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Abstract

We introduce the zeta Mahler measure with a complex parameter, whose derivative

is a generalization of the classical Mahler measure. We study a fundamental theory of

the zeta Mahler measure, including holomorphic regions and transformation formulas.

We also express some specific examples of zeta Mahler measures in terms of hyperge-

ometric functions.
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1 Introduction

For a nonzero Laurent polynomial f(X1, . . . , Xr) ∈ C[X±1
1 , . . . , X±1

r ], the associated (loga-

rithmic) Mahler measure m(f) is defined to be

m(f) =

∫ 1

0

· · ·
∫ 1

0

log |f(e2πit1 , . . . , e2πitr)|dtr · · · dt1.

It is known that the Mahler measure has interesting connections with zeta/L values, (mul-

tiple) polylogarithms and multiple sine functions, see [B, D, L1, L2, O, RV, S, V] and the

references therein.

∗The author was supported by JSPS Research Fellowships for Young Scientists (PD).
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In this paper we introduce the following zeta Mahler measure. For a nonzero Laurent

polynomial f(X1, . . . , Xr) ∈ C[X±1
1 , . . . , X±1

r ], the associated zeta Mahler measure is defined

by

Z(s, f) :=

∫ 1

0

· · ·
∫ 1

0

|f(e2πit1 , . . . , e2πitr)|sdtr · · · dt1. (1.1)

The integral converges absolutely in Re(s) > σ0(f) for some σ0(f) < 0, as explained in §2
below. Since

dZ

ds
(0, f) = m(f), (1.2)

dZ
ds

can be regarded as a generalization of the Mahler measure.1 The first purpose of this

paper is to investigate fundamental properties of the zeta Mahler measure, including conver-

gent domains of the integral (1.1) and transformation formulas. The second purpose is to

express some specific examples of zeta Mahler measures in terms of (generalized) hypergeo-

metric functions. We will explain the fundamental properties in §2. In this section we state

our results on specific examples of zeta Mahler measures. From Jensen’s formula, Mahler

measures for one variable polynomials f(X) = a
∏d

j=1(X − αj) ∈ C[X] \ {0} is evaluated as

m(f) = log |a|+
d∑

j=1

log+ |αj|, (1.3)

where log+ x := max{log x, 0} for x ≥ 0. Since m(Xnf) = m(f) for any n ∈ Z, Mahler

measures for one variable Laurent polynomials can be evaluated in terms of their zeros lying

in {α ∈ C : |α| > 1}. On the other hand, it is difficult to calculate zeta Mahler measures

for general one variable Laurent polynomials. But we can calculate two examples of zeta

Mahler measures for one variable Laurent polynomials as explained below.

Theorem 1. Let a ∈ C and put f(X) = X + a. Then,

(1) when |a| = 1, for Re(s) > −1 we have

Z(s, f) = 2sπ−1/2 Γ( s+1
2

)

Γ( s
2

+ 1)
.

1When we interchange differentiation and integration in (1.2), we have to pay attention to singularities

of the integrand. See §2 for a rigorous treatment.
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(2) when |a| 6= 1, for s ∈ C we have

Z(s, f) = (|a|2 + 1)s/2F

(
−s

4
,−s

4
+

1

2
; 1;

(
2|a|

|a|2 + 1

)2
)

,

where F (α, β; γ; z) = 2F1(α, β; γ; z) is the hypergeometric function given by

F (α, β; γ; z) :=
∞∑

n=0

(α)n(β)n

(γ)n

zn

n!
(|z| < 1), (1.4)

and (α)0 := 1, (α)n := α(α + 1) · · · (α + n− 1) (n ∈ Z≥1) is the Pochhammer symbol.

In the case |a| 6= 1 it is not easy to see that Theorem 1 is compatible with (1.3). For

|a| 6= 1, Z(s,X + a) also has the following expression, from which we easily understand the

compatibility.

Theorem 2. Suppose that a ∈ C satisfies |a| 6= 1. Then we have

Z(s,X + a) =




|a|sF (− s

2
,− s

2
; 1; |a|−2) if |a| > 1,

F (− s
2
,− s

2
; 1; |a|2) if |a| < 1.

Remark 1.1. From Theorem 1 (1) and Theorem 2 together with (1.4), we easily recover

(1.3) for f(X) = X + a, that is, m(f) = Z ′(0, f) = log+ |a|.

In the case |a| 6= 1, Z(s,X + a) has the following functional equation between s and

−s− 2:

Theorem 3. For f(X) = X + a with |a| 6= 1 we have the functional equation

Z(−s− 2, f) = ||a|2 − 1|−s−1Z(s, f).

We also treat zeta Mahler measures for f(X) = X + X−1 + k with k ∈ R.

Theorem 4. Let k ∈ R and put f(X) = X + X−1 + k. Then

(1) when |k| > 2, for any s ∈ C we have

Z(s, f) =

( |k|+√
k2 − 4

2

)s

F

(
−s,−s; 1;

( |k| − √k2 − 4

2

)2
)

.
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(2) when |k| = 2, for Re(s) > −1/2 we have

Z(s, f) = 4sπ−1/2 Γ(s + 1
2
)

Γ(s + 1)
.

(3) when |k| < 2, for Re(s) > −1 we have

Z(s, f) =
1

2π1/2

Γ(s + 1)

Γ(s + 3
2
)

(
(2− k)s+ 1

2 F

(
1

2
,
1

2
; s +

3

2
;
2− k

4

)

+ (2 + k)s+ 1
2 F

(
1

2
,
1

2
; s +

3

2
;
2 + k

4

))
.

Remark 1.2. When k ∈ R satisfies |k| ≥ 2, from Theorem 4 together with (1.4) we recover

(1.3) for f(X) = X +X−1 +k, that is, m(f) = Z ′(0, f) = log( |k|+
√

k2−4
2

). On the other hand,

it is difficult to recover (1.3) in the case −2 < k < 2. But (1.3) and Theorem 4 (3) produce

the following nontrivial formula for k ∈ R, |k| < 2:

(2 + k)1/2
∑

m,n∈Z
0≤m≤n

(1
2
)n

n!(n + 1
2
)(m + 1

2
)

(
2 + k

4

)n

+ (2− k)1/2
∑

m,n∈Z
0≤m≤n

(1
2
)n

n!(n + 1
2
)(m + 1

2
)

(
2− k

4

)n

= 4π log 2 + 4 arcsin

(√
2 + k

2

)
log(2 + k) + 4 arcsin

(√
2− k

2

)
log(2− k), (1.5)

where arcsin takes a value in (−π/2, π/2). See §3.2 for the proof of (1.5).

