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Abstract

We deal with Pavlov-like strategy as well as Tit for Tat-like strategy in
Demographic Donor-Recipient (DR) game. We study the role of Pavlov-
like strategy on the emergence of cooperation by Agent-Based Simulation.

We extend Tit for Tat (TFT) and Pavlov (Pav) up to three states from
two and call them TFT-like and Pavlov-like strategy, respectively. Unlike
TFT-like, Pav-like has the following feature: Pav-like changes to using
C from using D or remains in using D if he is using D and experiences
opponents’ D’s or C’s, respectively. Thus we expect that some Pavlov-like
strategies in the population may soften the tendency toward defection of
the whole population and also the tendency toward full cooperation of the
whole population. Although sole Pavlov-like strategy is not so effective to
promote the cooperation, we found case where the cooperation emerges
more frequently with both TFT-like and Pavlov-like strategy than with
sole TFT-like (or Pav-like) strategy.

Keywords: Pavlov, Donor-Recipient game, emergence of cooperation,
generalized reciprocity, Agent-Based Simulation

1 Introduction

This paper investigates the role of Pavlov-like strategy on the emergence of
cooperation in Demographic DR game.

Epstein[1] introduces demographic model. He shows the emergence of co-
operation where AllC and AllD are initially randomly distributed in a square
lattice of cells. Here AllC always Cooperates and AllD always Defects. In each
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and Jirina Vejnarova, eds. Proceedings of the 16th Czech-Japan Seminar on Data Analysis
and Decision Making under Uncertainty (held in September 19-22, 2013 Marianske Lazne,
Czech Republic). Faculty of Management University of Economics, Jindrichuv Hradec, Czech
Republic, 2013.
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period, players move locally and play Prisoner’s Dilemma (PD) game against
local player(s). If wealth (accumulated payoff) of a player becomes negative or
his age becomes greater than his lifetime, he dies. If his wealth becomes greater
than some amount and there is an unoccupied local cell, he has an offspring and
gives the offspring some amount from his wealth.

Namekata and Namekata[2] extend Epstein’s original model discussed above
by introducing global move, global play, Reluctant players, who delay replying
to changes and use extended forms of TFT, into demographic PD game and
consider the effect of Reluctant players on the emergence of cooperation, and
show cases where the reluctance promotes the emergence of cooperation. Here
TFT Cooperates at first game and at later games uses the same move as the
opponent did in the previous game. Namekata and Namekata[3] examine the
effect of move-play pattern on the emergence of cooperation and the distribution
of strategies. They restrict patters of move and play of a player to simple
structure; local or global, where local or global means that with high probability
the player moves (plays) locally or globally, respectively. For example, a player
with global move and local play (abbreviated as gl) moves globally with high
probability and plays DR games against (possibly different) local opponents
with high probability at each period. They show that cooperative strategies
evolutionarily tend to move and play locally, defective strategies do not, and
AllC and AllD are abundant unless all strategies initially play locally.

Nowak and Sigmund[4] consider the emergence of cooperation in infinitely
repeated PD game. Population consists of strategies that depend on one’s own
move as well as the opponent’s at the last game, i.e., (pCC, pCD, pDC, pDD) where
pXY is the probability with which C is used at this game given that the outcome
of the last game is XY . They do not use Demographic model. Players play
infinitely repeated PD game at each period instead of one-shot PD game against
randomly selected opponent. The frequency of each strategy in population at
the next period is proportional to its payoff at this period. They show that not
TFT but Pavlov (0.999, 0.001, 0.007, 0.946) is most abundant strategy in the
population in the long run. They argue that Pavlov’s success is based on the
following two advantageous features compared with TFT in infinitely repeated
PD game: (1) Pavlovs can correct inadvertent defection and return to mutual
cooperation. (2) Pavlov can exploit AllC.

We deal with Pavlov-like strategy as well as Tit for Tat-like strategy in
finitely repeated Demographic Donor-Recipient (DR) game. Pavlov (Pav) is
known to be one of the basic strategies in dilemma situations as well as Tit
for Tat (TFT). TFT and Pav have two inner states whose label C(ooperate) or
D(efect) indicates their current move. The state in the next game is determined
based on the current opponent’s move, differently between TFT and Pav. The
next state of TFT is the immediate neighbor of the current state toward C
or D (if possible) in case of the current opponent’s C or D, respectively. On
the other hand, that of Pav remains the same if the current opponent uses C
or is changed from C to D (or from D to C) if the current opponent uses D,
respectively. Alternatively Pav is described as follows: Win Stay, Lose Shift,
that is, Pav remains in the same move if he feels comfortable, whereas Pav
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changes his move if he feels uncomfortable, because we configure the payoff
matrix so that the payoff is positive if the opponent uses C or negative if the
opponent uses D.

