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Abstract. We consider effect of variable-threshold strategies on emergence of cooperation in 

demographic dilemma game, Donor-Recipient or Prisoner's Dilemma game. 

Tit for Tat changes his move at each period depending on the previous opponent’s move.  In 

real life, people further change their tendency toward cooperation or defection.  We want to 

incorporate this change into our model.  We introduce variable-threshold strategies whose 

components are extended forms of TFT.  We interpret that TFT uses Defect if the state is 0, 

Cooperate if it is 1 and the smallest state number that prescribes using Cooperate as a 

threshold.  AllC has zero threshold in this interpretation.  We allow up to three states.  

Variable-threshold strategy changes its threshold at most once at some age (once in his 

lifetime) depending on its experience until then.  Thus variable-threshold TFT who was born 

as TFT may change to AllC or AllD.  Also variable-threshold AllC who was born as AllC 

may change to TFT. 

Players are initially randomly distributed in square lattice of cells.  In each period, players 

move locally to random cell in von Neumann neighbors if unoccupied or globally to random 

unoccupied cell in the whole lattice, and play dilemma game against local neighboring player 

or against randomly selected player from the whole lattice.  If wealth (accumulated payoff) 

of player becomes negative or his age becomes greater than his lifetime, he dies.  If his 

wealth becomes greater than some amount and there is unoccupied cell in neighbors, he has 

an offspring. 

A stage game is Donor-Recipient or Prisoner's Dilemma game.  Donor-Recipient game is a 

two-person game where one player is randomly selected as Donor and the other as Recipient.  

Donor has two moves, Cooperate and Defect.  Cooperate means Donor pays cost c in order 

for Recipient to receive benefit b (b>c>0).  Defect means Donor does nothing.  Note that 

Recipient has no move.  Prisoner's Dilemma game which we use here is a two-person 

simultaneous move game where both players have two moves, Cooperate and Defect, whose 

meanings are the same as in Donor-Recipient game.  For convenience sake we shift the 

                                                  
1 This article is a revised version of the original one in Conference Proceedings Vol II: Book of 
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original payoffs in order for the new payoffs of player to be positive if the opponent uses 

Cooperate and negative if Defect. 

We investigate, by Agent-Based Simulation, emergence of cooperation where there are 

variable-threshold strategies and the difference between Donor-Recipient and Prisoner's 

Dilemma game, and show some cases where cooperation emerges more frequently with 

variable-threshold strategies than without them. 

 

Keywords: Donor-Recipient game, Prisoner's Dilemma game, emergence of cooperation, 

generalized reciprocity, Agent-Based Simulation 

 

1 Introduction 

Emergence of cooperation in repeated dilemma game is a very fascinating and important topic.  

People change their patterns of behavior through their experience.  This paper investigates 

this change by introducing variable-threshold strategies and their effect on the emergence of 

cooperation in demographic dilemma games.  How does pattern of behavior of a player 

vary?  We consider two ways of varying his pattern of behavior; one is by the comparison 

between his experienced cooperation rate at which the opponents cooperated with him and his 

tendency toward cooperation, and the other between his experienced cooperation rate and his 

subjective idea (vague image commonly shared among people including him) on the social 

cooperation rate.  It is natural for us to assume that the tendency toward cooperation affects 

both his moves and his pattern of behavior.  We do assume that the subjective idea affects 

not his moves directly but his pattern of behavior. 

Many types of strategies are considered in the literature on repeated dilemma games, for 

example, AllC, AllD, and Tit for Tat (TFT).  AllC and AllD are constant strategies since they 

never change their move although the opponent’s move may change, whereas TFT changes 

his observable move at each period depending on the previous opponent’s move.  Suppose 

that a player was born as AllC and has experienced Cooperation and Defection almost equally 

until now.  Is it natural for him to be still AllC from now on or to become TFT since the 

society is not full of cooperation?  We think there is the case that he becomes TFT, that is, he 

changes his tendency toward cooperation.  We want to incorporate this change into our 

model.  We introduce variable-threshold strategies whose components are extended forms of 

TFT.  We interpret TFT as two-state automaton, where TFT uses Defect if the state is 0, 

Cooperate if it is 1 and the smallest state number that prescribes using Cooperate as a 

threshold.  AllC has zero threshold in this interpretation.  We allow up to three states.  

