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ASYMPTOTIC CUMULANTS OF FUNCTIONS OF MULTINOMIAL
SAMPLE PROPORTIONS WITH ADJUSTMENT FOR EMPTY CELLS

Haruhiko Ogasawara∗

Asymptotic cumulants of functions of multinomial sample proportions with and
without studentization up to the fourth order are derived, where observed propor-
tions are possibly added by some quantities. Some of the asymptotic cumulants of
non-studentized estimators are invariant with respect to the added quantities used. On
the other hand, most of the asymptotic cumulants for studentized estimators are the
same as those for the estimators without the added quantities when the estimator of the
asymptotic variance of the non-studentized estimator is appropriately constructed to
avoid the problem of sampling zeroes or empty cells. Especially, when the quantities of
order O(1/n) are used, all the asymptotic cumulants of the studentized estimators up to
the fourth order are the same as those for the estimators without the added quantities.
A numerical example using the log odds-ratio and Yule’s coefficients is illustrated.

1. Introduction

Among various statistical applications of the multinomial distribution, one of the
simplest problems is the inference of a binomial proportion π. The standard Wald
confidence interval (CI) for the binomial proportion based on the studentized sample
proportion is easily constructed and widespread in introductory textbooks of statistics.
For instance, the endpoints of the two-sided Wald CI with the asymptotic confidence
level 0.95 based on the normal approximation are p±1.96{p(1−p)/n}1/2, where p is
the sample proportion with E(p)=π, and n is the sample size. On the other hand,
it is known that the CI has poor properties with comparison to e.g, the score test
given by Wilson (1927) (see Ghosh, 1979; Agresti & Coull, 1998; Agresti & Caffo,
2000; Brown, Cai & DasGupta, 2001, 2002; Cai, 2005). While the so-called exact test
by Clopper and Pearson (1934) is available, it is only “exact” in the sense that the
corresponding CI has at least the nominal coverage with poor average length of the
CI (see Agresti & Coull, 1998).

For the problems of estimating general functions of multinomial proportions, the
corresponding exact test may be constructed at least in principle. However, we ex-
pect the similar poor behavior not to say the excessive computation possibly required
especially when the number of multinomial categories is large. In these general cases,
one of the natural methods of estimation more accurate than the usual normal ap-
proximation may be to use the asymptotic expansions of the studentized estimator
i.e., the Wald statistic.

Note that the normal approximation uses only the estimator n−1p(1−p) of the
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variance n−1π(1−π) of p. On the other hand, the asymptotic expansions for the dis-
tributions of p, its functions, and their studentized versions (the Wald statistics) e.g.,
n1/2(p−π)/{p(1−p)}1/2 use the asymptotic cumulants as well as the asymptotic vari-
ances. When the asymptotic bias and skewness are used in addition to the asymptotic
variance, a typical approximation to the distributions is the single-term Edgeworth
expansion. Further, the two-term Edgeworth expansion using the asymptotic kurtosis
and the higher-order asymptotic variance is also used. For the review of the asymp-
totic expansions for the estimators associated with the multinomial distribution, see
Subsection A.1 of the appendix.

While the probabilities in the binomial and multinomial distributions are of direct
interest in many cases, their ratios frequently with logarithmic transformation have
been used in various fields. However, the log odds or logit is undefined when a popu-
lation/sample proportion is zero, which yields the non-existence of finite moments of
e.g., ln{p/(1−p)}. On the other hand, their asymptotic moments are well defined.

The above problem in samples corresponds to the case of an empty cell in the
binomial distribution. Instead of using the unbiased sample proportion p, Haldane
(1956) and Anscombe (1956) independently proposed that 0.5 is added to each cell
frequency, which gives the modified estimator ln{(p+0.5n−1)/(1−p+0.5n−1)}. The
constant 0.5 is employed to remove the asymptotic bias of the sample logit. Hitchcock
(1962) proposed 0.25 for the added constant in the case of logistic regression. Recently,
Bonett and Price (2007) proposed the constant 0.1 in order to give more accurate in-
terval estimation of a function of the multinomial proportions with 4 categories in the
2×2 table based on simulations.

The similar problem also occurs for the variance estimators of sample proportions.
For instance, the usual Wald statistic n1/2(p−π)/{p(1−p)}1/2 is undefined in the case
of an empty cell. Similarly, the variance estimator {np(1−p)}−1 of the sample logit is
undefined in the case of an empty cell as well as the estimator ln{p/(1−p)}. However,
the reciprocal of the variance estimator is always defined giving a well defined Wald
statistic {np(1−p)}1/2[ln{(p+cn−1)/(1−p+cn−1)}− ln{π/(1−π)}] with c=O(1)>

0. Haldane (1956) proposed (np+1)−1 +{n(1−p)+1}−1 instead of {np(1−p)}−1,
which gives relatively unbiased variance estimator when c=0.5 is used. For various
variance estimators in the case of the binomial distribution, see Gart and Zweifel
(1967).

In this paper, the two-term local Edgeworth expansions up to O(n−1) for the stu-
dentized estimators of functions of multinomial proportions are given as well as those
for the non-studentized estimators, where the sample proportions are possibly added
some quantities of orders O(n−1/2), O(n−1) or O(n−3/2). Note that the case of O(n−1)
is frequently used in practice as explained above. This paper is organized as follows.
In Section 2, the vector of sample and population proportions with added constants
of different orders with respect to n are defined. The Bayes estimators of multinomial
proportions using the Dirichlet prior are addressed. Section 3 gives the asymptotic
cumulants for a non-studentized function of sample proportions up to the fourth or-
der with the higher-order asymptotic variance. These results can be used to see the
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asymptotic properties of the point estimators. In Section 4, the similar results of
the corresponding studentized estimators are derived, which are required for interval
estimation asymptotically more accurate than that given by the usual normal approx-
imation. In Section 5, an example will be given using the log odds-ratio, Yule’s (1900,
1912) coefficients, and their variations. Section 6 gives some remarks associated with
the numerical example.

2. Estimators using added constants

As mentioned in Section 1, the difficulties associated with sampling zeroes or empty
cells guide us to define estimators of functions of multinomial proportions such that
the sample proportions are added by some quantities possibly different from cell to
cell with different orders in terms of n. Let

p=(p1, . . . ,pr)′ and π =(π1, . . . ,πr)′ (2.1)

be the vectors of sample and population proportions for a multinomial distribution,
respectively, where E(p)=π and r is the number of the multinomial categories. Let

pn =p+n−1/2b+n−1c+n−3/2d and πn =π+n−1/2b+n−1c+n−3/2d, (2.2)

where b, c and d are r×1 known constant vectors of order O(1). Then, pn is the vec-
tor of modified sample proportions with πn being its population counterpart. When
the adjustment to obtain the unit sum of the modified proportions, yielding say p∗

n, is
employed, p∗

n−p becomes stochastic rather than fixed. However, in this paper, (2.2)
is adopted, which can be used in the cases of the odds and its functions irrespective
of the adjustment.

Note that pn and πn with the constant terms of different orders are introduced
for generality and comparison. In practice, mostly the constant term n−1c seems
to have been used. For instance, the case of Haldane (1956) and Anscombe (1956)
mentioned earlier gives pn =p+n−1c and πn =π+n−1c with c=(0.5,0.5)′. Agresti
(2007, p.154) stated that “adding a very small constant (such as 10−8) is adequate for
ensuring convergence” when we have the problem of non-convergence due to infinite
estimates in computation (for a similar treatment, see also Clogg & Eliason, 1987,
p.13). This can be seen as adding n−3/2d or a higher-order constant term rather than
n−1c. Although the introduction of the term n−1/2b is primarily for comparison, some
of the simulated results using n−1/2b in Section 5 are reasonable.

When some prior information is available for the multinomial proportions, the
Bayesian method of inference is also used. It is known that a conjugate prior of
the multinomial distribution is the Dirichlet distribution with the density propor-
tional to

∏r
i=1πβi−1

i , where βi >0 (i=1, . . . ,r) are the concentration parameters (for
the distribution, see e.g., Agresti, 2002, Section 15.2.2; Press, 2005, Section 6.3). Af-
ter n counts are observed, the prior parameters are updated as the posterior ones
βi +npi (i=1, . . . ,r). The βi’s used by the Bayesian method can be seen as pseudo-
counts added to observed npi’s. When no information is available, the non-informative
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uniform prior with βi =1 (i=1, . . . ,r) is used, which gives the updated parameters or
counts 1+npi (i=1, . . . ,r). The non-informative Jeffreys prior with the square root
of the determinant of the Fisher information matrix giving βi =0.5 (i=1, . . . ,r) for
the proportions is also often used, and shows good results in many cases (Gart, 1966;
Brown et al., 2001). It is known that if we use the maximum a posterior (MAP)
estimator or Bayes modal estimator with the Jeffreys prior for a parameter in a
distribution of the exponential family with canonical form, the asymptotic bias of
the MAP estimator becomes zero (Firth, 1993; recall the case of Haldane, 1956 and
Anscombe, 1956).

When we use the expected a posteriori (EAP) estimator (βi +npi)/(
∑r

i=1βi +n)
for the probability of the i-th category, a formal correspondence of the numerators
of these Bayes estimators and (2.2) with pn =p+n−1c and c=(β1, . . . ,βr)′ is found.
However, it is to be noted that the constant terms in (2.2) are assumed to be given
empirically or theoretically by considering e.g., the reduction of the asymptotic bias
(recall the case of c=(0.5,0.5)′) without using the Bayesian estimation. An advan-
tage of using the non-informative priors as well as informative ones by the Bayes
method is that the difficulties due to empty cells can be avoided (see e.g., Galindo-
Garre, Vermunt & Bergsma, 2004; Galindo-Garre & Vermunt, 2006) as long as the
EAP estimators for proportions are used. On the other hand, if we use the MAP es-
timator (βi +npi−1)/(

∑r
i=1βi +n−r), this estimator with (βi−1)/(

∑r
i=1βi +n−r)

for an empty cell remains to be zero when βi≤1 (including the Jeffreys prior with
βi =0.5) is adopted. Since this looks contradictory and gives an unpleasant feeling,
some explanation is required. First, note that the binomial distribution with the usual
parameter π is not in canonical form. So, the MAP estimator of π with the Jeffreys
prior does not retain the unbiasedness of the usual sample proportion. On the other
hand, the MAP estimator of the logit or log{π/(1−π)}, which is of canonical form,
has the Fisher information π(1−π). In this case, the Jeffreys prior{π(1−π)}1/2 gives
βi =3/2 and the positive pseudocount of βi−1=0.5 for an empty cell (compare the
Fisher information {π(1−π)}−1 and βi−1=−0.5 for the empty cell in the case of the
usual proportion parameter π). For the review of the Bayes methods for categorical
data, see Leonard and Hsu (1994) and Agresti (2002, Section 15.2.3).