In this paper, we extend TFT and Pav up to three states and call them TFT-
like and Pavlov-like strategy, respectively. Pavlov-like changes to using C from
using D or remains in using D if he is using D and experiences opponents’ D’s or
C’s, respectively. Thus we expect that some Pavlov-like strategies in the pop-
ulation may soften the tendency toward defection of the whole population and
also the tendency toward full cooperation of the whole population. We examine
initial distribution of strategies that promote the emergence of cooperation and
study the role of Pav-like strategy on the emergence of cooperation.

2 Model

We start with extending TFT and Pav as follows in order to introduce TFT-like
and Pavlov-like (Pav-like) strategy. The idea is to introduce reluctance to im-
mediate reply to its opponent’s change: Let m = 0, . . . , n; t = 0, . . . ,m + 1; s =
0, . . . ,m. Strategy (m, t; s)X is illustrated in Figure 1 where X is T for TFT-
like or P for Pav-like. It has m+ 1 inner states. The inner states are numbered
0, . . . ,m; thus m is the largest state number. State i is labeled Di if i < t
or Ci if not. If current state is labeled C or D, then the strategy prescribes
using C or D, respectively. In other words, the strategy prescribes using D if
the current state i < t and using C if not; thus the value t is the threshold
which determines the move of a player. Initial state in period 0 is state s; its
label is Ds if s < t or Cs if not. If current state is i, then the next state of
TFT-like is min{i + 1,m} or max{i − 1, 0} given that the opponent uses C or
D, respectively, in this game. If current state is i and i ≥ t, then the next
state of Pav-like is min{i + 1,m} or max{i − 1, 0} given that the opponent
uses C or D, respectively, in this game. If current state is i and i < t, then
the next state of Pav-like is max{i − 1, 0} or min{i + 1,m} given that the op-
ponent uses C or D, respectively, in this game. Thus TFT-like and Pav-like
strategies act differently if their current state i < t; TFT-like strategy in De-

Figure 1: TFT-like and Pav-like strategies
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fective state (i < t) tends to use the same move as the opponents, whereas
Pav-like in Defective state (i < t) tends to use the opposite move as the oppo-
nents. If m > 1, then the strategy may delay replying to its opponent’s change.

Table 1: Payoff Matrix of DR game
(b = 4.5 and c = 1)

Recipient

Donor
C −c− x, b− x
D −x,−x

Note that TFT or Pav is expressed
as (1, 1; 1)T or (1, 1; 1)P, respectively,
in this notation. Thus strategy
(m, t; s)X is an extended form of TFT
or Pav. To sum up, our strategies
are expressed as (m, t; s)X; m is the
largest state number, t is the thresh-
old, and s is the initial state number, X denotes TFT-like or Pav-like. We omit
the initial state like (m, t; ∗)X if it is determined randomly. We also omit the
initial state like (m, t)X if we have no need to specify it.

Table 2: Initial distribution of inheriting properties
property: initial distribution

strategy: We deal with 3 populations, T(x,m), TP(x,m), and P(x,m)
for x = 0.05, 1/4 or 1/6 and m = 4 or ∞ as follows:
T(x,m):= {xAllD(m), 1−x

2 (2, 2; ∗)T, 1−x
2 (2, 1; ∗)T, xAllC(m)},

TP(x,m):= {xAllD(m), 1−x
4 (2, 2; ∗)P, 1−x

4 (2, 2; ∗)T,
1−x
4 (2, 1; ∗)P, 1−x

4 (2, 1; ∗)T, xAllC(m)},
P(x,m):={xAllD(m), 1−x

2 (2, 2; ∗)P, 1−x
2 (2, 1; ∗)P, xAllC(m)},

where AllC(m) = (2, 0)T for m = ∞, AllC(m) = (4, 1; 4)T for m = 4,
and AllD(m) = (2, 3)T for m = ∞, AllD(m) = (4, 4; 0)T for m = 4.
The notation, for example, of T(x,m), means that with probability x
strategy AllC(m) is selected, with probability 1−x

2 strategy (2, 1; ∗)T is
selected, and so on, where ∗ indicates that initial state is selected ran-
domly. Note that initially 50% of players use C on the average since both
AllC(m) and AllD(m) are included with the same probability and so are
both (m, t; ∗)X and (m,m − t + 1; ∗)X. As reference populations, we also
deal with All:={0.5AllD(∞), 0.5AllC(∞)}, All4:={0.5AllD(4), 0.5AllC(4)},
and 2 inner states versions of T(0.05, 4), TP(0.05, 4), P(0.05, 4).
(rGM, rGP ): We deal with distribution {0.25ll, 0.25lg, 0.25gl, 0.25gg}.
For example, gl means rGM is distributed in interval g and rGP in interval
l, where l := (0.05, 0.2) and g := (0.8, 0.95). {0.25ll, 0.25lg, 0.25gl, 0.25gg}
means rGM and rGP are selected randomly among ll, lg, gl, and gg.