Variable-threshold strategy changes its threshold at most once at some age (once in his 

lifetime) depending on its experience until then.  Thus variable-threshold TFT who was born 

as TFT may change to AllC or AllD.  Also variable-threshold AllC who was born as AllC 

may change to TFT.  We deal with two ways of varying threshold; one is based on player’s 
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cooperation tendency, and the other on a subjective idea of a player, expected cooperation 

rate of the society, that is an inheritable property from his parent.  The former is the case, for 

example, where a player who was born as AllC becomes TFT if he experiences cooperation 

and defection equally since cooperation tendency 1/2 of TFT is nearer to his experienced 

cooperation rate 50% than cooperation tendency 1 of AllC.  The latter corresponds to the 

case, for example, where a player who has 40% expected cooperation rate tries to decrease his 

threshold (in order to become more cooperative) in the same situation since the society is 

more cooperative (50%) than he expected (40%) subjectively.  We show cases where 

cooperation emerges more frequently with variable-threshold strategies than without them in 

demographic Donor-Recipient (DR) or Prisoner’s Dilemma (PD) game. 

Epstein (2006) introduces demographic model.  He shows the emergence of cooperation 

where AllC’s and AllD’s are initially randomly distributed in a square lattice of cells.  In 

each period, players move locally (that is, to random cell within the neighboring 4 cells, that 

is, north, west, south, and east cells; von Neumann neighbors, if unoccupied) and play PD 

game against local (neighboring) player(s).  If wealth (accumulated payoff) of a player 

becomes negative or his age becomes greater than his lifetime, he dies.  If his wealth 

becomes greater than some amount and there is an unoccupied cell in von Neumann 

neighbors, he has an offspring and gives the offspring some amount from his wealth.  

Namekata and Namekata (2010) extend Epstein’s original model discussed above by 

introducing global move, global play, and a player called Referential who uses tag-based TFT 

with connections.  They show cases where the cooperation emerges in some frequency 

between Referential and AllD, while it is almost impossible between AllC and AllD.  Also 

Namekata and Namekata (2011) introduce Reluctant players, who delay replying to changes 

and use extended forms of TFT, into demographic PD game and consider the effect of 

Reluctant players on the emergence of cooperation. 

Nowak and Sigmund (1998) consider the emergence of cooperation in different setting 

where two players are randomly matched, one is selected as Donor and the other as Recipient 

at random, and play DR game at each period.  Frequency of a strategy at the next period is 

proportional to the payoff of the strategy earned at the current period, which is different from 

that in our demographic model.  The chance that the same two players meet again over 

periods is very small.  Every player has his own image score that takes on some range, is 

initially zero, and increases or decreases by one if he cooperates or defects, respectively.  

Donor decides his move (Cooperate or Defect) depending on the opponent’s image score.  

Riolo et al. (2001) deal with similar repeated DR game setting where, instead of image score, 

every player has his own tag and tolerance and Donor cooperates only if the difference 

between his tag and the opponent’s is smaller than his tolerance. 

In general, reciprocity explains the emergence of cooperation in several situations (Nowak 

and Sigmund 2005):  Direct reciprocity assumes that a player plays games with the same 
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opponent repeatedly and he determines his move depending on moves of the same opponent.  

If a player plays games repeatedly and the opponents may not be the same one, indirect 

(downstream) reciprocity assumes that the player determines his move to the current opponent 

depending on the previous moves of this current opponent, or indirect upstream reciprocity, or 

generalized reciprocity, assumes that the player determines his move to the current opponent 

depending on the previous experience of his own.  Since a player in our model and 

Namekata and Namekata (2010, 2011) determines his move depending on his own previous 

experience, we deal with generalized reciprocity.  Nowak and Sigmund (1998) deal with 

indirect (downstream) reciprocity because Donor determines his move to his opponent 

Recipient depending on the image score of the Recipient that relates to the previous moves of 

the Recipient.  There is no reciprocity, either direct or indirect in the model of Riolo et al. 

(2001) because Donor’s move does not depend on the opponent’s previous moves as well as 

his own previous experience. 

Nowak and Sigmund (1994) investigate the emergence of cooperation (by direct 

reciprocity) in infinitely repeated alternating PD game.  In repeated alternating PD game, 

players do not take actions simultaneously at every period but alternately.  DR game is a 

special case of alternating PD game.  Two DR games produce one corresponding usual PD 

game, but not vice versa.  Nowak and Sigmund (1994) show the winning strategy in 

repeated alternating PD game is different from that in usual repeated simultaneous PD game.  