Let θ =θ(·) be a parameter of interest, which is a function of multinomial propor-
tions. Define

θ̂ =θ(p), θ̂n =θ(pn), θ0 =θ(π) and θn =θ(πn), (2.3)

where θ̂ is a special case of θ̂n when the constants are null. The function θ(·) is as-
sumed to be differentiable any number of times required with respect to the argument
in a domain including π and πn. Since there is a linear dependency among the ele-
ments of p, θ(·) is seen also as a function of r−1 elements when necessary. In this
case, r is interpreted as the number of the categories minus 1 with some adjustment
for associated expressions in the remaining part of this paper.

Let
u=n1/2(p−π), v =n1/2(θ̂n−θ0) and w =n1/2(θ̂n−θn), (2.4)
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where v =w+n1/2(θn−θ0). Since θn−θ0 is obtained from (2.2) and (2.3) using the
Taylor series expansion when necessary, w with u is mainly used rather than v in the
following. Assume that w is expanded as

w =
∂θn

∂π′u+
n−1/2

2
∂2θn

(∂π′)<2>
u<2> +

n−1

6
∂3θn

(∂π′)<3>
u<3> +Op(n−3/2), (2.5)

where
∂θn

∂π′ ≡
∂θ(pn)

∂p′

∣∣∣∣
p=π

=
∂θ(pn)
∂p′

n

∣∣∣∣
pn=πn

∂pn

∂p′

∣∣∣∣
p=π

=
∂θ(pn)
∂p′

n

∣∣∣∣
pn=πn

(2.6)

for simplicity of notation with other expressions of partial derivatives defined similarly,
and u<k> =u⊗···⊗u (k times of u) is the k-fold Kronecker product of u.

Expand the non-stochastic ∂θn/∂π by

∂θn

∂π
=

∂θ

∂πA
+n−1/2 ∂θ

∂πB
+n−1 ∂θ

∂πC
+O(n−3/2), (2.7)

where ∂θ/∂πA ≡∂θ(p)/∂p|p=π i.e., the partial derivative of θ̂ (recall (2.3)) with re-
spect to p evaluated at p=π; n−1/2∂θ/∂πB and n−1∂θ/∂πC are the vectors collected
according to the orders in terms of n in the residual of ∂θn/∂π after eliminating
∂θ/∂πA. The notations using partial derivatives with subscripts A, B and C are
employed for convenience and discrimination.

Using similar notations, the remaining partial derivatives in (2.5) are expanded by

∂2θn

(∂π)<2>
=

∂2θ

(∂πA)<2>
+n−1/2 ∂2θ

(∂πB)<2>
+O(n−1),

∂3θn

(∂π)<3>
=

∂3θ

(∂πA)<3>
+O(n−1/2). (2.8)

From (2.5) through (2.8), w becomes

w =
∂θ

∂π′
A

u+n−1/2

{
∂θ

∂π′
B

u+
1
2

∂2θ

(∂π′
A)<2>

u<2>

}
,

+n−1

{
∂θ

∂π′
C

u+
1
2

∂2θ

(∂π′
B)<2>

u<2> +
1
6

∂3θ

(∂π′
A)<3>

u<3>

}
+Op(n−3/2). (2.9)

As addressed earlier, θn is expanded about θ0 using the above notations:

θn = θ0 +
∂θ

∂π′
A

(n−1/2b+n−1c+n−3/2d)+
1
2

∂2θ

(∂π′
A)<2>

(n−1/2b+n−1c)<2>

+
1
6

∂3θ

(∂π′
A)<3>

(n−1/2b)<3> +O(n−2)

= θ0 +n−1/2 ∂θ

∂π′
A

b+n−1

{
∂θ

∂π′
A

c+
1
2

∂2θ

(∂π′
A)<2>

b<2>

}

+n−3/2

{
∂θ

∂π′
A

d+
∂2θ

(∂π′
A)<2>

(b⊗c)+
1
6

∂3θ

(∂π′
A)<3>

b<3>

}
+O(n−2)



216 H. Ogasawara

≡ θ0 +n−1/2θ0X +n−1θ0Y +n−3/2θ0Z +O(n−2), (2.10)

where θ0X,θ0Y and θ0Z can be used to restore θ0 from θn, when necessary, depending
on the orders desired.

3. Asymptotic cumulants for non-studentized estimators

In this section, the asymptotic cumulants of w are derived up to the fourth order,
which are denoted by αi (i=1, . . . ,4), α1a,α2a,α2b and α3a, where αia and αib stand
for the higher-order terms for the i-th asymptotic cumulant with αib more higher than
αia. Note that αi,αia and αib are the terms of order O(1) in the asymptotic cumulants
obtained after multiplication of appropriate powers of n.

As addressed earlier, the definition of pn in (2.2) was adopted for generality and
comparison. In practice, however, mostly pn =p+n−1c seems to be used. Define
Methods A through D depending on the constants in pn used as follows:

Method A: pn =p, Method B: pn =p+n−1/2b, Method C: pn =p+n−1c,

and Method D: pn =p+n−3/2d. (3.1)

Note that Methods A and D give the same asymptotic expansions of the estimators
up to O(n−1).

Let κi(·) denote the i-th cumulant of the variable in parentheses. Then, the first
cumulant of w is given from (2.9) as

κ1(w) = E(w)=n−1/2 1
2
tr
(

∂2θ

∂πA∂π′
A

Σ
)

+n−1 1
2
tr
(

∂2θ

∂πB∂π′
B

Σ
)

+O(n−3/2)

≡ n−1/2α1 +n−1α1a +O(n−3/2)=n−1/2α
(A)
1 +n−1α1a +O(n−3/2), (3.2)

where (Σ)ij =E(uiuj)= δijπi−πiπj (i,j =1, . . .,r), (·)ij is the (i,j)th element of the
matrix in parentheses, δij denotes the Kronecker delta, and α

(A)
1 is α1 given by Method

A with no adjustment of counts for cells. For v in (2.4),

κ1(v) = E(v)=κ1(w)+n1/2(θn−θ0)

= θ0X +n−1/2(α1 +θ0Y )+n−1(α1a +θ0Z)+O(n−3/2)

≡ θ0X +n−1/2αv1 +n−1αv1a +O(n−3/2). (3.3)

The remaining cumulants up to the fourth order are as follows:

κ2(v)=κ2(w) = α2 +n−1/2α2a +n−1α2b +O(n−3/2)

= α
(A)
2 +n−1/2α2a +n−1α2b +O(n−3/2),

κ3(v)=κ3(w) = n−1/2α3 +n−1α3a +O(n−3/2)

= n−1/2α
(A)
3 +n−1α3a +O(n−3/2),

κ4(v)=κ4(w) = n−1α4 +O(n−3/2)
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= n−1α
(A)
4 +O(n−3/2), (3.4)

where α
(A)
i (i=2,3,4) (and similar expressions given later) are defined similarly to

α
(A)
1 . The results of (3.4) are given from (2.9) and the cumulants of u. The actual

expressions of the results will be shown in Subsection A.2 of the appendix. From the
results,

Theorem 1 The asymptotic cumulants of w and v defined by (2.4) up to the
fourth order are given from (3.2), (3.3), and (3.4) with (2.10), (A.1), (A.2) and
(A.3). Among the cumulants, αi (i=1, . . . ,4) are the same over Methods A to D, and
α1a =α2a =α3a =0 by Methods A, C and D. Generally, α1a,α2a and α3a by Method B
are not zero. The higher-order asymptotic variance α2b by Method C is generally
different from α2b common to Methods A and D, and α2b by Method B.

Note that α2b by Method C depends on the quantity n−1c used and that the com-
mon α2b by Methods A and D does not depend on the quantity n−3/2d. The results
of Theorem 1 are new in that so far only those of Method A without added constant
terms are known (Ogasawara, 2009, Section 3). The asymptotic cumulants of The-
orem 1 gives the asymptotic properties of the point estimators and will be used in
Theorems 2 and 3. The new results of the higher-order asymptotic standard errors,
which are different among Methods A (D), B and C, will be numerically illustrated
in Section 5 with comparison to the usual asymptotic standard errors common to
Methods A to D.

Next, the two-term local Edgeworth expansion of w and v up to order O(n−1) are
derived. Let i=

√−1. Then, from the definition of the cumulants, the characteristic
function for w is

exp

⎧⎨
⎩

∞∑
j=1

(it)jκj(w)/j!