Note that AllC is denoted by (m, 0)T and AllD by (m,m+1)T. If m is large,
(m, 1;m)T and (m,m; 0)T are very close to AllC and AllD, respectively. We
use these pseudo-AllC (m, 1;m)T and pseudo-AllD (m,m; 0)T for m = 4 later
in this paper because we want to relax unrealistic fixed move strategy.

We deal with Donor-Recipient (DR) game as a stage game. DR game is
a two-person game where one player is randomly selected as Donor and the
other as Recipient. Donor has two moves, Cooperate (C) and Defect (D). C
means Donor pays cost c in order for Recipient to receive benefit b (b > c > 0).
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Table 3: Detailed Description of (1) Move and (2) Play
(1) With probability rateOfGlobalMove (abbreviated as rGM), a player

moves to random unoccupied cell in the whole lattice. If there is no
such cell, he stays at the current cell. Or with probability 1− rGM ,
a player moves to random cell in von Neumann neighbors if it is
unoccupied. If there is no such cell, he stays at the current cell.

(2) With probability rateOfGlobalPlay (abbreviated as rGP ), the oppo-
nent against whom a player plays dilemma game is selected at random
from all players (except himself) in the whole lattice. Or with proba-
bility 1−rGP , the opponent is selected at random from von Neumann
neighbors (no interaction if none in the neighbors). This process is
repeated 8 times. (Opponents are possibly different.)

Defect means Donor does nothing. Recipient has no move. Since it is common in
demographic dilemma game that the sum of payoffs of a player, in two successive
games once as Donor and once as Recipient, to be positive if the opponent uses
C and negative if D and the worst sum of a player is equal to the best sum
in absolute value, we transform the original payoffs to new ones by subtracting
constant x. Constant x is given by x = b−c

4 . We set b = 4.5 and c = 1 in
this paper. Table 1 shows the transformed payoff matrix of DR game. We
assume that each player plays 8 games against (possibly different) players at
each period.

In period 0, N(= 100) players (agents) are randomly located in 30-by-30
lattice of cells. The left and right borders of the lattice are connected. If a player
moves outside, for example, from the right border, then he comes inside from
the left border. So are the upper and lower borders. Players use strategies of
(m, t; s)X form. Initial wealth of every player is 6. Their initial (integer valued)
age is randomly distributed between 0 and deathAge (= 50). In each period,
each player (1st) moves, and (2nd) plays DR games given by Table 1 against
other players. Positive payoff needs opponent’s C. (The detailed description
of (1st) move and (2nd) play is given in Table 3.) The payoff of the game is
added to his wealth. If the resultant wealth is greater than fissionWealth (= 10)
and there is an unoccupied cell in von Neumann neighbors, the player has an
offspring and gives the offspring 6 units from his wealth. His age is increased
by one. If the resultant wealth becomes negative or his age is greater than
deathAge (= 50), then he dies. Then next period starts.

In our simulation we use synchronous updating, that is, in each period, all
players move, then all players play, then all players have an offspring if possible.
We remark that the initial state of the offspring’s strategy is set to the current
state of the parent’s strategy. There is a small mutationRate (= 0.05) with
which inheriting properties are not inherited. Initial distributions of inheriting
properties given in Table 2 are also used when mutation occurs. We assume that
with errorRate (= 0.05) a player makes mistake when he makes his move. Thus
AllC may defect sometime. If population consists of AllC and AllD, rGM = 0,
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and rGP = 0, then our model is similar to that of Epstein[1]. His model uses
asynchronous updating while our model uses synchronous updating.

3 Simulation and Results

We use Ascape ( http://sourceforge.net/projects/ascape/ ) to simulate our
model. We execute 300 runs of simulations in each different setting. We judge
that the cooperation emerges in a run if there are more than 100 players and
the average C rate (average Cr) is greater than 0.2 at period 500, where the
average Cr at a period is the average of the player’s Cooperation rate (Cr) at
the period over all players and the player’s Cr at the period is defined as the
number of move C used by the player divided by the number of games played
as Donor at the period. (We interpret 0/0 as 0.) This average Cr is the rate at
which we see cooperative move C as an outside observer. Since negative wealth
of a player means his death in our model and he has a lifetime, it is necessary
for many players to use C in order that the population is not extinct. We fo-
cus on emergence rate of cooperation that is the rate at which the cooperation
emerges.

