignment satisfies the
Latin square condition whichever configuration is employed
in the upper-left 10 × 10 subgrid. We use the assigned inte-
gers as the demands of the ((10M)2 − 102) 1-blocks.

(3) Garbage Collection Components

Let us denote any 10M × 10M subgrid that is not mentioned
above by S a,b. We let the partition be the set of (10M)2 1-
blocks, and the standard Latin square of order 10M be ψa,b.

Thus the configuration of integers to S a,b is unique.

Finally, we transfer IBS to another instance I′BS =

(B, σ′) by exchanging the demands of some blocks by
means of Lemma 4, while we do not change the partition
B. Again, see Fig. 11. For each Boolean variable va ∈ V
and t = 1, 2, 3, Da,t in S 1,a+1 is in the same rows as Aa,t in
S 1,1 and D′a,t in S a+1,1 is in the same column as Aa,t. The
Ea,t in S a+1,a+1 is in the same column as Da,t and in the
same rows as D′a,t. Also we have σ(Aa,t) = σ(Ea,t) = 5
and σ(Da,t) = σ(D′a,t) = 20Ma + 3, where the latter is
from (8) and (9). Then we define the demand function
σ′ : B → [n2(n + 1)/2] as follows; for any a = 1, 2, . . . ,N
and t = 1, 2, 3, we define:

σ′(Aa,t) = σ
′(Ea,t) = 20Ma + 3,

σ′(Da,t) = σ
′(D′a,t) = 5,

and σ′(B) = σ(B) for any other block B in B.
We have finished explaining the transformation from

ISAT to I′BS. Note that every block in I′BS has at most 2 cells.
We can readily see that the transformation time is bounded
by a polynomial in M and N. Next we show that I′BS has a
solution if and only ISAT is NAE-satisfiable.

Suppose that ISAT is NAE-satisfiable. Let τ : V →
{True,False} denote a truth assignment such that each
clause Cb ∈ C is not-all-equal. From τ, we first construct
a solution ϕ of IBS and then transform it into a solution of
I′BS by means of Lemma 4. For IBS, the configuration to the
cells out of S 1,1, S 2,2, . . . , S N+1,N+1 is unique. Also, for S 1,1,
the configuration to the cells out of U1, . . . ,UM is unique,
and for S a+1,a+1 (a ∈ [N]), the configuration to the cells out
of the upper-left 10 × 10 subgrid is unique. In Ub (b ∈ [M])
that corresponds to the clause Cb, there are 2 or 3 cells with
which the literals in Cb are associated. Assign 2 (resp., 1) to
the cell if the literal is true (resp., false) under τ. Since Cb is
not-all-equal, the assigned integers are not-all-equal. There-
fore, when |Cb| = 2 (resp., 3), we can employ one of the con-
figurations shown in Fig. 9 (resp., Fig. 10). In the upper-left
10 × 10 subgrid of S a+1,a+1 (a ∈ [N]), assign (2, 2, 1) (resp.,
(1, 1, 2)) to the cells wa,1, wa,2 and wa,3 if τ(va) = True (resp.,
False), which leads to one of the configurations shown in
Fig. 13. We easily see that, for t = 1, 2, 3, ϕ(Aa,t) = ϕ(Ea,t)
and ϕ(Da,t) = ϕ(D′a,t) hold. Therefore, this ϕ can be trans-
formed into a solution of ϕ′ by means of Lemma 4.

Conversely, suppose that I′BS is solvable. Let ϕ′ denote
any solution of I′BS. For any a = 1, 2, . . . ,N, let us see the
(2×1)-blocks D′a,1, D′a,2 and D′a,3 in the subgrid S a+1,1 whose
demands byσ′ are 5. Let w′a,1 and w′a,2 denote the lower cells
of the D′a,1 and D′a,2 respectively and w′a,3 denote the upper
cell of D′a,3.

Lemma 6: We have ϕ′(w′a,t) ∈ {1, 2} for t = 1, 2, 3 and
ϕ′(w′a,1) = ϕ′(w′a,2) � ϕ′(w′a,3).

Proof: Since the demand σ′(D′a,t) is 5, ϕ′(w′a,t) can be either
of 1, 2, 3 or 4. However, it cannot be 3 or 4 since, in the
same row as w′a,t, there are 1-blocks in the subgrid S a+1,a+1

488
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

whose demands are 3 and 4. (See Figs. 11 and 12.) The
latter can be confirmed easily. �

Lemma 7: For any clause Cb (b ∈ [M]) with 2 literals,
suppose that the positive literal is from the Boolean variable
va1 and the negative literal is from va2 . Let us denote by D′a1,t1
(resp., D′a2,t2) the (2 × 1)-block in S a1+1,1 (resp., S a2+1,1) that

is in the same column as the cells u(2)
b,1 and u(2)

b,2 of Ub. Then
we have ϕ′(w′a1,t1) � ϕ′(w′a2,t2).