⎫⎬
⎭

= exp
(
−1

2
α2t

2

)
exp

{
n−1/2α1it+

n−1/2

2
α2a(it)2 +

n−1/2

6
α3(it)3

+n−1α1ait+
n−1

2
α2b(it)2 +

n−1

6
α3a(it)3 +

n−1

24
α4(it)4

}
+O(n−3/2)

= exp
(
−1

2
α2t

2

)[
1+n−1/2

{
α1it+

1
2
α2a(it)2 +

1
6
α3(it)3

}

+n−1

{
α1ait+

1
2
(α2b +α2

1)(it)
2 +
(α3a

6
+

α1α2a

2

)
(it)3

+
(

α4

24
+

α1α3

6
+

α2
2a

8

)
(it)4 +

α2aα3

12
(it)5 +

α2
3

72
(it)6

}]
+O(n−3/2). (3.5)

Inverting (3.5) formally, the following is obtained

Theorem 2 The approximate density of w/α
1/2
2 at x using the local Edgeworth ex-

pansion is given by
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f

(
w

α
1/2
2

=x

)
=

[
1+n−1/2

{
α1x

α
1/2
2

+
α2a

2α2
(x2−1)+

α3

6α3/2
2

(x3−3x)

}

+n−1

{
α1ax

α
1/2
2

+
1
2
(α2b +α2

1)
x2−1

α2
+
(α3a

6
+

α1α2a

2

) x3−3x

α
3/2
2

+
(

α4

24
+

α1α3

6
+

α2
2a

8

)
x4−6x2 +3

α2
2

+
α2aα3

12α5/2
2

(x5−10x3 +15x)

+
α2

3

72α3
2

(x6−15x4 +45x2−15)
}]

φ(x)+O(n−3/2). (3.6)

where φ(x) is the standard normal density at x. The distribution function is

Pr

(
w

α
1/2
2

≤x

)
= Φ(x)−n−1/2

{
α1

α
1/2
2

+
α2a

2α2
x+

α3

6α3/2
2

(x2−1)

}
φ(x)

−n−1

{
α1a

α
1/2
2

+
1
2
(α2b +α2

1)
x

α2
+
(α3a

6
+

α1α2a

2

) x2−1

α
3/2
2

+
(

α4

24
+

α1α3

6
+

α2
2a

8

)
x3−3x

α2
2

+
α2aα3

12α5/2
2

(x4−6x2 +3)

+
α2

3

72α3
2

(x5−10x3 +15x)
}

φ(x)+O(n−3/2), (3.7)

where Φ(x)=
∫ x
−∞φ(x∗)dx∗. The corresponding results for v are given by replacing

w,α1 and α1a in (3.6) and (3.7) with v−θ0X , αv1 and αv1a, respectively.

Theorem 2 gives the approximate distribution of the estimator, which is asymp-
totically more accurate than that given by the normal approximation using only the
first terms O(1) on the right-hand sides of (3.6) and (3.7). The approximations using
the terms up to O(n−1/2) and O(n−1) in (3.6) and (3.7) are the single- and two-term
Edgeworth expansions, respectively. The results are new since so far only those by
Method A are available (Ogasawara, 2009, Section 3).

4. Asymptotic cumulants for studentized estimators

The studentized estimator t using θ̂n is given from w/α
1/2
2 , where α2 is replaced

by its sample counterpart. Recall α2 =(∂θ/∂π′
A)Σ∂θ/∂πA. A natural estimator of

Σ in α2 is given by Σ̂=diag(p)−pp′, where diag(p) is the diagonal matrix whose
diagonal elements are the same as those of p. However, Σ̂=0 occurs, which yields
the non-existence of finite moments of t. A similar difficulty occurs for the estimator
of ∂θ/∂πA when ∂θ(p∗)/∂p∗|p∗=p (e.g., θ̂ =ln{p/(1−p)}) is used. Let

pl ≡ (p+n−3/21(r))/(1+n−3/2r)=p+Op(n−3/2), (4.1)

where 1(r) =(1, . . . ,1)′ (r times of 1). Then, in order to avoid the difficulties, the
following estimator α̂2n of α2 is used in this paper:
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α̂2n =
∂θ(p∗)
∂p∗′

∣∣∣∣
p∗=pn

{diag(pl)−plp′
l}

∂θ(p∗)
∂p∗

∣∣∣∣
p∗=pn

. (4.2)

The vector pl rather than pn is used in Σ̂ because of its simplicity requiring no ad-
ditional expansion and its similarity to the natural estimator p of π. Using (4.2),
define
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2n . (4.3)

Recalling (2.6) and (2.7), the population counterpart of α̂2n is defined as
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≡ α2 +n−1/2α2X +n−1α2Y +O(n−3/2), (4.4)

where we find that α2X =α2a. From the above definitions, t is expressed as
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where the vectors g(·) are of order O(1) and will be given in (A.5) of the appendix.
From (A.5), we find that ∂θ/∂πC and α2Y for Methods B and C are included in g(31)

of (4.5) and the other g(·)’s do not include the quantities specific to Method C.
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4 +O(n−3/2), α′
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(A)
4

′
. (4.6)

The remaining actual expressions of the asymptotic cumulants and the derivations will
be given in (A.6) to (A.9) of the appendix. From the above results with associated
derivations in the appendix,

Theorem 3 The asymptotic cumulants of t up to the fourth order are given by (4.6)
with (A.6) through (A.9). The asymptotic cumulants α′

i (i=1, . . .,4), α′
2a (=0) and

α′
2b are the same over those by Methods A to D, and are invariant with respect to the

added quantities in (2.2). Generally, α′
1a and α′

3a given by Method B are not zero,
while those by Methods A, C and D are zero.

It is of interest to see that α′
2b is the same over the four methods while α2b’s

were partially different from method to method, and that α′
2a =0 over the four

methods while generally α2a 	=0 by Method B. These properties come from the use
of ∂θ(p∗)/∂p∗|p∗=pn

in the estimator of α2 (see (4.2)). If we use the usual one
∂θ(p∗)/∂p∗|p∗=p instead, the equality does not generally hold. The local Edgeworth
expansions of the distributions of the studentized estimators are given from Theo-
rem 2 by replacing w, αi (i=1, . . . ,4), α1a,α2a,α2b and α3a with t, α′

i (i=1, . . . ,4),
α′

1a,α
′
2a,α

′
2b and α′

3a, respectively.
The results of Theorem 3 are new in that so far only those by Method A are known

(Ogasawara, 2009, 2010). For interval estimation of the parameter more accurate than
that given by the normal approximation, the asymptotic cumulants derived by The-
orem 3 are required. The accuracy of the asymptotic cumulants and the asymptotic
expansions of the distribution of the estimator will be illustrated using simulations in
the following section.

5. A numerical example

In this section, the results of the previous sections are illustrated using the log odds-
ratio, Yule’s coefficients and their generalization. For two possibly correlated variables
with dichotomous realizations, a 2×2 contingency table is obtained, where the unbi-
ased sample proportions in the four cells are denoted by p11,p12,p21 and p22 whose
population counterparts or probabilities are π11,π12,π21 and π22. The subscripts 1
and 2 indicate two categories for each dichotomous variable. This situation is also de-
scribed by the multinomial distribution with four categories i.e., p=(p11,p12,p21,p22)′

and π =(π11,π12,π21,π22)′ using the notations used earlier with some adjustment for
subscripts.

Let ω̂ =p11p22/(p12p21) be the sample odds ratio whose population counterpart is
ω =π11π22/(π12π21). Yule (1900, 1912) developed the following coefficients with the
range [−1,1]:

Q̂=tanh
lnω̂

2
=

ω̂−1
ω̂+1

, Ŷ =tanh
lnω̂

4
=

ω̂1/2−1
ω̂1/2 +1

. (5.1)

Coefficient Q̂ was used as an approximation to the tetrachoric correlation while Ŷ was
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Table 1: Quantities added uniformly to all cell proportions

Methods B C1 C2 D

Quantities 0.1n−1/2 0.5n−1 0.1n−1 n−3/2

n = 25 0.02 = 0.02 > 0.004 < 0.008
n = 100 0.01 > 0.005 > 0.001 = 0.001
n = 400 0.005 > 0.00125 > 0.00025 > 0.000125

used as an approximation to φ coefficient or a sample product-moment correlation for
dichotomous variables (Bonett & Price, 2007, p.444). Digby’s (1983) Ĥ is defined by

Ĥ =
ω̂3/4−1
ω̂3/4 +1

, (5.2)

which was developed in order to improve the approximation to the tetrachoric correla-
tion. It is obvious that Yule’s coefficients can be generalized to Ĝ∗ ≡ (ω̂c∗−1)/(ω̂c∗+
1), where c∗ is usually a fixed constant while there are some cases of stochastic c∗

(Bonett & Price, 2005, 2007). Digby’s constant c∗ = 0.75 is close to Edwards’
(1957) c∗ = �

π/4, where �
π

.=3.14159, which was derived by Fisher’s transformation
tanh−1ρ=(1/2)ln{(1+ρ)/(1−ρ)} of the tetrachoric correlation ρ and Sheppard’s
Theorem (Stuart & Ort, 1994, Section 15.10). Note that Fisher’s transformation
of Ĝ∗ yields (c∗/2)lnω̂. That is, when c∗ is a fixed constant, the distributions of
Fisher’s transformations of Q̂,Ŷ ,Ĥ and Ĝ∗ are the same except for the known scale
and that their studentized versions are exactly the same. So, in this section, we deal
with only lnω̂ in addition to Q̂,Ŷ and Ĥ.

The problem of sampling zeroes or empty cells also occur for the coefficients and
lnω̂. Note that when p11p22 =0 or p12p21 =0, Ĝ∗ can be reasonably defined as −1 or
1, respectively while when e.g., p11 =p12 =0, Ĝ∗ is undefined. In order to avoid the
problem, Method B with b=0.1×1(4), Method C with c=0.5×1(4) and c=0.1×1(4)

(named as Methods C1 and C2, respectively) and Method D with d=1(4) are used
for illustration with sample sizes, n=25, 100 and 400. The relative sizes of the added
quantities among Methods B, C and D vary with n, which are summarized in Ta-
ble 1. When n = 25, the added quantities for Methods B and C1 are the same and
the smallest is given by Method C2. When n = 100, the added quantities for C2 and
D are the same. When n = 400, the added quantities are all different. That is, when
n = 25 the true distribution of the estimators are the same over Methods B and C1
while their asymptotic ones may be different.

Four cases of π or population proportions were constructed as

Case 1: π =(0.1,0.1,0.1,0.7)′, Case 2: π =(0.1,0.2,0.3,0.4)′,

Case 3: π =(0.3,0.1,0.2,0.4)′ and Case 4: π =(0.4,0.1,0.1,0.4)′.