Frean (1994) considers the difference between alternating move and simultaneous move in 

different setting, where two players take one action at every two successive PD games 

alternately and the payoff of the game at each period is determined by the current or previous 

moves, if available, of the two players.  Thus we should be careful that alternating move 

game and simultaneous move game are very different situations. 

In Section 2, we explain our model in detail.  In Section 3, results of simulation are 

discussed.  And Section 4 concludes the paper. 

 

2 Model 

We start with extending TFT as follows in order to introduce variable-threshold strategy:  

Let m=0,1,2; t=0,…,m+1; s=0,…,m.  Strategy component (m,t;s) is illustrated in Fig 1. It has 

m+1 inner states.  The inner states are numbered 0, 1,…, m; thus m is the largest state 

number.  State i is labeled Di if i<t or Ci if not.  If current state is labeled C or D, then the 

strategy component prescribes using C or D, respectively.  In other words, the strategy 

component prescribes using D if current state i<t and using C if not; thus the value t is the 

threshold which determines the move of a player.  Initial state in period 0 is state s; its label 

is Ds if s<t or Cs if not.  If current state is i, then the next state is min{i+1,m} or max{i1,0} 

given that the opponent uses C or D, respectively, in this period.  How to vary threshold is 

given shortly in this section.  Note that TFT is expressed as (1,1;1) in this notation if 
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threshold is fixed and we regard the strategy component as a strategy.  We abbreviate fixed 

threshold case as fTh.  Thus strategy component (m,t;s) is an extended form of TFT.  To 

sum up, our strategy components are expressed as (m,t;s); m is the largest state number, t is 

the threshold, and s is the initial state number.  We omit the initial state like (m,t;*) if it is 

determined randomly.  We also omit the initial state like (m,t) if we have no need to specify 

it. 

We now explain how to vary threshold in detail.  A player has, as his inheritable property, 

ageOfChange (abbreviated as ageCh) at which he may vary his threshold in accordance with 

his experience in encounter with others if he is still alive at his ageOfChange.  We define 

experienced cooperation rate (abbreviated as erCr) of a player as the number of move C used 

by the opponents divided by the total number of games played by him (as Recipient if the 

game is DR) until his ageOfChange.  If the denominator of erCr is 0 and thus it is not 

defined, then nothing does happen.  How does a player vary his threshold in accordance with 

this objective erCr if it is defined?  We deal with two ways of varying threshold; one is based 

on player’s cooperation tendency that is firmly related to his strategy component, and the 

other on a subjective idea of a player, expected cooperation rate of the society, that is 

Fig. 1. Strategy component (m,t;s) in case of t<s<m.  Circles denote inner states. 
Initial state is the state pointed by arrow labeled “initial state”.  Threshold divides states 
into two subclasses; one prescribes using D and the other using C.  The transition 
between states occurs along the arrow labeled C or D if the opponent uses C or D, 
respectively. 
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Fig. 2. (vTend): The above figure shows how to vary threshold, for example, of 
strategy component (2,2).  Current threshold 2 increases to 3, remains at 2, or 
decreases to 1 if erCr<1/6, 1/6erCr<1/2, or erCr1/2, respectively. 
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independent of his strategy component. 

(vTend):  We define cooperation tendency of (m,t) as 
1

CT( , ) :
1

m t
m t

m

 



, that is, the 

number of states labeled C divided by the total number of states in Fig 1.  This value is 

interpreted as the tendency toward cooperation.  AllC, AllD and TFT have 1, 0 and 1/2 

cooperation tendency respectively.  If a player with (m,t) experiences erCr at his 

ageOfChange, then he tries to adjust his cooperation tendency (actually adjust his threshold) 

to be as near the erCr as possible by at most one increment or decrement (see Fig 2), that is, 

adjust his threshold to a new threshold *t  which is given by 

 

CT( ,max{ 1,0}) erCr ,

CT( , *) erCr min CT( , ) erCr ,
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where *t  is given to be the smallest t if the minimum of the right hand side of the above 

equation is attained by multiple values of t.  This way of varying threshold is based on two 

objective values, cooperation tendency and experienced cooperation rate of the player and is 

called varying threshold by cooperation tendency (abbreviated as vTend).  Note that strategy 

components (1,t) (t=0,1,2) tend to vary to (1,1) through generations if erCr is in (1/4,3/4).  