In the case k ∈ R, |k| > 2, Z(s, X + X−1 + k) has the following functional equation:

Theorem 5. Suppose that k ∈ R satisfies |k| > 2 and put f(X) = X + X−1 + k. Then

Z(s, f) satisfies the following functional equation:

Z(−s− 1, f) = (k2 − 4)−s− 1
2 Z(s, f).

We also treat the 2-variable Laurent polynomials as follows:

Theorem 6. Suppose that k ∈ R satisfies |k| > 4 and put f(X,Y ) := X+X−1+Y +Y −1+k.

Then we have

Z(s, f) = |k|s3F2

(
1

2
,−s

2
,
−s + 1

2
; 1, 1;

(
4

k

)2
)

,
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where 3F2 is the generalized hypergeometric function defined by

3F2(α1, α2, α3; β1, β2; z) :=
∞∑

n=0

(α1)n(α2)n(α3)n

(β1)n(β2)n

zn

n!
(|z| < 1). (1.6)

Remark 1.3. The Mahler measure for f(X, Y ) := X + X−1 + Y + Y −1 + k was studied by

Rodriguez-Villegas [RV, §15]. His method [RV, §11] is extendable to our cases, see [KLO,

§6.1] for the proof of Theorem 6 along with his method. But in the case −4 < k < 4, in

which f has zeros on T2, his method is not applicable. Our proof has potentialities to treat

such a case.

We end the introduction by mentioning j-higher Mahler measure

mj(f) :=

∫ 1

0

· · ·
∫ 1

0

(log |f(e2πit1 , . . . , e2πitr)|)jdtr · · · dt1

recently introduced and studied by Kurokawa-Laĺın-Ochiai [KLO]. According to [KLO],

mj(f) are related to (multiple) zeta values for some polynomials f . For example, they

obtained

mj(X − 1) = (−1)jj!
∑

h≥1

1

22h

∑

b1,...,bh≥2
b1+···+bh=j

ζ(b1, . . . , bh),

where the ζ(b1, . . . , bh) are multiple zeta values defined by

ζ(b1, . . . , bh) =
∑

0<n1<···<nh

1

nb1
1 · · ·nbh

h

.

As was pointed out in [KLO], mj(f) are the Taylor coefficients of Z(s, f) as follows:

Z(s, f) =
∞∑

j=0

mj(f)

j!
sj.

From Theorems 2 and 4 together with results on generating functions for sums of multiple

polylogarithms obtained by Ohno-Zagier [OZ] (see (3.14)), we can express mj(X + a) and

mj(X + X−1 + k) with |k| > 2 in terms of multiple polylogarithms. For example, we have

Theorem 7. For j ≥ 2 and a ∈ C satisfying |a| < 1 we have

mj(X + a) = (−1)jj!
∑

j
2
−1≤n≤j−2

1

22(j−n−1)

∑

(ε1,...,εn)∈{1,2}n

#{i:εi=2}=j−n−2

L(ε1,...,εn,2)(|a|2),
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where

L(b1,...,bh)(t) :=
∑

0<n1<···<nh

tnh

nb1
1 · · ·nbh

h

.

This paper is organized as follows. In §2 we develop a fundamental theory for the zeta

Mahler measure, including absolutely convergent and holomorphic regions, transformation

formulas and the validity of (1.2). In §3 we prove Theorems 1–5, (1.5) and Theorem 7. In

§4 we treat zeta Mahler measures for (X1 +X−1
1 )+ · · ·+(Xr +X−1

r )+k, including the proof

of Theorem 6.

Notation For convenience we collect the notation frequently used in this paper.

F = 2F1: the hypergeometric function given by the analytic continuation of (1.4) to z ∈
C \ [1,∞).

3F2: the generalized hypergeometric function given by the analytic continuation of (1.6) to

z ∈ C \ [1,∞).

Sr: the symmetric group on {1, . . . , r}.
µr: the Lebesgue measure on Rr.

Tr: the r-dimensional torus given by {(z1, . . . , zr) ∈ Cr : |z1| = · · · = |zr| = 1}.

2 Fundamental properties of the zeta Mahler measure

In this section we will give fundamental properties of the zeta Mahler measure. In some

parts of this section we refer to [EW, Chapter 3], which establishes fundamental properties

of the classical Mahler measure.

First we consider absolutely convergent and holomorphic regions of (1.1) and the validity

of (1.2). For Laurent polynomials f ∈ C[X±1
1 , . . . , X±1

r ] \ {0} we define σ0(f) by

σ0(f) := inf

{
σ ∈ R :

∫ 1

0

. . .

∫ 1

0

|f(e2πit1 , . . . , e2πitr)|σdtr · · · dt1 < ∞
}
∈ R ∪ {−∞}.

We remark that σ0(f) ≤ 0 because
∫ 1

0
· · · ∫ 1

0
|f(e2πit1 , . . . , e2πitr)|0dtr · · · dt1 = 1 < ∞.
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Proposition 2.1. Let f ∈ C[X±1
1 , . . . , X±1

r ] \ {0}. Then the integral in (1.1) converges

absolutely and locally uniformly in Re(s) > σ0(f). In particular, in Re(s) > σ0(f), Z(s, f)

is holomorphic and we have

dkZ

dsk
(s, f) =

∫ 1

0

· · ·
∫ 1

0

|f(e2πit1 , . . . , e2πitr)|s(log |f(e2πit1 , . . . , e2πitr)|)kdtr · · · dt1.

Proof. Let ε > 0, R ≥ max{10, σ0(f) + ε} and σ0(f) + ε ≤ Re(s) ≤ R. Then, by the

definition of σ0(f), there exists δ = δ(f, ε) ∈ [0, ε) such that

∫ 1

0

· · ·
∫ 1

0

|f(e2πit1 , . . . , e2πitr)|σ0(f)+δdtr · · · dt1 < ∞. (2.1)

We divide [0, 1]r into

X+
r (f) := {(t1, . . . , tr) ∈ [0, 1]r : |f(e2πit1 , . . . , e2πitr)| ≥ 1}, (2.2)

X−
r (f) := {(t1, . . . , tr) ∈ [0, 1]r : |f(e2πit1 , . . . , e2πitr)| < 1}. (2.3)

If (t1, . . . , tr) ∈ X+
r (f), then we have

||f(e2πit1 , . . . , e2πitr)|s| ≤ |f(e2πit1 , . . . , e2πitr)|Re(s)

≤ |f(e2πit1 , . . . , e2πitr)|R ≤ MR,

where M := max(z1,...,zr)∈Tr |f(z1, . . . , zr)|. Note that the maximal value M exists because

Tr is compact. On the other hand, if (t1, . . . , tr) ∈ X−
r (f), then we have

||f(e2πit1 , . . . , e2πitr)|s| ≤ |f(e2πit1 , . . . , e2πitr)|σ0(f)+δ.