The population values of lnω, Q, Y and H are shown in the last column under θ0

in Table 2. Tables 2, 3A, 4 and 5 give the asymptotic cumulants (see Theorem 3)
and the corresponding accurate values, derived by the multinomial distributions, for
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Table 2: Asymptotic biases (α′
1) and the corresponding accurate ones for studentized estimators

n1/2× accurate biases

Case n=25 n=100 n=400

No α′
1 B=C1 >C2 <D B >C1 >C2=D B >C1 >C2 >D θ0

lnω .49 .49 .21 .34 .46 .47 .47 .47 .48 .48 .48 1.946
1 Q 2.59 4.51 8.20 6.49 2.76 2.94 3.11 2.55 2.66 2.69 2.70 .750

H 1.80 2.52 3.09 2.99 1.83 1.93 2.02 1.75 1.82 1.84 1.85 .623
Y 1.12 1.34 1.20 1.35 1.10 1.15 1.19 1.08 1.12 1.14 1.14 .451

lnω −.09 −.18 .18 .03 −.11 −.09 −.06 −.10 −.09 −.08 −.08 −.405
2 Q −.54 −.97 −1.14 −1.11 −.60 −.63 −.65 −.54 −.56 −.56 −.57 −.200

H −.35 −.57 −.39 −.50 −.38 −.38 −.38 −.35 −.35 −.35 −.35 −.151
Y −.20 −.34 −.03 −.18 −.23 −.22 −.20 −.21 −.21 −.20 −.20 −.101

lnω .44 .50 .08 .25 .44 .43 .41 .44 .43 .43 .43 1.792
3 Q 2.07 3.38 4.32 4.03 2.20 2.29 2.37 2.06 2.12 2.13 2.13 .714

H 1.44 2.00 1.96 2.07 1.48 1.53 1.57 1.42 1.46 1.47 1.47 .586
Y .92 1.14 .81 .99 .93 .94 .95 .91 .92 .93 .93 .420

lnω .75 .82 .15 .44 .73 .72 .70 .73 .74 .74 .74 2.773
4 Q 2.96 5.37 9.04 7.30 3.22 3.38 3.53 2.94 3.04 3.07 3.07 .882

H 2.21 3.24 3.58 3.59 2.29 2.39 2.47 2.17 2.24 2.26 2.27 .778
Y 1.50 1.88 1.42 1.71 1.50 1.54 1.57 1.46 1.51 1.52 1.52 .600

Note. By Methods B (0.1n−1/2), C1 (0.5n−1), C2 (0.1n−1) or D (n−3/2), the quantity in
parentheses is added uniformly to all cell proportions. The equality/inequality signs indicate
the relative sizes of these values when n is given.

Table 3A: Asymptotic and accurate standard errors for studentized estimators

n=25 n=100 n=400

Case SE* SE* SE*

No HASE* B=C1 >C2 <D HASE* B >C1 >C2=D HASE* B >C1 >C2 >D

lnω .977 1.048 .775 .876 .994 1.002 .994 .986 .999 .999 .998 .998 .998
1 Q 1.666 3.264 9.948 5.779 1.202 1.277 1.313 1.348 1.054 1.055 1.058 1.059 1.060

H 1.389 1.890 2.504 2.198 1.110 1.136 1.144 1.148 1.029 1.029 1.030 1.030 1.030
Y 1.168 1.323 1.088 1.210 1.044 1.055 1.052 1.047 1.011 1.012 1.011 1.011 1.011

lnω .972 1.023 .884 .928 .993 .999 .994 .989 .998 .999 .998 .998 .998
2 Q 1.347 1.788 1.958 1.922 1.097 1.119 1.125 1.130 1.025 1.026 1.026 1.026 1.026

H 1.196 1.369 1.259 1.321 1.052 1.063 1.062 1.060 1.013 1.014 1.014 1.014 1.014
Y 1.076 1.155 1.008 1.066 1.020 1.026 1.023 1.019 1.005 1.005 1.005 1.005 1.005

lnω .982 1.026 .895 .937 .995 1.001 .996 .991 .999 1.000 .999 .999 .999
3 Q 1.483 2.483 4.997 3.448 1.140 1.182 1.196 1.207 1.037 1.038 1.039 1.039 1.039

H 1.276 1.595 1.630 1.634 1.076 1.091 1.093 1.093 1.019 1.020 1.020 1.020 1.020
Y 1.116 1.219 1.056 1.130 1.030 1.037 1.035 1.031 1.008 1.008 1.008 1.008 1.008

lnω .989 1.041 .848 .915 .997 1.003 .997 .991 .999 1.000 .999 .999 .999
4 Q 1.662 3.318 9.819 5.741 1.200 1.285 1.320 1.351 1.054 1.055 1.058 1.059 1.059

H 1.405 1.950 2.601 2.268 1.115 1.145 1.153 1.156 1.030 1.030 1.031 1.032 1.032
Y 1.186 1.346 1.145 1.252 1.050 1.059 1.058 1.054 1.013 1.013 1.013 1.013 1.013

Note. B, C1, C2 and D: as before. HASE*=(1+n−1α′
2b)

1/2; SE*: accurate standard error.
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Table 3B: Asymptotic and accurate ratios of standard errors for non-studentized estimators

n=100

B C1 C2 D C2 D

Case
No

HASE
ASE

SE
ASE

HASE
ASE

SE
ASE

HASE
ASE

HASE
ASE

SE
ASE

lnω .985 .969 1.019 1.023 1.056 1.065 1.074
1 Q 1.077 1.058 1.090 1.092 1.101 1.104 1.124

H 1.006 .993 1.028 1.030 1.050 1.055 1.064
Y .979 .967 1.008 1.011 1.038 1.046 1.050

lnω .986 .977 1.012 1.015 1.039 1.045 1.049
2 Q .936 .936 .961 .964 .985 .992 .987

H .956 .951 .981 .982 1.007 1.013 1.009
Y .972 .964 .998 .999 1.024 1.031 1.029

lnω .986 .977 1.012 1.015 1.039 1.045 1.049
3 Q 1.026 1.021 1.029 1.025 1.030 1.030 1.029

H .988 .985 1.000 1.000 1.011 1.014 1.012
Y .977 .972 .997 .998 1.017 1.022 1.020

lnω .985 .972 1.016 1.020 1.049 1.057 1.065
4 Q 1.098 1.096 1.079 1.078 1.061 1.057 1.062

H 1.021 1.018 1.022 1.021 1.021 1.021 1.022
Y .983 .979 1.001 1.001 1.016 1.020 1.020

Note. B, C1, C2 and D: as before. HASE = (n−1α2 +n−3/2α2a +

n−2α2b)
1/2; ASE = (n−1α2)

1/2; SE: accurate standard error.

Table 4: Asymptotic third cumulants (α′
3) and the corresponding accurate ones for studentized

estimators

n1/2× accurate third cumulants

Case n=25 n=100 n=400

No α′
3 B=C1 >C2 <D B >C1 >C2=D B >C1 >C2 >D

lnω −.56 −.14 −.76 −.69 −.34 −.47 −.60 −.47 −.54 −.56 −.56
1 Q 12.06 1.2e3 8.1e4 1.2e4 43.28 63.78 161 14.67 15.48 15.72 15.75

H 7.30 109 700 295 14.43 16.47 16.59 8.03 8.41 8.51 8.53
Y 3.24 13.18 8.99 11.44 4.57 4.69 4.51 3.35 3.47 3.50 3.50

lnω .74 −.01 1.13 1.00 .39 .67 .93 .59 .73 .78 .78
2 Q −2.00 −34 −21 −43 −6.34 −7.78 −8.68 −2.38 −2.43 −2.44 −2.44

H −.81 −7.22 −1.53 −4.23 −2.16 −2.07 −1.64 −.99 −.94 −.93 −.93
Y .05 −1.63 1.20 .42 −.50 −.23 .09 −.09 .02 .05 .05

lnω −1.13 −.25 −1.81 −1.63 −.74 −1.06 −1.34 −.95 −1.12 −1.17 −1.18
3 Q 8.65 612 3.1e4 4.7e3 23.83 29.25 33.43 10.13 10.42 10.51 10.52

H 4.89 57 183 99 8.91 9.26 8.71 5.38 5.47 5.49 5.49
Y 1.74 8.05 2.04 4.26 2.77 2.53 2.19 1.92 1.86 1.85 1.85

lnω −1.50 −.36 −2.42 −2.16 −.95 −1.38 −1.78 −1.26 −1.48 −1.55 −1.55
4 Q 11.74 1.1e3 6.5e4 9.8e3 47.53 68.75 170 14.60 15.17 15.33 15.35

H 7.25 121 719 306 16.33 18.13 17.44 8.25 8.47 8.54 8.54
Y 3.00 15.80 9.27 12.19 5.07 4.89 4.34 3.29 3.28 3.27 3.27

Note. B, C1, C2 and D: as before. xey =x×10y .
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Table 5: Asymptotic fourth cumulants (α′
4) and the corresponding accurate ones for studentized

estimators

n1/2× accurate fourth cumulants

Case n=25 n=100 n=400

No α′
4 B=C1 >C2 <D B >C1 >C2=D B >C1 >C2 >D

lnω −16.4 −5.1 −4.9 −10.8 −4.8 −13.0 −19.9 −12.8 −16.2 −17.2 −17.3
1 Q 307 2.2e5 8.0e7 5.8e6 5.4e3 2.0e4 2.4e6 426 467 479 481

H 128 6.8e3 1.2e5 3.4e4 621 921 1.0e3 152 163 166 166
Y 30.0 272 242 254 89.1 85.8 53.9 34.7 34.4 34.3 34.3

lnω −13.0 −4.3 −5.6 −8.8 −4.9 −10.3 −14.0 −10.3 −12.6 −13.3 −13.4
2 Q 76.3 8.4e3 1.5e6 1.1e5 564 953 1.2e3 92.4 95.3 96.0 96.1

H 34.8 435 580 422 120 123 78 40.0 39.6 39.5 39.4
Y 7.4 47.9 4.2 10.6 27.4 18.8 8.2 9.9 8.2 7.7 7.6

lnω −8.6 −3.3 −1.7 −5.1 −2.3 −6.7 −9.5 −6.9 −8.4 −8.9 −8.9
3 Q 180 1.7e5 5.4e7 3.9e6 2.1e3 4.0e3 5.9e3 234 246 249 249

H 73.0 3.8e3 4.7e4 1.4e4 322 367 238 85.7 87.7 88.2 88.3
Y 16.8 147 60.1 86.6 53.5 42.4 23.2 19.9 18.6 18.2 18.1

lnω −6.0 −3.5 3.2 −1.7 .7 −4.4 −7.7 −4.9 −6.1 −6.4 −6.4
4 Q 288 1.7e5 4.8e7 3.7e6 6.7e3 2.2e4 2.5e6 412 443 452 453

H 126 6.9e3 1.1e5 3.1e4 807 1.1e3 1.2e3 156 164 166 167
Y 32.5 306 282 286 115 106 61 37.8 37.5 37.4 37.4

Note. B, C1, C2 and D: as before. xey =x×10y .

studentized estimators of lnω, Q,H and Y . Table 3B is for the non-studentized esti-
mators corresponding to Table 3A (see Theorem 1). The partial derivatives required
for computation (see (2.7) and (2.8)) will be given in Subsection A.4 of the appendix.