Also that strategy components (2,t) (t=0,1,2,3) tend to vary to (2,1) through generations if 

erCr is in (1/2,5/6). 

(vCr):  We assume that a player has expected cooperation rate (abbreviated as ecCr) as his 

inheritable property.  The ecCr is a subjective rate at which he expects the society is 

cooperative.  If a player with ecCr experiences erCr at his ageOfChange, then he tries to 

adjust his threshold to erCr irrespective of his cooperation tendency as follows (see Fig 3): 

Decrease his threshold by one (try to be more cooperative) if possible 

in case of erCrecCr+tolerance (since the society is more cooperative than 

Fig. 3. (vCr): The above figure shows how to vary threshold, for example, of 
strategy component (2,2) for ecCr=0.5 and tolerance=0.05.  Current threshold 2 
increases to 3, remains at 2, or decreases to 1 if erCr<0.45, 0.45erCr<0.55, or 
erCr0.55, respectively. 
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expected), 

increase his threshold by one (try to be more defective) if possible 

in case of erCr<ecCrtolerance (since the society is more defective than expected), 

do not vary his threshold 

in other cases, 

where tolerance is set to be 0.05 in our simulation.  This second way of varying threshold is 

based on two values; one is objective experienced cooperation rate and the other is subjective 

expected cooperation rate of the society and is called varying threshold by expected 

cooperation rate (abbreviated as vCr).  This second way of varying threshold is our attempt 

to incorporate some subjective property of a player which is not directly related to strategy 

component into decision process; his subjective property affects not his moves directly but his 

pattern of behavior.  Note that threshold does not increase if erCr  0.5 = 0.55  0.05 since 

we will set ecCr of the society to be rather pessimistic range [0.35,0.55) in Table 4. 

We have fully defined a variable-threshold strategy by specifying strategy component 

(m,t;s), way of varying threshold (fTh, vTend or vCr), ageOfChange, and ecCr in case of vCr.  

Thus strategy component (m,t;s) of a variable-threshold strategy of a player may vary to 

another strategy component (m,t') (t'=t+1 or t'=t1) at his ageOfChange.  Note that we need 

not to specify all elements of the latter strategy component (m,t') because they are determined 

automatically.  Thus we can say variable-threshold strategy (m,t;s) if way of varying 

threshold is understood in the context.  Usual TFT, AllC, and AllD are (1,1;1), (m,0;s), and 

(m,m+1;s), respectively if their threshold is fixed.  We also use TFT, AllC, and AllD to call 

strategy components (1,1), (m,0), and (m,m+1), 

respectively.  Strategy and its strategy 

components are not the same in the strict sense, 

but we do not distinguish these terms strictly 

unless there is any confusion.  So we say, for 

example, variable-threshold TFT varies to 

AllC.  Notations (m,t;s), (m,t;*), and (m,t) are 

used to indicate both strategy and strategy 

component.  Note that we deal with indirect 

upstream reciprocity, that is, generalized 

reciprocity since moves of the strategy are 

determined only by the previous experience of 

the strategy. 

We restrict our model to satisfy the 

following condition: 

(AllCneverAllD):  If a player (m,0) (AllC) 

before his ageOfChange belongs to the first 

Table 1.  Payoff matrix of DR game. 

Constant x is given by .  We 

set b=8 and c=1 in this paper. 

 
Recipient 

Donor C ,  
D ,  

Table 2.  Payoff matrix of PD game. 

We set , , 

, , b=8, and c=1 in this 

paper. 

 
C D 

C R,R S,T 
D T,S P,P 
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generation, then his all descendants are never (m,m+1) (AllD).  And if a player (m,m+1) 

(AllD) before his ageOfChange belongs to the first generation, then his all descendants are 

never (m,0) (AllC). 

Note that AllC of the form (0,0) is always AllC and AllD of the form (0,1) is always AllD 

because of this condition. 