From µr(X
+
r (f)) ≤ 1 and (2.1) we have

∫
· · ·

∫

X+
r (f)

MRdtr · · · dt1 +

∫
· · ·

∫

X−
r (f)

|f(e2πit1 , . . . , e2πitr)|σ0(f)+δdtr · · · dt1 < ∞.

This completes the proof.

We give an estimate of σ0(f). First, we easily see that

σ0(X
m1
1 · · ·Xmr

r f) = σ0(f) for any (m1, . . . , mr) ∈ Zr, (2.4)

σ0(f
τ ) = σ0(f) for any τ ∈ Sr, (2.5)
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where for f(X1, . . . , Xr) :=
∑

n=(n1,...,nr)∈Zr c(n)Xn1
1 · · ·Xnr

r we define f τ (X1, . . . , Xr) :=
∑

n=(n1,...,nr)∈Zr c(n)Xn1

τ(1) · · ·Xnr

τ(r). From (2.4) it is sufficient to consider σ0(f) for polyno-

mials only. In order to state the results, we introduce some more notations. As usual,

for f(X1, . . . , Xr) =
∑

n1,...,nr≥0 c(n1, . . . , nr)X
n1
1 · · ·Xnr

r ∈ C[X1, . . . , Xr] \ {0} we denote

deg(f), degXj
(f) by deg(f) := max{n1 + · · ·+ nr : c(n1, . . . , nr) 6= 0}, degXj

(f) := max{n0
j :

c(n1, . . . , nr) 6= 0 and nj = n0
j for some (n1, . . . , nr) ∈ (Z≥0)

r}, respectively.

Definition 2.2. For f(X1, . . . , Xr) ∈ C[X1, . . . , Xr] \ {0} we define dr(f) inductively by





d1(f) := deg(f) if r = 1,

dr(f) := degXr
(f) + dr−1(g) if r ≥ 2,

where g(X1, . . . , Xr−1) ∈ C[X1, . . . , Xr−1] \ {0} is the coefficient of X
degXr

(f)
r for f . We also

define dmin
r (f) by

dmin
r (f) := min

τ∈Sr

d(f τ ).

We note that dmin
r (f) ≤ dr(f) ≤ deg(f). Estimates of σ0(f) are given as follows:

Theorem 8. Let f(X1, . . . , Xr) ∈ C[X1, . . . , Xr] \ {0}. Then

(1) σ0(f) ≥ −1/dmin
r (f).

(2) If f does not vanish on Tr, then σ0(f) = −∞.

Remark 2.3. Theorem 8 (1) is a crude bound because σ0(f) should be determined not by

the degree of f but on the behavior of f near its zeros on Tr.

Combining Proposition 2.1 and Theorem 8 (1), we obtain

Corollary 2.4. Equation (1.1) is valid for any f(X1, . . . , Xr) ∈ C[X±1
1 , . . . , X±1

r ] \ {0}.

For the proof of Theorem 8, the following lemma is crucial.

Lemma 2.5. Let f ∈ C[X±1
1 , . . . , X±r

r ] \ {0}. Then there exists C = Cr(f) > 0 such that

µr({(t1, . . . , tr) ∈ [0, 1]r : |f(e2πit1 , . . . , e2πitr)| ≤ ε}) ≤ Cε1/dmin
r (f) (2.6)

for any ε > 0.
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Remark 2.6. This lemma is essentially due to Everest-Ward [EW, p.58, Lemma 3.8]. But

they did not give an explicit exponent for ε. We will give the exponent 1/dmin
r (f) using their

method.

Remark 2.7. For one variable (Laurent) polynomials, there is a stronger bound due to

Lawton [Law, Theorem 1] than (2.6).

Proof of Lemma 2.5. From (2.5), it is sufficient to show that the left hand side of (2.6) is

bounded above by Cε1/dr(f) for some C = Cr(f) > 0. We prove this by induction on r. We

consider the case r = 1. Let f(X) ∈ C[X] be nonzero polynomials with degree d = d1(f).

We factorize f(X) as

f(X) = a

d∏
j=1

(X − gj)

with a ∈ C× and gj ∈ C. Take z ∈ C with |f(z)| ≤ ε. Then, since |∏d
j=1(z − gj)| ≤ |a|−1ε,

there exists j ∈ {1, . . . , d} such that |z − gj| ≤ (|a|−1ε)1/d. Hence, we have

µ1({t ∈ [0, 1] : |f(e2πit)| ≤ ε})

≤ µ1

(
d⋃

j=1

{t ∈ [0, 1] : |e2πit − gj| ≤ (|a|−1ε)1/d}
)

≤
d∑

j=1

µ1({t ∈ [0, 1] : |e2πit − gj| ≤ (|a|−1ε)1/d})

=
d∑

j=1

µ1({t ∈ [0, 1] : |e2πit − |gj|| ≤ (|a|−1ε)1/d}). (2.7)

In the last equality we used the periodicity of e2πit. We assume that t ∈ [0, 1] satisfies

|e2πit − |gj|| ≤ (|a|−1ε)1/d. Then we get ||gj| − 1| ≤ (|a|−1ε)1/d by the triangle inequality. By

the triangle inequality again, we obtain |e2πit − 1| ≤ |e2πit − |gj|| + ||gj| − 1| ≤ 2(|a|−1ε)1/d.

Hence, (2.7) is estimated above as

≤
d∑

j=1

µ1({t ∈ [0, 1] : |e2πit − 1| ≤ 2(|a|−1ε)1/d})

=
d∑

j=1

µ1({t ∈ [0, 1] : sin(πt) ≤ (|a|−1ε)1/d})
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= 2
d∑

j=1

µ1({t ∈ [0, 1/2] : sin(πt) ≤ (|a|−1ε)1/d})

≤ 2
d∑

j=1

µ1({t ∈ [0, 1/2] : t ≤ (|a|−1ε)1/d/2})

≤ d|a|−1/dε1/d.

Here, in the fourth line we used sin(πt) ≥ 2t for any t ∈ [0, 1/2]. Hence we obtain the lemma

in the case r = 1.

Let r ≥ 2 and suppose that the lemma is true for r − 1. Let f be r-variable nonzero

polynomials. For (z1, . . . , zr−1) ∈ Cr−1 we factorize f as

f(z1, . . . zr−1, Xr) = a(z1, . . . , zr−1)
m∏

j=1

(Xr − gj(z1, . . . , zr−1))

where m = degXr
(f), a(X1, . . . , Xr−1) ∈ C[X1, . . . , Xr−1] \ {0} is the coefficient of Xm

r for f

and gj are suitable branches of algebraic functions. Let ε′ > 0. We divide the left hand side

of (2.6) into two parts according as |a(e2πit1 , . . . , e2πitr−1)| ≤ ε′ or > ε′. From the assumption

of the induction we estimate the former part as follows:

µr({(t1, . . . , tr) ∈ [0, 1]r : |f(e2πit1 , . . . , e2πitr)| ≤ ε, |a(e2πit1 , . . . , e2πitr−1)| ≤ ε′})
≤ Cr−1(a)(ε′)1/dr(a).