Table 2 shows the results of bias. Note that the accurate bias for a studentized esti-
mator is its expectation. When n=25, the accurate absolute bias for Q by Method C2
is much larger than the corresponding asymptotic value. But, this is not necessarily
so for other coefficients. The tendency of the true values approaching the correspond-
ing asymptotic ones as monotonic functions of an added quantity is observed in the
table. The effect of Fisher’s transformation is well seen for ln ω̂ in the reduction of
the biases.

Table 3A gives the common higher-order asymptotic standard errors (HASE* =
(1+n−1α′

2b)
1/2) and the corresponding accurate standard errors (SE*). Note that the

usual asymptotic standard error (ASE*) is 1. When n = 25, the results show that
many of the SE*s are far from their unit ASE*s while they are partially explained by
the HASE*s. The decreasing tendency of the discrepancies by increasing the added
quantity is observed. Method B was employed mainly for comparison. However, in
Table 3A, Method B seems to give reasonable results in that many of the associated
SE*s are relatively closer to the corresponding HASE*s. Of course, exactly the same
results can also be obtained by increasing the constant for Method C.

While the values of HASE* in Table 3A are common to all the methods and are
invariant with respect to the constants used, they are different for non-studentized
estimators. Table 3B shows the HASEs (= (n−1α2 +n−3/2α2a ++n−2α2b)1/2) (see
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Table 6: 105× root mean square errors of approximate distribution functions for studentized
estimators (n = 100)

Case B C1 C2=D

No N* E1 E2 N* E1 E2 N* E1 E2

lnω 952 218 162 984 206 157 1013 227 175
1 Q 3849 1553 1316 4057 1606 770 4237 1672 756

H 2685 932 947 2826 943 355 2946 966 364
Y 1709 491 274 1780 465 188 1841 445 190

lnω 312 129 91 331 118 77 362 143 92
2 Q 1173 861 191 1215 885 193 1249 905 197

H 746 509 254 753 505 107 758 499 99
Y 457 261 813 451 233 84 442 208 74

lnω 974 157 98 1003 134 97 1032 149 111
3 Q 3157 1124 437 3273 1158 465 3370 1196 465

H 2226 679 250 2296 686 223 2356 697 222
Y 1486 360 878 1520 339 118 1545 322 104

lnω 1595 474 427 1651 440 423 1695 435 419
4 Q 4481 1671 1032 4668 1736 882 4833 1811 883

H 3377 1103 565 3512 1124 575 3626 1157 574
Y 2395 706 1497 2474 684 457 2541 671 439

Note. B, C1, C2 and D: as before. N*: normal approximation; E1:
the single-term Edgeworth expansion; E2: the two-term Edgeworth
expansion.

Theorem 1) and the actual standard errors (SEs) as the ratios to the corresponding
ASEs (= (n−1α2)1/2) when n = 100. It is found that the HASEs well explain the dif-
ferences of the ratios SE/ASE from 1, and that the ratios HASE/ASE and SE/ASE
by Method B tend to be smaller than the remaining ones but are not necessarily closer
to 1.

Table 4 shows the results of skewness, whose relative sizes seem to parallel those of
biases in Table 2. That is, when the added quantity is larger, the absolute skewness
tends to be smaller and closer to the corresponding asymptotic value. The normal-
izing effect in the reduction of skewness for lnω̂ is also observed. Table 5 gives the
results of kurtosis. The monotone tendency with respect to the added quantity is also
found.

As an application of the asymptotic cumulants of the studentized estimator, the
approximate cumulative distribution functions are constructed by three methods: the
usual normal approximation (N*), the single-term Edgeworth expansion up to order
O(n−1/2) (E1), and the two-term Edgeworth expansion up to order O(n−1) (E2) (for
E1 and E2, see Theorem 2 and the associated description). Table 6 shows the 105×
root mean square errors of the approximations. An error is defined by the difference
of an approximate value minus the corresponding accurate one. They are evaluated
at the equally spaced values from −3.99 to 4.00 by steps 0.01. The square roots of
the means of the squared errors are given in the table. From the table, it is seen that
the errors by E1 are much smaller than N*. While the errors by E2 are smaller than
those by E1 using Methods C1, C2 and D, some of the errors by E2 are larger than
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those by E1 when Method B is used indicating over correction by E2. Among the
four parameters, overall the errors for Q are largest while those for lnω are smallest.

6. Some remarks

As mentioned after Theorem 3 for studentized estimators, the equalities of all the
asymptotic cumulants considered in this paper by Methods A, C and D are due to the
use of pn in the estimator α̂2n. The equalities give tractable results in that we can use
the same asymptotic expansion as that using p rather than pn, and that the sizes of
the added quantities are irrelevant to the asymptotic results. The results by Method
B in Tables 1 though 5 look promising. However, as explained earlier, the seemingly
reasonable results come mainly from the relatively large constants used. When we
look at Table 1 again, we see that when n=25, the values of the added quantities by
Methods B and C1 are equal, and that when n = 100, 0.01 = 0.1n−1/2 by Method B
is two times of 0.005 = 0.5n−1 by Method C1. The value 0.01 by Method B is also
obtained by increasing the constant as 1.0n−1 by Method C, which is equivalent to a
single additional count to all cell frequencies.

Though Bonett and Price (2007) recommended Method C2 with the constant 0.1,
the results of the numerical example are not consistent with their proposal though
the numerical results in this paper are limited. Agresti and Coull (1998) proposed
the formula of two successes and two failures added in the cell frequencies for infer-
ence of the binomial probability. Their formula corresponds to 2n−1 by Method C in
our notation when the odds ratio is used. Though the formula was developed when
the asymptotic coverage is 95% with the normal deviate z0.025 = 1.96 whose rounded
value is 2, the formula may be used in other situations. As illustrated above, 2n−1 by
Method C is equal to 0.1n−1/2 by Method B when n = 400.

Considering the smallest errors for lnω among the four parameters in Table 6, lnω̂

(or lnω̂n) is to be used for estimation of Q, H or Y , which is recommended by e.g.,
Bonett and Price (2007). For instance, the two-sided CI for lnω by Methods C and D
(and lnωn by Methods B, C and D) with the asymptotic confidence level 0.95 using
the Cornish-Fisher expansion (see Hall, 1992b; Ogasawara, 2012) with the estimated
cumulants α̂′

1 and α̂′
3 is given by

lnω̂n +[±z0.025−n−1/2{α̂′
1 +(α̂′

3/6)(z2
0.025−1)}]n−1/2α̂

1/2
2n ≡ ω̂∗±z∗ (6.1)

The corresponding intervals for Q, H and Y are given by tanh{(c∗/2)(ω ∗±z∗)} with
c∗ = 1, 0.75 and 0.5, respectively.
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Appendix

A.1 A review of the asymptotic expansions associated with the multinomial distribution

In the simple case of the binomial proportion, Hall (1982) used the asymptotic
expansion of the studentized proportion up to O(n−1/2) or up to the term next be-
yond the normal approximation. Zhou, Tsao and Qin (2004) obtained a similar but
extended result for estimating the difference of the probabilities of two independent
binomial distributions. Zhou and Qin (2005) gave the corresponding results when
the two binomial distributions are correlated. This problem reduces to that of esti-
mating the contrast π11 +π12−(π11 +π21)=π12−π21 in the multinomial distribution
with four categories, where πij is the probability corresponding to the (i, j)th cell in
a 2×2 contingency table. Further, Zhou, Li and Yang (2008) derived the asymptotic
expansion of the distribution of the sample logit or log odds in a binomial distribu-
tion. Zhou et al. (2004, 2005, 2008) used the cubic transformation by Hall (1992a).
It is to be noted that Hall’s expansion is asymptotically equal to the single-term local
Edgeworth expansion up to O(n−1/2) i.e., the expansion when the sample propor-
tions are regarded as continuous variables or when the oscillatory part of the discrete
distribution is neglected. For the total expansion, see Esséen (1945, Theorem 3),
Ranga Rao (1961, Theorem 4), Bikyalis (1961, Theorem 1), Yarnold (1972, Section
1), Siotani and Fujikoshi (1984, Lemma 2.1). Bhattacharya and Ranga Rao (1986,
Theorem 23.1), Brown et al. (2002, Lemma 1), Götze and Ulyanov (2003, Section 1)
and Staicu (2009, Appendix A).

The two-term local Edgeworth expansion up to O(n−1) for the distribution of ex-
plicit/implicit functions of sample multinomial proportions without studentization
and the corresponding single-term expansion up to O(n−1/2) for studentized estima-
tors are given by Ogasawara (2009). Partial justification of using the local asymptotic
expansion or using only the continuous part is the relatively small property of the dis-
crete part in the sense that the part becomes O(n−3/2) in the case of the binomial
proportion when the discrete term is integrated over its domain (see Brown et al, 2002,
Theorem 6; see also Hall, 1982 for the smallness of the discrete part). The author
conjectures that this property more or less conveys to the general cases of functions
of multinomial proportions.