We deal with Donor-Recipient (DR) game or Prisoner’s Dilemma (PD) game as a stage 

game.  DR game is a two-person game where one player is randomly selected as Donor and 

the other as Recipient.  Donor has two moves, Cooperate (C) and Defect (D).  C means 

Donor pays cost c in order for Recipient to receive benefit b (b=8>c=1>0).  Defect means 

Donor does nothing.  Note that Recipient has no move.  PD game which we use here is a 

two-person simultaneous move game where both player has two moves, C and D, whose 

meanings are the same as in DR game.  We call our DR game as randomly alternating move 

game because one player is randomly selected as Donor and the other as Recipient.  Since 

we want to compare the effect of variable-threshold strategies between DR game and PD 

game, each player plays two games against (possibly different) players at each period if the 

stage game is DR game.  Since Donor is selected at random in each DR game, it is expected 

that at each period each player plays four DR games as Donor two times and as Recipient two 

times.  On the other hand each player plays one game against another player at each period if 

the stage game is PD game.  It is expected that at each period each player plays two PD 

games.  Since it is common in demographic dilemma game that the payoff of a player to be 

positive if the opponent uses C and negative if D and the worst payoff of a player is equal to 

the best payoff in absolute value, we transform the original payoffs to new ones by subtracting 

Fig. 4.  Typical example of simulation (in Table 5):  The left figure shows the state at 
period 0 and the right at period 210.  Shapes represent players.  Their shape shows 
strategy component and move (C or D) at that period as the right table indicates.  Here 
move C means that player’s average C rate is larger than or equal to 0.5, and move D 
means that it is smaller than 0.5.  Player’s average C rate is defined in Section 3. 

strategy 
component C D

0,0  

2,0  

2,1  

2,2  

2,3  

0,1  
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constant x.  Table 1 and 2 show the transformed payoff matrices of DR game and PD game, 

respectively.  In our simulation, the key difference between DR game and PD game is that 

between randomly alternating and simultaneous move. 

In period 0, N (=100) players are randomly located in 30-by-30 lattice of cells (see Fig 4 

left).  The left and right borders of the lattice are connected.  If a player moves outside, for 

example, from the right border, then he comes inside from the left border.  So are the upper 

and lower borders.  Players use strategies of (m,t;s) form.  Initial distribution of strategy 

components is described in the later paragraph.  Initial wealth of every player is 6.  Their 

initial (integer valued) age is randomly distributed between 0 and deathAge (=50). 

In each period, each player (1st) moves, and (2nd) plays dilemma game(s) given by Table 1 

or Table 2 against another player or other players.  Positive payoff needs opponent’s C.  

(The detailed description of (1) move and (2) play is given in Table 3.)  The payoff of the 

game is added to his wealth.  If the resultant wealth is greater than fissionWealth (=10) and 

Table 4.  Initial distribution of inheriting properties. 

property initial distribution

strategy 
component 

We deal with 4 types of populations, 1ALL, 2ASYM, AllCAllD, and 
TFTAllD with the specified initial distribution as follows: 
1ALL:={(1/6)(0,0;0), (1/6)(1,0;*), (1/3)(1,1;*), (1/6)(1,2;*), (1/6)(0,1;0)}, 
2ASYM:= {(1/8)(0,0;0), (1/8)(2,0;*), (1/4)(2,1;*), (1/4)(2,2;*), (1/8)(2,3;*), 

(1/8)(0,1;0)}, 
AllCAllD:= {(1/2)(0,0;0), (1/2)(0,1;0)} (fixed-threshold case), 
TFTAllD:= {(1/2)(1,1;1), (1/2)(0,1;0)} (fixed-threshold case). 
The notation, for example, of 1ALL, means that with probability 1/6 
strategy component (0,0;0) (AllC) is selected, with probability 1/3 strategy 
component (1,1;*) (indicating initial state is selected randomly) is selected, 
and so on.  Note that initially 50% of players use C on the average since 
both ((0,0;0) or (1,1;1)) and (0,1;0) are included with the same probability 
and so are both (m,t;*) and (m,mt+1;*).

rGML Uniformly distributed at interval [lowRGML, highRGML) (=move). 
rGPL Uniformly distributed at interval [lowRGPL, highRGPL) (=play). 
ageCh Takes one randomly from {15, 16, 17, 18, 19, 20}.
ecCr Uniformly distributed at interval [0.35,0.55) (=vCr).

Table 3.  Detailed description.  (1) describes move and (2) describes play in detail. 