On the other hand, the latter part is estimated by

µr({(t1, . . . , tr) ∈ [0, 1]r : |f(e2πit1 , . . . , e2πitr)| ≤ ε, |a(e2πit1 , . . . , e2πitr−1)| > ε′})

≤ µr

({
(t1, . . . , tr) ∈ [0, 1]r :

m∏
j=1

|e2πitr − gj(e
2πit1 , . . . , e2πitr−1)| ≤ ε

ε′

})
. (2.8)

In the same manner as the case r = 1, (2.8) is bounded above by m(ε/ε′)1/m. Hence the left

hand side of (2.6) is

≤ Cr−1(a)(ε′)1/dr−1(a) + m(ε/ε′)1/m.

Taking ε′ = ε
dr−1(a)

dr−1(a)+m , we obtain the desired result.
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Proof of Theorem 8. (2) Since Tr is compact, there exist m and M such that 0 < m ≤
|f(z1, . . . , zr)| ≤ M for any (z1, . . . , zr) ∈ Tr. This implies σ0(f) = −∞.

(1) It is sufficient to prove
∫ 1

0

· · ·
∫ 1

0

|f(e2πit1 , . . . , e2πitr)|σdtr · · · dt1 < ∞

for any σ ∈ (−1/dmin
r (f), 0). We divide [0, 1]r into X+

r (f) and X−
r (f), which are given by

(2.2) and (2.3), respectively. We first consider the integral on X+
r (f). Since f is bounded on

Tr, we have ∫

X+
r (f)

|f(e2πit1 , . . . , e2πitr)|σdtr · · · dt1 < ∞.

On the other hand, from Lemma 2.5, the integral on X−
r (f) is estimated as follows:

∫

X−
r (f)

|f(e2πit1 , . . . , e2πitr)|σdtr · · · dt1

=
∞∑

n=0

∫
(t1,...,tr)∈X−

r (f),

2−(n+1)≤|f(e2πit1 ,...,e2πitr )|<2−n

|f(e2πit1 , . . . , e2πitr)|σdtr · · · dt1

≤
∞∑

n=0

2−σ(n+1)µr({(t1, . . . , tr) ∈ [0, 1]r : |f(e2πit1 , . . . , e2πitr)| < 2−n})

≤ Cr(f)
∞∑

n=0

2−σ(n+1) · 2−n/dmin
r (f) < ∞.

Hence we obtain Theorem 8 (1).

Next we give transformation formulas for zeta Mahler measures. Let A ∈ Mr(Z)∩GLr(Q)

and f(X) :=
∑

n=(n1,...,nr)∈Zr c(n)Xn be Laurent polynomials, where X := (X1, . . . , Xr),

Xn := Xn1
1 · · ·Xnr

r and c(n) ∈ C such that c(n) = 0 except for at most finitely many n ∈ Zr.

Then f (A)(X) ∈ C[X±1
1 , . . . , X±1

r ] is defined by

f (A)(X) :=
∑

n=(n1,...,nr)∈Zr

c(n)XnA,

where nA is the usual product of matrices. Then zeta Mahler measures have the following

properties:

Theorem 9. (cf. [EW, Exercise 3.1.]) Let f(X1, . . . , Xr) ∈ C[X±1
1 , . . . , X±1

r ] \ {0}. Then

(1) Z(s, 1) = 1 for any s ∈ C.
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(2) Z(s, af) = |a|sZ(s, f) for any a ∈ C× and Re(s) > σ0(f).

(3) Z(s, fk) = Z(ks, f) for any k ∈ Z≥1 and Re(s) > σ0(f)/k.

(4) Z(s, f (A)) = Z(s, f) for any A ∈ Mr(Z) ∩GLr(Q) and Re(s) > max{σ0(f), σ0(f
(A))}.

Remark 2.8. A property corresponding to m(fg) = m(f) + m(g) seems absent for zeta

Mahler measures.

Proof. It is easy to show (1)-(3). We prove (4). We restrict s to Re(s) > 0 and finally we

relax this restriction by analytic continuation (see Proposition 2.1). First, we easily see that

for any A, B ∈ Mr(Z) ∩GLr(Q) we have f (AB) = (f (A))(B), in particular,

Z(s, f (AB)) = Z(s, (f (A))(B)).

We also note that any nonsingular matrices A ∈ Mr(Z) ∩ GLr(Q) can be expressed as the

product of some matrices of the following three types (i), (ii), (iii): (i) r × r lower triangle

nonsingular matrices with integer entries, (ii) r × r upper triangle nonsingular matrices

with integer entries, (iii) (δi,τ(j))1≤i,j≤r for transpositions τ = (k l) ∈ Sr, where δij is the

Kronecker’s delta. This fact follows from elementary row operations of matrices combined

with the Euclidean algorithm; see [M, p.33, Theorem 22.3]. From the above facts, it is

sufficient to show (4) for type (i)-(iii) matrices. We easily see that (4) holds when A are type

(iii) matrices. We treat type (i) matrices. Suppose that A = (aij)1≤i,j≤r ∈ Mr(Z) ∩GLr(Q)

satisfies aij = 0 for any i < j and put f(X) :=
∑

n∈Zr c(n)Xn. Then we prove Z(s, f (A)) =

Z(s, f) by induction on r. When r = 1, we have A = (a) ∈ M1(Z) with a ∈ Z \ {0}. Then

we have f (A)(X) =
∑

n∈Z c(n)Xan. If a > 0, then we have

Z(s, f (A)) =

∫ 1

0

∣∣∣∣∣
∑

n∈Z
c(n)e(nat)

∣∣∣∣∣

s

dt =
1

a

∫ a

0

∣∣∣∣∣
∑

n∈Z
c(n)e(nu)

∣∣∣∣∣

s

du

=
1

a

a−1∑

k=0

∫ k+1

k

∣∣∣∣∣
∑

n∈Z
c(n)e(nu)

∣∣∣∣∣

s

du =
1

a
a

∫ 1

0

∣∣∣∣∣
∑

n∈Z
c(n)e(nu)

∣∣∣∣∣

s

du = Z(s, f),

where e(x) := e2πix. If a < 0, changing the variable t′ = 1 − t reduces to the case a > 0.