It is known that the local Edgeworth expansion becomes asymptotically equiva-
lent to the corresponding total one when the continuity correction is employed with
Sheppard’s correction for cumulants (Feller, 1971, Theorem 2, p.540; Kolassa & Mc-
Cullagh, 1990; Kolassa, 2006, Section 3.15). In the case of the single-term Edgeworth
expansion, Sheppard’s correction for associated cumulants gives unchanged ones. For
the two-term Edgeworth expansion, only the variances are influenced by the correction
with unchanged covariances and other cumulants (Wold, 1934, Equation (5); Kolassa,
1989, Chapter 3; Stuart & Ort, 1994, Section 3.25). It is to be noted that the correc-
tion of variances is to decrease it by the quantity −1/(12n2) rather than to increase it
in the case of the binomial distribution (see e.g., Kolassa & McCullagh, 1990, p.982;
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Stuart & Ort, 1994, Section 3.18). So, it is expected that using estimated variances
without using Sheppard’s correction typically give conservative results in e.g., interval
estimation of parameters.

A.2 The asymptotic cumulants for non-studentized estimators

The second cumulants are

κ2(v) = κ2(w)=E(w2)−{E(w)}2

=
∂θ

∂π′
A

Σ
∂θ

∂πA
+n−1/22

∂θ

∂π′
A

Σ
∂θ

∂πB
+n−1

[{
∂θ

∂π′
A

⊗ ∂2θ

(∂π′
A)<2>

}
n1/2E(u<3>)

+
∂θ

∂π′
B

Σ
∂θ

∂πB
+

1
4

{
∂2θ

(∂π′
A)<2>

}<2>

E(u<4>)−α2
1

+2
∂θ

∂π′
A

Σ
∂θ

∂πC
+

1
3

{
∂θ

∂π′
A

⊗ ∂3θ

(∂π′
A)<3>

}
E(u<4>)

]
+O(n−3/2)

=
∂θ

∂π′
A

Σ
∂θ

∂πA
+n−1/22

∂θ

∂π′
A

Σ
∂θ

∂πB
+n−1

[{
∂θ

∂π′
A

⊗ ∂2θ

(∂π′
A)<2>

}
σ(3)

+
∂θ

∂π′
B

Σ
∂θ

∂πB
+

1
2
tr
(
Σ

∂2θ

∂πA∂π′
A

Σ
∂2θ

∂πA∂π′
A

)

+2
∂θ

∂π′
A

Σ
∂θ

∂πC
+
{

∂θ

∂π′
A

⊗ ∂3θ

(∂π′
A)<3>

}
(σ(2))<2>

]
+O(n−3/2)

≡ α2 +n−1/2α2a +n−1α2b +O(n−3/2), (A.1)

where σ(2) =vec(Σ), vec(·) is a vectorizing operator stacking the columns of a matrix,
σ(3) ≡n1/2E(u<3>) with

(σ(3))(ijk) = n2E{(pi−πi)(pj −πj)(pk−πk)}
= δijδik(πi−3π2

i )−{δij(1−δik)πiπk +δik(1−δij)πiπj +δjk(1−δji)πjπi}
+2πiπjπk (i,j,k=1, . . . ,r),

and (·)(ijk) denotes an element of the vector in parentheses corresponding to πi,πj and
πk (see e.g., Stuart & Ort, 1994, Equation (7.18)).

The third cumulants are

κ3(v) = κ3(w)=E[{w−E(w)}3]=E(w3)−3E(w2)E(w)+O(n−3/2)

= n−1/2

(
∂θ

∂π′
A

)<3>

σ(3) +n−1/2 3
2

{(
∂θ

∂π′
A

)<2>
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}
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+n−13
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⊗ ∂θ
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}
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+n−1 3
2

{(
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B)<2>

}
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+n−13
{

∂θ

∂π′
A

⊗ ∂θ

∂π′
B

⊗ ∂2θ

(∂π′
A)<2>
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−3(α2 +n−1/2α2a)(n−1/2α1 +n−1α1a)+O(n−3/2)
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≡ n−1/2α3 +n−1α3a +O(n−3/2). (A.2)

The fourth cumulants become

κ4(v) = κ4(w)=E[{w−E(w)}4]−3κ2(w)2

= E(w4)−4E(w3)E(w)+6E(w2)E(w)2−3κ2(w)2 +O(n−2)
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×(σ(2))<2> +n−12
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where
∑k denotes the sum of k similar terms considering the permutation and com-

bination of the multivariate moments concerned, and κ(4)(p) is the n4×1 vector of
the multivariate fourth cumulants of p, whose elements corresponding to pi,pj,pk and
pl are

n3κ4(pi,pi,pi,pi)=πi(1−πi){1−6πi(1−πi)},
n3κ4(pi,pi,pi,pj)=−πiπj{1−6πi(1−πi)},
n3κ4(pi,pi,pj,pj)=−πiπj{(1−2πi)(1−2πj)+2πiπj},
n3κ4(pi,pi,pj,pk)=2πiπjπk(1−3πi), n3κ4(pi,pj,pk,pl)=−6πiπjπkπl,

(i,j,k,l=1, . . .,r; i 	= j, i 	=k, i 	= l, j 	=k, j 	= l, k 	= l; see e.g., Stuart & Ort, 1994,
Equation (7.18)). Noting α2 =(∂θ/∂π′

A)<2>σ(2) and α2a =2(∂θ/∂π′
A)Σ∂θ/∂πB, it

follows that
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2
1 +6α2α2b) ]+O(n−3/2)

≡ n−1α4 +O(n−3/2)=n−1α
(A)
4 +O(n−3/2). (A.3)

The equality α4 =α
(A)
4 in (A.3) follows from the relationship 6α2(∂θ/∂π′

B)Σ∂θ/∂πB +
12α2(∂θ/∂π′

A)Σ∂θ/∂πC −6α2α2b =−6α2α
(A)
2b (see (A.1)).

A.3 The asymptotic cumulants for studentized estimators

First, using the notations similar to (2.7) and (2.8), define the partial derivatives
for later use as follows:
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∂α2n

∂π
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∣∣∣∣
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Let (·)k be the k-th element of the vector in parentheses, Ekk be the r×r matrix
whose k-th diagonal element is 1 with remaining ones being 0, e(k) be the r×1 vector
with unit norm whose k-th element is 1. Then, the terms on the right-hand sides of
(A.4) are
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(
−α

−3/2
2

2
α2Y +

3
8
α
−5/2
2 α2

2X

)
∂θ

∂π′
A

}
u

+

{
α
−1/2
2

2
∂2θ

(∂π′
B)<2>

− α
−3/2
2

4
α2X

∂2θ

(∂π′
A)<2>

−
2∑

(A,B)

α
−3/2
2

2
∂θ

∂π′
A

⊗ ∂α2

∂π′
B

+
3
4
α
−5/2
2 α2X

∂θ

∂π′
A

⊗ ∂α2

∂π′
A

}
u<2>

+

{
α
−1/2
2

6
∂3θ

(∂π′
A)<3>

− α
−3/2
2

4
∂2θ

(∂π′
A)<2>

⊗ ∂α2

∂π′
A

+
3
8
α
−5/2
2

∂θ

∂π′
A

⊗
(

∂α2

∂π′
A

)<2>

− α
−3/2
2

4
∂θ

∂π′
A

⊗ ∂2α2

(∂π′
A)<2>

}
u<3> +Op(n−3/2)

≡ g′
(11)u+n−1/2{g′

(21)u+g′
(22)u

<2>}
+n−1{g′

(31)u+g′
(32)u

<2> +g′
(33)u

<3>}+Op(n−3/2). (A.5)

The asymptotic cumulants of t are derived from (A.5) and the moments of u. The
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first cumulant is

κ1(t) = n−1/2g′
(22)σ

(2) +n−1g′
(32)σ

(2) +O(n−3/2)

= n−1/2

{
α
−1/2
2

2
∂2θ

(∂π′
A)<2>

σ(2)− α
−3/2
2

2
∂θ

∂π′
A

Σ
∂α2

∂πA

}

+n−1

{
α
−1/2
2

2
∂2θ

(∂π′
B)<2>

σ(2)− α
−3/2
2

4
α2X

∂2θ

(∂π′
A)<2>

σ(2)

−
2∑

(A,B)

α
−3/2
2

2
∂θ

∂π′
A

Σ
∂α2

∂πB
+

3
4
α
−5/2
2 α2X

∂θ

∂π′
A

Σ
∂α2

∂πA

}
+O(n−3/2)

≡ n−1/2α′
1 +n−1α′

1a +O(n−3/2)=n−1/2α
(A)
1

′
+n−1α′

1a +O(n−3/2), (A.6)

where the alternative expression α
(A)
1

′
of α′

1 was given as for (3.2).
The second cumulant of t is

κ2(t) = g<2>
(11)

′
σ(2) +n−1/22(g′

(11)⊗g′
(21))σ

(2)

+n−1{2(g′
(11)⊗g′

(22))n
1/2E(u<3>)+g<2>

(21)

′
σ(2) +g<2>

(22)

′E(u<4>)−(α′
1)

2

+2(g′
(11)⊗g′

(31))σ
(2) +2(g′

(11)⊗g′
(33))E(u<4>)}+O(n−3/2)

= 1+n−1/22(g′
(11)⊗g′

(21))σ
(2)

+n−1

{
2(g′

(11)⊗g′
(22))σ

(3) +g<2>
(21)

′
σ(2) +g<2>

(22)

′
3∑

(σ(2))<2>

−(α′
1)

2 +2(g′
(11)⊗g′

(31))σ
(2) +2(g′

(11)⊗g′
(33))

3∑
(σ(2))<2>

}
+O(n−3/2)

≡ 1+n−1/2α′
2a +n−1α′

2b +O(n−3/2)=1+n−1α
(A)
2b

′
+O(n−3/2), (A.7)

where
3∑

(σ(2))<2> = σ(2)⊗σ(2) +E[{u⊗1(r)}<2>]
E[{1(r)⊗u}<2>]

+E[{u⊗1<2>
(r) ⊗u}]
E[{1(r)⊗u<2>⊗1(r)}],


 denotes the Hadamard or elementwise product, and

α′
2a =2(g′

(11)⊗g′
(21))σ

(2) =2α−1
2

∂θ

∂π′
A

Σ
∂θ

∂πB
−α−1

2 α2X =α−1
2 α2a−α−1

2 α2X =0.