(1) 

With probability rateOfGlobalMoveToLocal (abbreviated as rGML), player 
moves to random unoccupied cell in the whole lattice.  If there is no such cell, he 
stays at the current cell.  Or with probability 1rGML, player moves to random 
cell in von Neumann neighbors if it is unoccupied.  If there is no such cell, he 
stays at the current cell. 

(2) 

With probability rateOfGlobalPlayToLocal (abbreviated as rGPL), the opponent 
against whom a player plays dilemma game is selected at random from all players 
(except himself) in the whole lattice.  Or with probability 1rGPL, the opponent 
is selected at random from von Neumann neighbors (no interaction if none in the 
neighbors). 
This process is repeated 2 times if the stage game is DR game.  (Two opponents 
are possibly different.) 
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there is an unoccupied cell in von Neumann neighbors, the player has an offspring and give 

the offspring 6 units from his wealth.  His age is increased by one.  If his age is equal to his 

ageOfChange, then follow the varying-threshold process discussed above.  If the resultant 

wealth becomes negative or his age is greater than deathAge (=50), then he dies.  Then next 

period starts. 

In our simulation we use synchronous updating, that is, in each period, all players move, 

then all players play, then all players have an offspring if possible, and then each player does 

the varying-threshold process if he is at his ageOfChange.  Among properties of a player, 

strategy component, rateOfGlobalMoveToLocal (rGML), rateOfGlobalPlayToLocal (rGPL), 

ageOfChange (ageCh), and ecCr are inherited from parent to offspring.  We remark that the 

strategy component and its initial state of the offspring are set to the current strategy 

component and the current state of the parent.  But there is a small mutationRate (=0.05) 

with which they are not inherited.  Initial distribution of these properties is given in Table 4 

and this distribution is also used when mutation occurs.  Initial distribution of strategy 

components is one of four distributions, 1ALL, 2ASYM, AllCAllD, and TFTAllD, listed in 

Table 4.  We comment on their set and distribution in more detail.  We first consider them 

only as a set of strategy components and then their initial distribution over the set in this order.  

Let nALL:={(m,t;*)|m=0,…,n, t=0,…,m+1}, nSYM:={(m,t;*)|m: odd, 1mn, t=(m+1)/2}, 

nAllCAllD := {(m,t;*)|1mn,t=0,m+1}, and nASYM := nALLnSYMnAllCAllD.  

nALL includes all strategy components whose number of inner states is smaller than or equal 

to n+1.  nSYM includes all strategy components in nALL which is symmetric between C 

and D.  nAllCAllD includes AllC and AllD that have more than 1 inner states within nALL.  

nASYM includes nALL but nSYM and nAllCAllD.  The key idea that we deal with 

AllCAllD(=0ALL), 1ALL, and particularly 2ASYM is that we want to construct a strategy 

component set which has small number of strategy components and has symmetric pattern 

between using C and D over the set and includes AllC (0,0;0) and AllD (0,1;0) that cannot 

vary their threshold by AllCneverAllD condition as well as variable-threshold AllC ((1,0;*) or 

(2,0;*)) and AllD ((1,2;*) or (2,3;*)).  Thus we exclude 2SYM and 1AllCAllD from 2All in 

order to get 2ASYM.  Now we comment on distribution over strategy components in the set.  

For example, 1ALL includes 5 strategy components, (0,0;0), (1,0;*), (1,1;*), (1,2;*), and 

(0,1;0). But the first two strategy components are AllC and the last two are AllD.  1ALL 

actually has three strategy components and these three strategy components are selected with 

the same probability 1/3 which is divided equally between, for example, (0,0;0) and (1,0;*).  

Thus we obtain 1ALL={(1/6)(0,0;0), (1/6)(1,0;*), (1/3)(1,1;*), (1/6)(1,2;*), (1/6)(0,1;0)}.  

We include AllCAllD and TFTAllD that are fixed-threshold cases in Table 4 as reference 

populations.  We assume that with errorRate (=0.05) a player makes mistake when he makes 

his move.  Thus AllC may Defect sometime. 

If population of strategy components is AllCAllD, move = [0.0, 0.0], and play = [0.0, 0.0], 



11 
 

then our model is similar to that of Epstein (2006).  His model uses asynchronous updating 

while our model uses synchronous updating. 