Hence, we obtain the desired result in the case r = 1. Let r ∈ Z≥2. Then we have f (A)(X) =

12



∑
n=(n1,...,nr)∈Zr c(n)Xa11n1

1 (Xa21
1 Xa22

2 )n2 · · · (Xar1
1 · · ·Xarr

r )nr . Hence we have

Z(s, f (A)) =

∫ 1

0

· · ·
∫ 1

0

∣∣∣∣∣∣
∑

n∈Zr

c(n)e

(
r∑

j=1

nj(aj1t1 + · · ·+ ajjtj)

)∣∣∣∣∣∣

s

dtr · · · dt1.

Changing the variable tr by ur = ar1t1 + · · ·+ arrtr together with the same argument as the

case r = 1, we have

Z(s, f (A)) =

∫ 1

0

· · ·
∫ 1

0

∫ 1

0∣∣∣∣∣∣
∑

n′=(n1,...,nr−1)∈Zr−1

(∑

nr∈Z
c(n′, nr)e(nrur)

)
e

(
r−1∑
j=1

nj(aj1t1 + · · ·+ ajjtj)

)∣∣∣∣∣∣

s

durdtr−1 · · · dt1

=

∫ 1

0

Z(s, (f̃ur)
(A′))dur,

where A′ := (aij)1≤i,j≤r−1 and

f̃ur(X1, . . . , Xr−1) :=
∑

n′=(n1,...,nr−1)∈Zr−1

(∑

nr∈Z
c(n′, nr)e(nrur)

)
Xn1

1 · · ·Xnr−1

r−1 .

Applying the assumption of the induction to Z(s, (f̃ur)
(A′)), we obtain the desired result.

In the same manner, we obtain Theorem 9 (4) for (ii) type matrices A.

3 Examples of zeta Mahler measures for one variable

In this section we show Theorems 1–5, (1.5) and Theorem 7.

3.1 Zeta Mahler measures of X + a for a ∈ C
Proof of Theorem 1. When a = 0, by definition we have Z(s, f) = 1 = 1s/2F (1/2, 0; 1; 0),

that is, Theorem 1 holds. We consider the case a ∈ C \ {0}. For t ∈ [0, 1] we have

|e2πit + a|2 = (cos(2πt) + Re(a))2 + (sin(2πt) + Im(a))2

= |a|2 + 1 + 2(Re(a) cos(2πt) + Im(a) sin(2πt)).
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Here, there exists θ = θ(a) ∈ [0, 1] such that cos(2πθ) = Re(a)/|a| and sin(2πθ) = Im(a)/|a|.
Hence we have

|e2πit + a|2 = |a|2 + 1 + 2|a| cos(2π(t− θ)).

Therefore, we have

Z(s, f) =

∫ 1

0

(|a|2 + 1 + 2|a| cos(2π(t− θ)))s/2dt

= (|a|2 + 1)s/2

∫ 1

0

(
1 +

2|a|
|a|2 + 1

cos(2πt)

)s/2

dt. (3.1)

When |a| = 1, for Re(s) > −1, (3.1) becomes

Z(s, f) = 2s/2

∫ 1

0

(1 + cos(2πt))s/2dt

= 2s

∫ 1

0

| cos(πt)|sdt = 2s+1

∫ 1/2

0

(cos(πt))sdt

=
2s

π

∫ 1

0

u(s−1)/2(1− u)−1/2du =
2s

π
B

(
s + 1

2
,
1

2

)

=
2s

π

Γ( s+1
2

)Γ(1/2)

Γ( s
2

+ 1)
= 2sπ−1/2 Γ( s+1

2
)

Γ( s
2

+ 1)
.

Here, in the fourth equality we put u = cos2(πt). Hence we obtain Theorem 1 (1).

We turn to the remaining case |a| 6= 0, 1. From the binomial expansion, (3.1) is calculated

as follows:

Z(s, f) = (|a|2 + 1)s/2

∞∑
n=0

(
s/2

n

)(
2|a|

|a|2 + 1

)n ∫ 1

0

cosn(2πt)dt. (3.2)

Here, the interchange between the sum and the integral is justified from 2|a|/(|a|2 + 1) < 1.

Recall that
∫ 1

0

cosn(2πt)dt =





0 n: odd,

(n− 1)!!

n!!
n: even,

which follows from integration by parts. Here (2k)!! := 2k(2k − 2) · · · 2, (2k − 1)!! :=

(2k − 1)(2k − 3) · · · 1 and 0!! = (−1)!! := 1. Applying this to (3.2), we obtain

Z(s, f) = (|a|2 + 1)s/2

∞∑
n=0

(
s/2

2n

)
(2n− 1)!!

(2n)!!

(
2|a|

|a|2 + 1

)2n

. (3.3)
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For any n ∈ Z≥1 we have

(
s/2

2n

)
(2n− 1)!!

(2n)!!

=
s
2
( s

2
− 1) · · · ( s

2
− 2n + 1)

(2n)!

(2n− 1)!!

(2n)!!

=
(−1)2n(− s

2
)(− s

2
+ 1) · · · (− s

2
+ 2n− 1)

((2n)!!)2

=
{(− s

2
)(− s

2
+ 2) · · · (− s

2
+ 2n− 2)}{(− s

2
+ 1)(− s

2
+ 3) · · · (− s

2
+ 2n− 1)}

22n(1)nn!

=
(2n(− s

4
)n)(2n(− s

4
+ 1

2
)n)

22n(1)nn!
=

(− s
4
)n(− s

4
+ 1

2
)n

(1)nn!
.

Applying this to (3.3), we obtain Theorem 1 (2).

Proof of Theorem 2. According to [Le, p.251, (9.6.5)], we have

F

(
α, α +

1

2
; γ; z

)
=

(
1 +

√
1− z

2

)−2α

F

(
2α, 2α− γ + 1; γ;

1−√1− z

1 +
√

1− z

)

(| arg(1− z)| < π).

Put α = −s/4, γ = 1 and z = ( 2|a|
|a|2+1

)2 and use
√

1− z = ||a|2 − 1|/(|a|2 + 1).

Proof of Theorem 3. Applying

F (α, β; γ; z) = (1− z)γ−α−βF (γ − α, γ − β; γ; z) (| arg(1− z)| < π) (3.4)

[Le, p.248, (9.5.3)] with α = β = −s/2, γ = 1 and z = min{|a|2, |a|−2} to Theorem 2.

3.2 Zeta Mahler measures of X + X−1 + k for k ∈ R
Proof of Theorem 4. Let k ∈ R and put f(X) = X + X−1 + k. Then we have

Z(s, f) =

∫ 1

0

|2 cos(2πt) + k|sdt.