Proof: Since D′a1,t1 and D′a2,t2 are in the same column (see
Figs. 7 and 11), ϕ′(w′a1,t1) and ϕ′(w′a2,t2) should not be equal
from the Latin square condition. �

Lemma 8: For any clause Cb (b ∈ [M]) with 3 literals,
suppose that the positive literals are from the Boolean vari-
ables va1 , va2 and va3 . Let us denote by D′a1,t1 (resp., D′a2,t2 and
D′a3,t3) the (2× 1)-block in S a1+1,1 (resp., S a2+1,1 and S a3+1,1)

that is in the same column as the cell u(3)
b,1 (resp., u(3)

b,2 and

u(3)
b,3) of Ub. Then, ϕ′(w′a1,t1), ϕ′(w′a2,t2) and ϕ′(w′a3,t3) are not

all equal.

Proof: See Figs. 8 and 11. The values ϕ′(w′a1,t1), ϕ′(w′a2,t2)
and ϕ′(w′a3,t3) should be not all equal due to the three (2×1)-
blocks that are in the 7th to 8th rows and in the 1st to 3rd
columns in Fig. 8. �

From a solution ϕ′ of I′BS, we construct a truth as-
signment τ : V → {True,False} as follows; for each
Boolean variable va ∈ V , when ϕ′(w′a,1) = 2 (resp., 1), let
τ(va) ← True (resp., False). From Lemma 6, the ϕ′ as-
signs 2 (resp., 1) to the 2 cells w′a,1 and w′a,2 and 1 (resp.,
2) to the cell w′a,3. It is regarded that the 2 positive literals
are true (resp., false) and the negative literal is false (resp.,
true) under τ. On the other hand, from Lemmata 7 and 8,
ϕ′ assigns not all equal integers to w′a,t’-s that belong to the
same columns as Ub in S 1,1. This means that the clause Cb

is not-all-equal under τ.

4. Discussion and Concluding Remarks

We showed that the decision problem version of BlockSum
puzzle is NP-complete even if every block has size at most
2.

Although we focus on the existence of a solution of a
given BlockSum instance, it is actually easy to generate an
instance of BlockSum that has at least one solution; we can
generate such an instance from a pair of an n×n Latin square
and a partition of the n × n grid into blocks [8]. Thus, from
the viewpoint of puzzle instance generation, it is important
to consider the complexity of deciding whether a Block-
Sum instance has a solution other than the expected solu-
tion. This type of problem (and the complexity) are stud-
ied in terms of ASP-completeness, which does not require
a polynomial time reduction from an NP-complete problem
but requires an ASP-reduction from an ASP-complete prob-
lem [1]. Thus, it is an interesting and important open prob-
lem to decide whether BlockSum is ASP-complete or not.

References

[1] T. Yato and T. Seta, “Complexity and completeness of finding an-
other solution and its application to puzzles,” IEICE Trans. Funda-
mentals, vol.E86-A, no.5, pp.1052–1060, May 2003.

[2] E.D. Demaine, S. Hohenberger, and D. Liben-Nowell, “Tetris is
hard, even to approximate,” CoRR, vol.cs.CC/0210020, 2002.
(http://arxiv.org/abs/cs.CC/0210020).

[3] H. Muta, “PUYOPUYO is NP-complete (in Japanese),” IEICE Tech-
nical Report, COMP2005-14, http://ci.nii.ac.jp/naid/10016436795/,
2005.

[4] T. Matsukane and Y. Takenaga, “NP-completeness of maximum
chain problem on generalized PUYOPUYO (in Japanese),” IEICE
Trans. Inf. & Syst. (Japanese Edition), vol.J89-D, no.3, pp.405–413,
March 2006.

[5] G. Aloupis, E.D. Demaine, and A. Guo, “Classic Nintendo games
are (NP-)hard,” arXiv.org, http://arxiv.org/abs/1203.1895v1, 2012.

[6] T. Miyamoto, Kyouiku Pazuru (in Japanese), Discover, 2004.
[7] T. Miyamoto, Kyouikuron (The Art of Teaching without Teaching)

(in Japanese), Discover, 2004.
[8] K. Haraguchi, Y. Abe, and A. Maruoka, “How to produce BlockSum

instances with various levels of difficulty,” J. Information Process-
ing, vol.20, no.3, pp.727–737, 2012.

[9] T.J. Schaefer, “The complexity of satisfiability problems,” Proc. 10th
Annual ACM Symposium on Theory of Computing, pp.216–226,
Association for Computing Machinery, 1978.

[10] M.R. Garey and D.S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, ch. Appendix A9, p.259,
W.H. Freeman & Company, 1979.

Kazuya Haraguchi received B.E., Mas-
ter of Informatics, and Doctor of Informatics
from Kyoto University, in 2001, 2003 and 2007,
respectively. He is currently with the Depart-
ment of Information Technology and Electron-
ics, Faculty of Science and Engineering, Ishi-
nomaki Senshu University. His research inter-
est includes algorithms, combinatorial optimiza-
tion, and their application to artificial intelli-
gence and operations research.

Hirotaka Ono received his B.E, M.E. and
Doctor of Informatics degrees from Kyoto Uni-
versity in 1997, 1999 and 2002 respectively. He
is currently an associate professor of Depart-
ment of Economic Engineering of Kyushu Uni-
versity. His research interests include combina-
torial optimization, logical analysis of data and
distributed algorithms. He is a member of the
Information Processing Society of Japan and the
Operation Research Society of Japan.