The equality of α′
2b and α

(A)
2b

′
is derived as follows. The part of α′

2b, given by Methods
B and C, different from those by Methods A and D is

g<2>
(21)

′
σ(2) +2(g′

(11)⊗g′
(31))σ

(2)

= α−1
2

∂θ

∂π′
B

Σ
∂θ

∂πB
−α−2

2 α2X
∂θ

∂π′
B

Σ
∂θ

∂πA
+

α−2
2

4
α2

2X
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+2
(

α−1
2

∂θ

∂π′
C

Σ
∂θ

∂πA
− α−2

2

2
α2X

∂θ

∂π′
B

Σ
∂θ

∂πA
− α−1

2

2
α2Y +

3
8
α−2

2 α2
2X

)

= α−1
2

∂θ

∂π′
B

Σ
∂θ

∂πB
− α−2

2

4
α2

2X +2
{

α−1
2

∂θ

∂π′
C

Σ
∂θ

∂πA
− α−2

2

4
α2

2X

− α−1
2

2

(
∂θ

∂π′
B

Σ
∂θ

∂πB
+2

∂θ

∂π′
C

Σ
∂θ

∂πA

)
+

3
8
α−2

2 α2
2X

}
=0

where α2X =2
∂θ

∂π′
B

Σ
∂θ

∂πA
and α2Y =

∂θ

∂π′
B

Σ
∂θ

∂πB
+2

∂θ

∂π′
C

Σ
∂θ

∂πA
are used.

The third cumulant of t is

κ3(t) = E[{t−E(t)}3]=E(t3)−3E(t2)E(t)+O(n−3/2)

= n−1/2

{
g<3>

(11)

′
σ(3) +3(g<2>

(11)

′ ⊗g′
(22))

3∑
(σ(2))<2>

}

+n−1

{
3(g<2>

(11)

′ ⊗g′
(21))σ

(3) +3(g<2>
(11)

′ ⊗g′
(32))

3∑
(σ(2))<2>

+6(g′
(11)⊗g′

(21)⊗g′
(22))

3∑
(σ(2))<2>

}

−3(1+n−1/2α′
2a)(n

−1/2α′
1 +n−1α′

1a)+O(n−3/2)

= n−1/2

{
g<3>

(11)

′
σ(3) +3(g<2>

(11)

′ ⊗g′
(22))

3∑
(σ(2))<2>−3α′

1

}

+n−1

{
3(g<2>

(11)

′ ⊗g′
(21))σ

(3) +3(g<2>
(11)

′ ⊗g′
(32))

3∑
(σ(2))<2>

+6(g′
(11)⊗g′

(21)⊗g′
(22))

3∑
(σ(2))<2>−3α′

1a−3α′
2aα

′
1

}
+O(n−3/2)

≡ n−1/2α′
3 +n−1α′

3a +O(n−3/2)=n−1/2α
(A)
3

′
+n−1α′

3a +O(n−3/2), (A.8)

where

α′
3 = α

−3/2
2

(
∂θ

∂π′
A

)<3>

σ(3) +
3
2

(
∂θ

∂π′
A

)<2>

⊗
(

α
−3/2
2

∂2θ

(∂π′
A)<2>

−α
−5/2
2

∂θ

∂π′
A

⊗ ∂α2

∂πA

)

×
3∑

(σ(2))<2>− 3
2

(
α
−1/2
2

∂2θ

(∂π′
A)<2>

σ(2)−α
−3/2
2

∂θ

∂π′
A

Σ
∂α2

∂πA

)

= α
−3/2
2

(
∂θ

∂π′
A

)<3>

σ(3) +3α−3/2
2

∂θ

∂π′
A

Σ
∂2θ

∂πA∂π′
A

Σ
∂θ

∂πA
−3α−3/2

2

∂θ

∂π′
A

Σ
∂α2

∂πA

= α
−3/2
2 α3−3α−3/2

2

∂θ

∂π′
A

Σ
∂α2

∂πA
=α

(A)
3

′
,

and

α′
3a = 3(g<2>

(11)

′ ⊗g′
(21))σ

(3) +3(g<2>
(11)

′ ⊗g′
(32))

3∑
(σ(2))<2>
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+6(g′
(11)⊗g′

(21)⊗g′
(22))

3∑
(σ(2))<2>−3α′

1a−3α′
2aα

′
1

= 3α−3/2
2

{(
∂θ

∂π′
A

)<2>

⊗ ∂θ

∂π′
B

}
σ(3)

........................................................[0]

− 3
2
α
−5/2
2 α2X

(
∂θ

∂π′
A

)<3>

σ(3)

.................................................[5]

+
{

3
2
α
−3/2
2

(
∂θ

∂π′
A

)<2>

⊗ ∂2θ

(∂π′
B)<2>

............................................................[1]

− 3
4
α
−5/2
2 α2X

(
∂θ

∂π′
A

)<2>

⊗ ∂2θ

(∂π′
A)<2>

................................................................[6]

− 3
2
α
−5/2
2

(
∂θ

∂π′
A

)<2>

⊗
2∑

(A,B)

∂θ

∂π′
A

⊗ ∂α2

∂π′
B

.....................................................................[4]

+
9
4
α
−7/2
2 α2X

(
∂θ

∂π′
A

)<3>

⊗ ∂α2

∂π′
A

}
3∑

(σ(2))<2>

.................................................................................[7]

+3α−3/2
2

∂θ

∂π′
A

⊗
(

∂θ

∂π′
B.........[2].........[3]

− α−1
2

2
α2X

∂θ

∂π′
A.......................[6] .......................[7]

)
⊗
(

∂2θ

(∂π′
A)<2>

..................[2]..................[6]

−α−1
2

∂θ

∂π′
A

⊗ ∂α2

∂π′
A............................[3]............................[7]

)

×
3∑

(σ(2))<2>−3
{

α
−1/2
2

2
∂2θ

(∂π′
B)<2>

σ(2)

.....................................[1]

− α
−3/2
2

4
α2X

∂2θ

(∂π′
A)<2>

σ(2)

............................................[6]

−
2∑

(A,B)

α
−3/2
2

2
∂θ

∂π′
A

Σ
∂α2

∂πB

........................................[4]

+
3
4
α
−5/2
2 α2X

∂θ

∂π′
A

Σ
∂α2

∂πA

.........................................[7]

}

− 3
2
α
−3/2
2

(
2

∂θ

∂π′
A

Σ
∂θ

∂πB.......................[2].......................[3]

−α2X

.......[6].......[7]

)(
∂2θ

(∂π′
A)<2>

σ(2)

..........................[2]..........................[6]

−α−1
2

∂θ

∂π′
A

Σ
∂α2

∂πA............................[3]............................[7]

)

= 3α−3/2
2

{(
∂θ

∂π′
A

)<2>

⊗ ∂θ

∂π′
B

}
σ(3)

........................................................[0]

+3α−3/2
2

∂θ

∂π′
A

Σ
∂2θ

∂πB∂π′
B

Σ
∂θ

∂πA.....................................................[1]

+6α−3/2
2

∂θ

∂π′
A

Σ
∂2θ

∂πA∂π′
A

Σ
∂θ

∂πB.....................................................[2]

−3α−5/2
2

∂θ

∂π′
A

Σ
∂θ

∂πB

∂θ

∂π′
A

Σ
∂α2

∂πA......................................................[3]

−3α−3/2
2

∂θ

∂π′
B

Σ
∂α2

∂πA.................................[3]

−3α−5/2
2

∂θ

∂π′
A

Σ
∂θ

∂πB

∂θ

∂π′
A

Σ
∂α2

∂πA
−3α−3/2

2

∂θ

∂π′
A

Σ
∂α2

∂πB............................................................................................[4]
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− 3
2
α
−5/2
2 α2X

(
∂θ

∂π′
A

)<3>

σ(3)

.................................................[5]

− 9
2
α
−5/2
2 α2X

∂θ

∂π′
A

Σ
∂2θ

∂πA∂π′
A

Σ
∂θ

∂πA.............................................................[6]

+
15
2

α
−5/2
2 α2X

∂θ

∂π′
A

Σ
∂α2

∂πA...........................................[7]

= α
−3/2
2 α3a−6α−5/2

2

∂θ

∂π′
A

Σ
∂θ

∂πB

∂θ

∂π′
A

Σ
∂α2

∂πA
−3α−3/2

2

2∑
(A,B)

∂θ

∂π′
A

Σ
∂α2

∂πB

+α
−5/2
2 α2X

{
−3

2

(
∂θ

∂π′
A

)<3>

σ(3)− 9
2

∂θ

∂π′
A

Σ
∂2θ

∂πA∂π′
A

Σ
∂θ

∂πA
+

15
2

∂θ

∂π′
A

Σ
∂α2

∂πA

}

= α
−3/2
2 α3a−3α−3/2

2

2∑
(A,B)

∂θ

∂π′
A

Σ
∂α2

∂πB

+α
−5/2
2 α2X

{
−3

2

(
∂θ

∂π′
A

)<3>

σ(3)− 9
2

∂θ

∂π′
A

Σ
∂2θ

∂πA∂π′
A

Σ
∂θ

∂πA
+

9
2

∂θ

∂π′
A

Σ
∂α2

∂πA

}
,

where the dotted underscores with numbers are for confirmation of correspondence.
In the derivation of α′

3a, the term −3α′
2aα

′
1 (=0) was temporarily retained for conve-

nience to derive the last expression using α3a.
The fourth cumulant of t is

κ4(t) = E[{t−E(t)}4]−3κ2(t)2

= E(t4)−4E(t3)E(t)+6E(t2)E(t)2−3κ2(t)2 +O(n−2)