From this, we easily see Z(s,X + X−1 + k) = Z(s,X + X−1 − k). Hence, it is sufficient to

prove Theorem 4 for k ≥ 0. We continue to calculate Z(s, f) as follows:

Z(s, f) =

∫ 1

0

|2(2 cos2(πt)− 1) + k|sdt = 2

∫ 1/2

0

|4 cos2(πt) + k − 2|sdt.
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We replace the variable t by u = cos2(πt). Then, since dt = −du/(2πu1/2(1−u)1/2), we have

Z(s, f) =
1

π

∫ 1

0

u−1/2(1− u)−1/2|4u + k − 2|sdu. (3.5)

First we treat the case k > 2. Since in this case 4u + k − 2 > 0 holds for any u ∈ [0, 1],

we have

Z(s, f) =
(k − 2)s

π

∫ 1

0

u−1/2(1− u)−1/2

(
1 +

4

k − 2
u

)s

du. (3.6)

Applying

F (α, β; γ; z) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

tβ−1(1− t)γ−β−1(1− tz)−αdt (3.7)

(Re(γ) > Re(β) > 0, | arg(1− z)| < π)

[Le, p.240, (9.1.6)] with α = −s, β = 1/2, γ = 1, z = −4/(k − 2) to (3.6), we get

Z(s, f) = (k − 2)sF

(
−s,

1

2
; 1;− 4

k − 2

)
.

The formula [Le, p.253, (9.6.12)]

F (α, β; 2β; z) =

(
1 +

√
1− z

2

)−2α

F

(
α, α− β +

1

2
; β +

1

2
;

(
1−√1− z

1 +
√

1− z

)2
)

(| arg(1− z)| < π, 2β 6= −1,−3,−5, . . .)

with α = −s, β = 1/2, z = −4/(k − 2) leads to Theorem 4 (1).

Next we deal with the case k = 2. Since Z(s, f) = Z(s,X2 +2X +1) = Z(2s,X +1), we

immediately obtain Theorem 4 (2) from Theorem 1 (1). Finally we treat the case 0 ≤ k < 2.

From (3.5) we have

Z(s, f) =
1

π

∫ 2−k
4

0

u−1/2(1− u)−1/2(2− k − 4u)sdu

+
1

π

∫ 1

2−k
4

u−1/2(1− u)−1/2(4u + k − 2)sdu (3.8)

We calculate the first integral. Replacing u by 2−k
4

u, we have

∫ 2−k
4

0

u−1/2(1− u)−1/2(2− k − 4u)sdu
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=
(2− k)s+ 1

2

2

∫ 1

0

u−1/2(1− u)s

(
1− 2− k

4
u

)−1/2

du

=
π1/2(2− k)s+ 1

2

2

Γ(s + 1)

Γ(s + 3
2
)
F

(
1

2
,
1

2
; s +

3

2
;
2− k

4

)
. (3.9)

Here, in the last equality we used (3.7). Next we calculate the second integral in (3.8).

Replacing u by 1− k+2
4

u, we have

∫ 1

2−k
4

u−1/2(1− u)−1/2(4u + k − 2)sdu

=
(2 + k)s+ 1

2

2

∫ 1

0

u−1/2(1− u)s

(
1− 2 + k

4
u

)−1/2

du

=
π1/2(2 + k)s+ 1

2

2

Γ(s + 1)

Γ(s + 3
2
)
F

(
1

2
,
1

2
; s +

3

2
;
2 + k

4

)
. (3.10)

Here, we used (3.7) in the last equality. Applying (3.9) and (3.10) to (3.8), we obtain

Theorem 4 (3).

Proof of Theorem 5. Suppose that k ∈ R satisfies |k| > 2. Then, applying (3.4) with α =

β = −s, γ = 1, z = {(|k| − √k2 − 4)/2}2 to Theorem 4, we obtain the desired result.

Proof of (1.5). Let f(X) = X+X−1+k with−2 < k < 2. Then, from (1.3) and |−k±√k2−4
2

| =
1 we have

Z ′(0, f) = m(f) = 0. (3.11)

We calculate the derivative of Theorem 4 (3) at s = 0. For this purpose, for 0 < x < 1 we

evaluate Γ(s + 3
2
)−1F (1

2
, 1

2
; s + 3

2
; x) and its derivative at s = 0. We easily see that

Γ

(
s +

3

2

)−1

F

(
1

2
,
1

2
; s +

3

2
; x

)∣∣∣∣∣
s=0

=
2

π1/2
F

(
1

2
,
1

2
;
3

2
; x

)

=
2

(πx)1/2
arcsin(x1/2). (3.12)

Here, in the last equality we used the formula arcsin(z) = zF (1
2
, 1

2
; 3

2
; z2) (see [Le, p.259,

(9.8.5)]). From (1.4) we have

∂

∂s

(
Γ

(
s +

3

2

)−1

F

(
1

2
,
1

2
; s +

3

2
; x

))
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=
∂

∂s

( ∞∑
n=0

(1
2
)2
n

n!Γ(s + 3
2

+ n)
xn

)

= −
∞∑

n=0

1

Γ(s + 3
2

+ n)

Γ′

Γ

(
s +

3

2
+ n

)
(1

2
)2
n

n!
xn.

Using the formulas Γ(n + 3
2
) = (1

2
)n+1π

1/2 and Γ′
Γ

(n + 3
2
) =

∑n
m=0

1
m+ 1

2

− γ − 2 log 2 (for the

latter formula see [Le, p.6, (1.3.9)]), where γ is the Euler constant, we have

∂

∂s

(
Γ

(
s +

3

2

)−1

F

(
1

2
,
1

2
; s +

3

2
; x

))∣∣∣∣∣
s=0

= − 1

π1/2

∞∑
n=0

(1
2
)n

n!(n + 1
2
)
xn

(
n∑

m=0

1

m + 1
2

− γ − 2 log 2

)

=
2(γ + 2 log 2)

π1/2
F

(
1

2
,
1

2
;
3

2
; x

)
− 1

π1/2

∑
0≤m≤n

(1
2
)n

n!(n + 1
2
)(m + 1

2
)
xn

=
2(γ + 2 log 2)

(πx)1/2
arcsin(x1/2)− 1

π1/2

∑
0≤m≤n

(1
2
)n

n!(n + 1
2
)(m + 1

2
)
xn. (3.13)

Hence, applying (3.12), (3.13) and Z(0, f) = 1 to Theorem 4 (3), together with routine

calculations, we have

Z ′(0, f) = 2 log 2 +
2

π

(
arcsin

(√
2 + k

2

)
log(2 + k) + arcsin

(√
2− k

2

)
log(2− k)

)

− 1

2π

(
(2 + k)1/2

∑
0≤m≤n

(1
2
)n

n!(n + 1
2
)(m + 1

2
)

(
2 + k

4

)n

+ (2− k)1/2
∑

0≤m≤n

(1
2
)n

n!(n + 1
2
)(m + 1

2
)

(
2− k

4

)n
)

.