 

3 Simulation and Result 

Our purpose to simulate our model is to search parameter settings where the cooperation 

emerges more frequently with variable-threshold strategies than without them and investigate 

the effect of variable-threshold strategies on the emergence of cooperation.  We use Ascape 

( http://sourceforge.net/projects/ascape/ ) to simulate our model. 

We consider the following range of parameters:  (move, play) = ([0.0, 0.15), [0.5, 0.9)) 

and ([0.2, 0.6), [0.2, 0.3)).  We call these situations lMgP (local move global play) and gMlP 

(global move local play), respectively, although move = [0.2, 0.6) is larger than [0.0, 0.15) but 

is not global move literally. 

We execute 300 runs of 

simulations in each parameter 

setting.  We judge that the 

cooperation emerges in a run if 

there are more than 100 players 

and the average C rate (“Cr”) is 

greater than 0.2 at period 500, 

where the average C rate at a 

period is the average of the 

player’s average C rate at the 

period over all players and the 

player’s average C rate at the 

period is defined as the number 

of move C used by the player 

divided by the number of 

games (as Donor if the game is 

DR) played at the period.  

(We interpret 0/0 as 0.)  This 

average C rate is the rate at 

which we see cooperative 

move C as an outside observer.   

Since negative wealth of a 

player means his death in our 

model and he has a lifetime, it 

is necessary for many players to use C in order that the population is not extinct. 

First we show two typical examples in Fig 5; cooperation emerges in one example but it 

Fig. 5. Two typical examples of simulation.  The 
upper is a case (DR game, 2ASYM (vCr=[0.35,0.55)), 
lMgP (move=[0.0,0.15), play=[0.5,0.9))) in Table 5.  
The lower is a case (PD game, 2ASYM (vTend), gMlP  
(move=[0.2,0.6), play=[0.2,0.3))) in Table 6. 
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does not in the other.  The upper graph shows the number of all players at one successful 

case (DR game, 2ASYM(vCr=[0.35,0.55)), lMgP (move=[0.0, 0.15), play= [0.5, 0.9))) in 

Table 5.  The lower graph shows that at one unsuccessful case (PD Game, 2ASYM(vTend), 

gMlP (move=[0.2, 0.6), play= [0.2, 

0.3))) in Table 6.  Note that in the 

lower graph players are almost full 

over the whole lattice but the 

population becomes extinct around 

at period 410.  We summarize our 

results in the following tables.  

Tables 5 and 6 deal with lMgP and 

gMlP case, respectively.  In tables 

5 and 6, the entity of the first row 

and the second to fifth column 

indicates initial distribution of 

strategy components.  In the 

second row, fTh, vTend, and vCr 

indicate fixed-threshold case, 

variable-threshold by cooperation 

tendency case, and 

variable-threshold by expected 

cooperation rate case, respectively.  

“Ce” in the first column indicates 

this row gives the emergence rate 

of cooperation that is the frequency 

Table 5.  lMgP (move=[0.0,0.15), play= [0.5,0.9)) case 

lMgP TFTAllD AllCAllD 1ALL 2ASYM M/m
   fTh vTend vCr fTh vTend vCr 

Ce DR 0.000 0.303 0.360 0.320 0.457 0.510 0.457 0.547 1.80
PD 0.000 0.180 0.160 0.180 0.213 0.343 0.307 0.453 2.52

Sa DR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 -
PD 0.000 0.000 0.000 0.000 0.031 0.000 0.207 0.169 -

Table 6.  gMlP (move=[0.2,0.6), play=[0.2,0.3)) case 

gMlP AllCAllD TFTAllD 1ALL 2ASYM M/m
   fTh vCr vTend fTh vCr vTend 

Ce DR 0.083 0.250 0.467 0.407 0.723 0.810 0.470 0.923 3.69
PD 0.017 0.120 0.130 0.210 0.360 0.457 0.477 0.710 5.92

Sa DR 0.000 0.000 0.000 0.016 0.009 0.004 0.014 0.000 -
PD 0.000 0.000 0.000 0.190 0.037 0.000 0.545 0.263 -

Fig. 6.  Graphs Ce and Sa.  The upper and lower 

are for Table 5 and 6, respectively. 
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with which the cooperation emerges.  “Sa” indicates the saturation rate which is defined as 

the number of runs, where the average C rate is greater than 0.7 and there exist more than 810 

players (= 90% of 30-by-30) at the last period 500, divided by the number of runs where the 

cooperation emerges.  This saturation rate measures the rate at which players are almost full 

over 30-by-30 cells.  “DR” and “PD” in the second column indicate the corresponding rows 

are about DR and PD game, respectively.  The last column “M/m” indicates the rate between 

maximum Ce and the Ce of TFT or AllCAllD (which is the larger of the two), for example, 

1.80 = 0.547/0.303. 