= E(t4)−4{n−1/2α′
3 +n−1α′

3a +3(1+n−1/2α′
2a)(n

−1/2α′
1 +n−1α′

1a)}n−1/2α′
1

+6(1+n−1/2α′
2a)n

−1(α′
1)

2−3(1+n−1/2α′
2a +n−1α′

2b)
2 +O(n−3/2)

= E(t4)−3−n−1/26α′
2a−n−1{4α′

1α
′
3 +6(α′

1)
2 +6α′

2b +3(α′
2a)

2}+O(n−3/2),

where

E(t4) = g<4>
(11)

′E(u<4>)+n−1/24(g<3>
(11)

′ ⊗g′
(21))E(u<4>)

+n−1
{
4(g<3>

(11)

′ ⊗g′
(22))n

1/2E(u<5>)

+

(
4
2

)
(g<2>

(11)

′ ⊗g<2>
(21)

′)E(u<4>)+

(
4
2

)
(g<2>

(11)

′ ⊗g<2>
(22)

′)E(u<6>)

+4(g<3>
(11)

′ ⊗g′
(31))E(u<4>)+ 4(g<3>

(11)

′ ⊗g′
(33))E(u<6>)

}
+O(n−3/2)

= 3+n−1α−2
2

(
∂θ

∂π′
A

)<4>

n3κ(4)(p)+n−1/212(g′
(11)⊗g′

(21))σ
(2)

+n−1

{
4(g<3>

(11)

′ ⊗g′
(22))

10∑
σ(2)⊗σ(3) +6g<2>

(21)

′
σ(2)

+12{(g′
(11)⊗g′

(21))σ
(2)}2 +6(g<2>

(11)

′ ⊗g<2>
(22)

′)
15∑

(σ(2))<3>
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+12(g′
(11)⊗g′

(31))σ
(2) +4(g<3>

(11)

′ ⊗g′
(33))

15∑
(σ(2))<3>

}
+O(n−3/2)

From α′
2a =2(g′

(11)⊗g′
(21))σ

(2) and g<2>
(21)

′
σ(2) +2(g′

(11)⊗g′
(31))σ

(2) =0 (see the deriva-

tion for α′
2b =α

(A)
2b

′
), the following result is obtained.

κ4(t) = n−1

[
α−2

2

(
∂θ

∂π′
A

)<4>

n3κ(4)(p)+4(g<3>
(11)

′ ⊗g′
(22))

10∑
σ(2)⊗σ(3)

+6(g<2>
(11)

′ ⊗g<2>
(22)

′)
15∑

(σ(2))<3>+4(g<3>
(11)

′ ⊗g′
(33))

15∑
(σ(2))<3>

− {4α′
1α

′
3 +6(α′

1)
2 +6α′

2b}
]
+O(n−3/2)

≡ n−1α′
4 +O(n−3/2)=n−1α

(A)
4

′
+O(n−3/2). (A.9)

Note that (A.9) was derived without using α′
2a =0. The last equation is given by

the expression of (A.9) which does not involve those for other than Methods A and
D.

A.4 Partial derivatives

A.4.1 The log odds-ratio

Let pnii≡pii +n−1/2bii +n−1cii +n−3/2dii and pnij ≡pij +n−1/2bij +n−1cij +n−3/2

dij , where bii,bij,cii,cij ,dii and dij are constants, and i 	= j (i,j =1,2) is assumed in
Subsection A.4. Let ω̂n≡pn11pn22/(pn12pn21)=pniipnjj/(pnijpnji). Then,

∂ lnω̂n

∂pii
=

∂ lnω̂n

∂pnii
=

1
pnii

=
1
pii

− 1
p2

ii

(n−1/2bii +n−1cii)+
n−1

p3
ii

b2
ii +Op(n−3/2)

=
1
pii

−n−1/2 bii

p2
ii

+n−1

(
b2
ii

p3
ii

− cii

p2
ii

)
+Op(n−3/2),

∂ lnω̂n

∂pij
= − 1

pij
+n−1/2 bij

p2
ij

+n−1

(
− b2

ij

p3
ij

+
cij

p2
ij

)
+Op(n−3/2),

∂2 lnω̂n

∂p2
ii

= − 1
p2

ii

+n−1/2 2bii

p3
ii

+Op(n−1),
∂2 lnω̂n

∂p2
ij

=
1
p2

ij

−n−1/2 2bij

p3
ij

+Op(n−1),

∂3 lnω̂n

∂p3
ii

=
2
p3

ii

+Op(n−1/2),
∂3 lnω̂n

∂p3
ij

=− 2
p3

ij

+Op(n−1/2).

A.4.2 Yule’s coefficients

Let θ̂∗n and θ̂∗ be the estimated generalized Yule’s coefficients defined by θ̂∗n =
ω̂c∗

n −1
ω̂c∗

n +1

and θ̂∗ =
ω̂c∗−1
ω̂c∗+1

, respectively, where ω̂n is expanded as

ω̂n = ω̂+n−1/2 ∂ω̂

∂p′b+n−1

(
∂ω̂

∂p′ c+
1
2

∂2ω̂

(∂p′)<2>
b<2>

)
+Op(n−3/2)
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≡ ω̂+n−1/2ω̂X +n−1ω̂Y +Op(n−3/2)

with b=(b11,b12,b21,b22)′ and c=(c11,c12,c21,c22)′. Then, the partial derivatives of
ω̂n with respect to p used in the asymptotic expansions are

∂ω̂n

∂p
=

∂ω̂

∂p
+n−1/2 ∂ω̂X

∂p
+n−1 ∂ω̂Y

∂p
+Op(n−3/2),

∂2ω̂n

(∂p)<2>
=

∂2ω̂

(∂p)<2>
+n−1/2 ∂2ω̂X

(∂p)<2>
+Op(n−1),

∂3ω̂n

(∂p)<3>
=

∂3ω̂

(∂p)<3>
+Op(n−1/2),

∂kω̂X

(∂p)<k>
=

∂k+1ω̂

(∂p)<k>∂p′b (k =1,2),
∂ω̂Y

∂p
=

∂2ω̂

∂p∂p′ c+
1
2

∂3ω̂

∂p(∂p′)<2>
b<2>,

where the non-zero derivatives of ω̂ with respect to p are

∂ω̂

∂pii
=

pjj

pijpji
,

∂ω̂

∂pij
=−piipjj

p2
ijpji

,
∂2ω̂

∂pii∂pjj
=

1
pijpji

,
∂2ω̂

∂pii∂pij
=− pjj

p2
ijpji

,

∂2ω̂

∂p2
ij

=
2piipjj

p3
ijpji

,
∂2ω̂

∂pij∂pji
=

piipjj

p2
ijp

2
ji

,
∂3ω̂

∂pii∂pjj∂pij
=− 1

p2
ijpji

,
∂3ω̂

∂pii∂p2
ij

=
2pjj

p3
ijpji

,

∂3ω̂

∂pii∂pij∂pji
=

pjj

p2
ijp

2
ji

,
∂3ω̂

∂p3
ij

=−6piipjj

p4
ijpji

,
∂3ω̂

∂p2
ij∂pji

=−2piipjj

p3
ijp

2
ji

.

Using the results above,

∂θ̂∗n
∂p

=
∂θ̂∗n
∂ω̂n

∂ω̂n

∂p
=

{
∂θ̂∗

∂ω̂
+

∂2θ̂∗

∂ω̂2
(n−1/2ω̂X +n−1ω̂Y )+

n−1

2
∂3θ̂∗

∂ω̂3
ω̂2

X

}

×
(

∂ω̂

∂p
+n−1/2 ∂ω̂X

∂p
+n−1 ∂ω̂Y

∂p

)
+Op(n−3/2)

=
∂θ̂∗

∂ω̂

∂ω̂

∂p
+n−1/2

(
∂2θ̂∗

∂ω̂2

∂ω̂

∂p
ω̂X +

∂θ̂∗

∂ω̂

∂ω̂X

∂p

)

+n−1

{
1
2

∂3θ̂∗

∂ω̂3

∂ω̂

∂p
ω̂2

X +
∂2θ̂∗

∂ω̂2

(
∂ω̂X

∂p
ω̂X +

∂ω̂

∂p
ω̂Y

)
+

∂θ̂∗

∂ω̂

∂ω̂Y

∂p

}

+Op(n−3/2),

∂2θ̂∗n
(∂p)<2>

=
∂2θ̂∗

∂ω̂2

(
∂ω̂

∂p

)<2>

+
∂θ̂∗

∂ω̂

∂2ω̂

(∂p)<2>
+n−1/2

{
∂3θ̂∗

∂ω̂3

(
∂ω̂

∂p

)<2>

ω̂X

+
∂2θ̂∗

∂ω̂2

(
∂2ω̂

(∂p)<2>
ω̂X +

∂ω̂

∂p
⊗ ∂ω̂X

∂p
+

∂ω̂X

∂p
⊗ ∂ω̂

∂p

)
+

∂θ̂∗

∂ω̂

∂2ω̂X

(∂p)<2>

}

+Op(n−1),

∂3θ̂∗n
(∂p)<3>

=
∂3θ̂∗

∂ω̂3

(
∂ω̂

∂p

)<3>

+
∂2θ̂∗

∂ω̂2

3∑ ∂2ω̂

(∂p)<2>
⊗ ∂ω̂

∂p
+

∂θ̂∗

∂ω̂

∂3ω̂

(∂p)<3>

+Op(n−1/2),

where
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∂θ̂∗

∂ω̂
=

2c∗ω̂c∗−1

(ω̂c∗+1)2
,

∂2θ̂∗

∂ω̂2
=

2c∗(c∗−1)ω̂c∗−2

(ω̂c∗+1)2
− 4(c∗)2ω̂2c∗−2

(ω̂c∗+1)3
,

∂3θ̂∗

∂ω̂3
=

2c∗(c∗−1)(c∗−2)ω̂c∗−3

(ω̂c∗+1)2
− 12(c∗)2(c∗−1)ω̂2c∗−3

(ω̂c∗+1)3
+

12(c∗)3ω̂3c∗−3

(ω̂c∗+1)4
.
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