This together with (3.11) completes the proof.

3.3 Higher Mahler measures —Proof of Theorem 7

Proof of Theorem 7. According to [OZ, p.485, eighth formula] with suitable specializations

(taking α = β and x = 0 in [OZ]), for |t| < 1 we have

F (α, α; 1; t) = 1 + α2
∑
n,s≥0
n≥s

2n−s




∑

(ε1,...,εn)∈{1,2}n

#{i:εi=2}=s

L(ε1,...,εn,2)(t)


 αn+s. (3.14)
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From this and Theorem 2, we reach the desired result.

Remark 3.1. In the same manner we can evaluate mj(X + a) for a ∈ C satisfying |a| > 1

and mj(X + X−1 + k) for k ∈ R, |k| > 2 in terms of multiple polylogarithms.

4 Examples of zeta Mahler measures for multivariable

f

In this section we treat zeta Mahler measures for

fr(X1, . . . , Xr) := (X1 + X−1
1 ) + · · ·+ (Xr + X−1

r ) + k

with k ∈ C.

Proposition 4.1. For k ∈ C and Re(s) > −1 we have

Z(s, fr) =
22s

πr

∫ r

0

∣∣∣∣t +
k − 2r

4

∣∣∣∣
s

g∗r(t)dt,

where

g(t) :=





1

t1/2(1− t)1/2
if 0 < t < 1,

0 otherwise,

the symbol ∗ is the usual convolution given by

(F ∗G)(t) :=

∫

R
F (u)G(t− u)du

and g∗r(t) is inductively defined by g∗1(t) := g(t), g∗r(t) := (g ∗ g∗(r−1))(t) for r ∈ Z≥2.

For the proof we need the following lemma:

Lemma 4.2. For m ∈ Z≥1 and t ∈ R we have

∫
· · ·

∫
(u1,...,um)∈[0,1]m,
t−1≤u1+···+um≤t

1

u
1/2
1 · · · u1/2

m (t− u1 − · · · − um)1/2

× dum · · · du1

(1− u1)1/2 · · · (1− um)1/2(1− t + u1 + · · ·+ um)1/2

= g∗(m+1)(t).
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Proof. We prove this lemma by induction on m. We first consider the case m = 1. Then the

left hand side equals
∫

u∈[0,1]
t−1≤u≤t

du

u1/2(1− u)1/2(t− u)1/2(1− t + u)1/2

=





∫ t

0

du

u1/2(1− u)1/2(t− u)1/2(1− t + u)1/2
if 0 < t ≤ 1,

∫ 1

t−1

du

u1/2(1− u)1/2(t− u)1/2(1− t + u)1/2
if 1 < t < 2,

0 otherwise.

On the other hand, since supp(g) = [0, 1], the right hand side equals

g∗2(t) =

∫

R
g(u)g(t− u)du

=





∫ t

0

g(u)g(t− u)du if 0 < t ≤ 1,
∫ 1

t−1

g(u)g(t− u)du if 1 < t < 2,

0 otherwise.

From these equalities we obtain Lemma 4.2 in the case m = 1.

Let m ≥ 2 and assume that the lemma holds for m − 1. Then, from the assumption of

the induction, the left hand side equals

∫ 1

0

1

u
1/2
1 (1− u1)1/2

(∫
· · ·

∫
(u2,...,um)∈[0,1]m−1

(t−u1)−1≤u2+···+um≤t−u1

1

u
1/2
2 · · · u1/2

m ((t− u1)− u2 − · · · − um)1/2

× dum · · · du2

(1− u2)1/2 · · · (1− um)1/2(1− (t− u1) + u2 + · · ·+ um)1/2

)
du1

=

∫ 1

0

g(u1)g
∗m(t− u1)du1 = g∗(m+1)(t).

Here, in the last equality we used supp(g) = [0, 1]. We obtain the desired result.

Proof of Proposition 4.1. We have

Z(s, fr) =

∫ 1

0

· · ·
∫ 1

0

|2 cos(2πt1) + · · ·+ 2 cos(2πtr) + k|sdtr · · · dt1

=

∫ 1

0

· · ·
∫ 1

0

|4 cos2(πt1) + · · ·+ 4 cos2(πtr) + k − 2r|sdtr · · · dt1
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= 22s2r

∫ 1/2

0

· · ·
∫ 1/2

0

∣∣∣∣cos2(πt1) + · · ·+ cos2(πtr) +
k − 2r

4

∣∣∣∣
s

dtr · · · dt1.

Here, we used the duplication formula for the cosine function in the second equality and

cos(π − t) = − cos(πt) in the third equality. Changing the variables uj = cos2(πtj), we get

Z(s, fr) =
22s

πr

∫ 1

0

· · ·
∫ 1

0

|u1 + · · ·+ ur + k−2r
4
|s

u
1/2
1 · · · u1/2

r (1− u1)1/2 · · · (1− ur)1/2
dur · · · du1.

When r = 1, this gives the desired result. We concentrate on the case r ≥ 2 below. Changing

ur by t := u1 + · · ·+ ur, we obtain

Z(s, fr) =
22s

πr

∫ 1

0

· · ·
∫ 1

0

∫ u1+···+ur−1+1

u1+···+ur−1

|t + k−2r
4
|s

u
1/2
1 · · · u1/2

r−1(t− u1 − · · · − ur−1)1/2

× dtdur−1 · · · du1

(1− u1)1/2 · · · (1− ur−1)1/2(1− t + u1 + · · ·+ ur−1)1/2

=
22s

πr

∫ r

0

∣∣∣∣t +
k − 2r

4

∣∣∣∣
s
(∫

· · ·
∫

(u1,...,ur−1)∈[0,1]r−1,
t−1≤u1+···+ur−1≤t

1

u
1/2
1 · · · u1/2

r−1(t− u1 − · · · − ur−1)1/2

× dur−1 · · · du1

(1− u1)1/2 · · · (1− ur−1)1/2(1− t + u1 + · · ·+ ur−1)1/2

)
dt.

Applying Lemma 4.2 with m = r − 1 completes the proof.

Below we show Theorem 6.

Lemma 4.3. For t ∈ R we have

g∗2(t) =





πF
(

1
2
, 1

2
; 1; t(2− t)

)
if 0 < t < 1 or 1 < t < 2,

0 if t ≤ 0 or t ≥ 2.

Proof. We have

g∗2(t) =

∫
0<u<1,

t−1<u<t

du

u1/2(1− u)1/2(t− u)1/2(1− t + u)1/2
.