Table 4: Ce for pure AllC and AllD
m =∞ All T TP P

Ce(equal) .473 .630 .557 .447
Ce(x = .05) .473 .657 .717 .420

Table 5: Ce, average actual Cr
m = 4 All4 T TP P

Ce(x = .05) .513 .487 .703 .590
aaCr(4, 1)T .900 .931 .805 .804
aaCr(4, 4)T .560 .636 .214 .222
2 states case .513 .660 .490 .193

We are interested in cases
where the cooperation emerges
more frequently with both TFT-
and Pavlov-like strategy than
with sole Pavlov-like strategy and
then than with sole TFT-like
strategy. We examine how of-
ten the cooperation emerges in
Demographic DR game with sev-
eral different initial distributions
of strategies. Pure AllC and AllD,
and even with their low frequency
0.05 at period 0 prevent Pav-like
strategy from promoting cooper-
ation as shown in Table 4, e.g., .557 < .630 and .420 < .657. Table 4 shows
emergence rate of cooperation Ce’s for equal frequency at period 0 in the second
row and for low 0.05 frequency in the third row, in pure AllC and AllD popu-
lation. All column in Table 4 indicates pure AllC and AllD population defined
in Table 2, T and P columns indicate the corresponding x = 1/4 and x = 0.05
population defined in Table 2 in case of m = ∞, and TP column indicates
x = 1/6 and x = 0.05 population defined in Table 2 in case of m =∞. In place
of pure AllC and AllD, we use pseudo-AllC (4, 1; 4)T and pseudo-AllD (4, 4; 0)T
with initial low frequency 0.05 at period 0. The emergence rate of cooperation
Ce’s and other related data are summarized in Table 5. Table 5 shows that
Pav-like (.590) and TFT-like + Pav-like (.703) promote the cooperation in this
order compared with T (.487). The third and fourth rows in Table 5, aaCr’s are
the actual average Cr of pseudo-AllC (4, 1)T and pseudo-AllD (4, 4)T. aaCr of a
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strategy is defined as the average of players’ Cr over all player using the strategy
and playing at least one game as Donor. The sum of aaCr’s of pseudo-AllC and
pseudo-AllD, for example, 1.46 for All4, is much larger than 1 for All4 and T,
but is almost equal to 1 for TP and P. We conclude that introducing pseudo-
AllC and pseudo-AllD in place of pure AllC and AllD is reasonable modelling
if there exists Pav-like strategy in the population. The fifth row indicates the
emergence rates of cooperation Ce of two states case instead of three states case
in the second row. Unlike Pav-like and TFT-like + Pav-like, Pavlov (.193) and
TFT + Pavlov (.490) do not promote the cooperation compared with T (.660).
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Next we investigate the role of
Pav-like strategy. We select 35 suc-
cessful runs of T, TP and P popula-
tions, respectively, from data in Ta-
ble 5. We trace average Cr from pe-
riod 1 to period 500 at each success-
ful run. We judge average Cr at a
period is High(> 0.7) if it is greater
than 0.7, or is Low(≤ 0.2) if it is less
than or equal to 0.2, or is Middle
otherwise. We see in Figure 2 that
average Cr is almost High in T pop-
ulation, whereas it is mostly Middle
in TP population and it is almost
Middle in P population. Thus Pav-
like makes average Cr Middle. We
want to evaluate easily the change of
average Cr over periods. We assign
Low to 0 as a new vertical value dif-
ferent from the original value of av-
erage Cr, Middle to 1, and High to
2. Then we focus only on their local
maximums and minimums. A tran-
sition of local optimums is classified
into one of {−2,−1, 1, 2}. Suppose,
for example, that local maximum is
2 at some period and the nearest lo-
cal minimum is 1 at some later pe-
riod, then the transition is evaluated
as −1. We count all transitions of
these local optimums over periods in
each run. We show average of these
number of transitions over 35 runs
in Figure 3. We conclude that pop-
ulation T, TP, and P decreases the
number of transitions in this order.

Next we concentrate on the av-
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erage frequency of Pav-like strategy and the average Cr at period 500 in TP
population. Figure 4 is scatter diagram of (average frequency of Pav-like strat-
egy, average Cr) at period 500 of all successful runs in TP population. For
convenience sake, let us divide all successful runs into two cases, A and B; A for
average Cr >= 0.57, B for average Cr < 0.57. Figure 4 shows that the larger
the average frequency of Pav-like strategy the smaller the average Cr at period
500 in TP population.

Figure 5 and 6 show the average distributions of strategies at period 500 for
case A and B, respectively. We see that average frequency of Pav-like strategies,
(2, 2)P and (2, 1)P, is not so large, around 0.15 even in case B.
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4 Conclusion

We examine the role of Pav-like strategy on the emergence of cooperation in
Demographic DR game by Agent-Based Simulation. We show that some Pav-
like strategies promote cooperation and soften the tendency toward defection
and toward full cooperation in whole population if there initially are low frequent
pseudo-AllC and pseudo-AllD in stead of equal pure AllC and AllD.
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