When t ≤ 0 or t ≥ 2, this equals 0 because (0, 1) ∩ (t − 1, t) = ∅. We consider the case

0 < t < 1. Since (0, 1) ∩ (t− 1, t) = (0, t), we have

g∗2(t) =

∫ t

0

du

u1/2(1− u)1/2(t− u)1/2(1− t + u)1/2
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=

∫ 1

0

du

u1/2(1− u)1/2(1− tu)1/2(1− t(1− u))1/2
.

Here, in the second equality we replaced u by tu. Expanding (1−tu)−1/2 and (1−t(1−u))−1/2,

we have

g∗2(t) =
∞∑

m=0

∞∑
n=0

(1
2
)m

m!

(1
2
)n

n!
tm+n

∫ 1

0

um− 1
2 (1− u)n− 1

2 du

= π

∞∑
m=0

∞∑
n=0

(1
2
)2
m(1

2
)2
n

(m + n)!m!n!
tm+n

= πF3

(
1

2
,
1

2
,
1

2
,
1

2
; 1; t, t

)
,

where F3 is the Apell series of the third kind given by

F3(α, α′, β, β′; γ; x, y) :=
∞∑

m=0

∞∑
n=0

(α)m(α′)n(β)m(β′)n

(γ)m+n

xmyn

m!n!
(|x| < 1, |y| < 1).

Applying the formula [GR, p.1009, 9.182.4]

F3(α, γ − α, β, γ − β; γ; x, y) = (1− y)α+β−γF (α, β; γ; x + y − xy)

with α = β = 1/2, γ = 1, x = y = t, we obtain Lemma 4.3 in the case 0 < t < 1. Finally

we deal with the case 1 < t < 2. Since g(u) = g(1 − u) for any u ∈ R, we easily obtain

g∗2(2 − u) = g∗2(u). This together with Lemma 4.3 for 0 < t < 1 implies the desired

result.

Proof of Theorem 6. It is sufficient to prove Theorem 6 for k > 4 since Z(s,X + X−1 + Y +

Y −1 + k) = Z(s,X + X−1 + Y + Y −1 − k). Let f(X, Y ) := X + X−1 + Y + Y −1 + k with

k > 4. From Proposition 4.1 and Lemma 4.3 we have

Z(s, f) =
22s

π

∫ 2

0

∣∣∣∣t +
k − 4

4

∣∣∣∣
s

F

(
1

2
,
1

2
; 1; t(2− t)

)
dt

=
22s

π

∞∑
n=0

(1
2
)2
n

(n!)2

∫ 2

0

tn(2− t)n

(
t +

k − 4

4

)s

dt. (4.1)

We calculate the integral in (4.1). Replacing t by 2t and applying (3.7) with α = −s,

β = n + 1, γ = 2n + 2, z = −8/(k − 4), we have
∫ 2

0

tn(2− t)n

(
t +

k − 4

4

)s

dt
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= 22n+1

(
k − 4

4

)s ∫ 1

0

tn(1− t)n

(
1 +

8

k − 4
t

)s

dt

= 22n+1

(
k − 4

4

)s
(n!)2

(2n + 1)!
F

(
−s, n + 1; 2n + 2,− 8

k − 4

)
.

Applying

F (α, β; 2β; z) =
(
1− z

2

)−α

F

(
α

2
,
α + 1

2
; β +

1

2
;

(
z

2− z

)2
)

(| arg(1− z)| < π, 2β 6= −1,−3,−5, . . .)

[Le, p.255,(9.6.17)] with α = −s, β = n + 1, z = −8/(k − 4), we have

∫ 2

0

tn(2− t)n

(
t +

k − 4

4

)s

dt

= 22n+1

(
k − 4

4

)s
(n!)2

(2n + 1)!

(
k

k − 4

)s

F

(
−s

2
,
−s + 1

2
; n +

3

2
;

(
4

k

)2
)

=

(
k

4

)s

22n+1 (n!)2

(2n + 1)!
F

(
−s

2
,
−s + 1

2
; n +

3

2
;

(
4

k

)2
)

.

Applying this to (4.1), we get

Z(s, f) =
2ks

π

∞∑
n=0

(1
2
)n

n!(2n + 1)
F

(
−s

2
,
−s + 1

2
; n +

3

2
;

(
4

k

)2
)

=
2ks

π

∞∑
n=0

∞∑
m=0

(1
2
)n

n!(2n + 1)

(− s
2
)m(−s+1

2
)m

(n + 3
2
)mm!

(
4

k

)2m

=
ks

π

∞∑
m=0

(− s
2
)m(−s+1

2
)m

m!

(
4

k

)2m ∞∑
n=0

(1
2
)n

n!(n + 1
2
)m+1

.

Here, in the last equality we used (n + 3
2
)m(n + 1

2
) = (n + 1

2
)m+1 and interchanged the sums.

Hence, to show Theorem 6, it is sufficient to prove

∞∑
n=0

(1
2
)n

n!(n + 1
2
)m+1

= π
(1

2
)m

(m!)2
(4.2)

for any m ∈ Z≥0. First we remark that the sum in (4.2) converges for any m ∈ Z≥0 since

(1
2
)n/n! ∼ 1/(πn)1/2 as n →∞ from Stirling’s formula. To prove (4.2), we consider

Im :=

∫ 1

0

∫ um

0

· · ·
∫ u1

0

1

u
1/2
0 (1− u0)1/2

du0 · · · dum−1dum. (4.3)
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Expanding (1− u0)
−1/2, we have

Im =

∫ 1

0

∫ um

0

· · ·
∫ u1

0

∞∑
n=0

(1
2
)n

n!
u
− 1

2
+n

0 du0 · · · dum−1dum

=
∞∑

n=0

(1
2
)n

n!

∫ 1

0

∫ um

0

· · ·
∫ u1

0

u
− 1

2
+n

0 du0 · · · dum−1dum

=
∞∑

n=0

(1
2
)n

n!

1

(n + 1
2
)m+1

. (4.4)

On the other hand, applying Fubini’s theorem to (4.3), we have

Im =

∫ 1

0

1

u
1/2
0 (1− u0)1/2

(∫
· · ·

∫
(u1,...,um)∈[0,1]m

u0≤u1≤u2≤···≤um≤1

du1 · · · dum

)
du0

=

∫ 1

0

1

u
1/2
0 (1− u0)1/2

(
1

#Sm

∫
· · ·

∫

(u1,...,um)∈[u0,1]m
du1 · · · dum

)
du0

=
1

m!

∫ 1

0

u
−1/2
0 (1− u0)

m− 1
2 du0

=
1

m!
B

(
1

2
,m +

1

2

)
=

1

m!

Γ
(

1
2

)
Γ

(
m + 1

2

)

Γ(m + 1)
= π

(1
2
)m

(m!)2
. (4.5)

Comparing (4.4) and (4.5), we obtain (4.2). This completes the proof of Theorem 6.
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