For example, Table 5 shows that the frequency with which the cooperation emerges is 

54.7% and the saturation rate is 1.2% in DR game when the population is 2ASYM (vCr), 

rateOfGlobalMoveToLocal is initially distributed in [0.0, 0.15), and rateOfGlobalPlayToLocal 

in [0.5, 0.9).  We observe that the cooperation almost never emerges if population is 

TFTAllD in all cases of Tables 5.  Table 5 shows that Ce in PD game is, for example, 45.3% 

for 2ASYM (vCr), while that is 18.0% for AllCAllD; the former is 2.52 times larger than the 

latter.  Table 6 shows that the cooperation emerges at 25.0% for TFTAllD but Ce is 92.3% 

for 2ASYM (vTend) in DR game; the latter is 3.69 times larger than the former. 

We observe that Ce’s of vCr are larger than those of vTend in lMgP case (Table 5) and the 

opposite relation, that is, Ce’s of vTend are larger than those of vCr in gMlP case (Table 6).  

Also that Ce’s of AllCAllD are larger than those of TFTAllD in lMgP case (Table 5) and the 

opposite relation that Ce’s of TFTAllD are larger than those of AllCAllD in gMlP case (Table 

6).  From now on we concentrate on favorable way of varying threshold, that is, we deal 

only with vCr in lMgP case and only with vTend in gMlP case for varying threshold, 

respectively.  Fig 6 shows the graphs of Ce and Sa.  We see that cooperation emerges more 

frequently in variable-threshold (vCr or vTend) case than in fixed-threshold (fTh) case 

although the net effects vary from 0.547/0.510=1.07 to 0.360/0.130=2.77.  Ce’s in DR game 

are larger than those in PD game.  M/m’s in PD game are larger than those in DR game.  

Sa’s in PD game are larger than those in DR game and the latter are almost zero (smaller than 

or equal to 1.2% in Fig 6).  Thus we conclude that variable-threshold strategies promote 

emergence of cooperation in Demographic DR and PD games in our simulation.  We 

summarize important results in the following two observations: 

Observation (favorable population between AllCAllD and TFTAllD):  lMgP case favors 

AllCAllD over TFTAllD, whereas gMlP case does TFTAllD over AllCAllD with respect to 

the emergence of cooperation. 

Observation (favorable way of varying threshold):  lMgP case favors vCr over vTend, 

whereas gMlP case does vTend over vCr with respect to the emergence of cooperation. 

The latter observation will be deduced from other observations and conjectures later in this 

section. 
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Next we investigate the behavior of 

threshold.  Tables 7 and 8 summarize further 

data related to threshold for lMgP and gMlP, 

respectively.  These data are averages of 

some amounts at period 500 over non 

saturation runs among all 300 runs since the 

saturation causes unusual behavior of the 

amounts.  For example, “mature” indicates 

the average rate at which a player is older than 

his ageOfChange over players who are dying 

at period 500.  “no”, “inc”, or “dec” means 

the average rate at which a player did nothing, 

increased, or decreased his threshold, 

respectively, over mature players when he was 

at his ageOfChange.  “aCr” is the average 

actual C rate at period 500 where the 

cooperation emerges.  aCr is slightly different 

from Cr and is defined as the average of the 

player’s average C rate at the period over all 

players who actually play at least one game (as 

Donor if the game is DR) at the period.  aCr 

is regarded as the rate at which a player 

receives the opponents’ cooperative move C 

on the average.  “erCr”   shows the average 

experienced cooperation rate over players who 

increase (or decrease) their threshold at period 

500.  “deathAge” is the average age over the 

players who die at period 500. 

Table 7 shows, for example, that in lMgP 

and DR game case among players who die at 

period 500, about 5% of them are older than their ageOfChange; about 90% of whom did 

nothing, smaller than 0.5% of whom increased their threshold, and about 10% of whom 

decreased their threshold.  Thus in lMgP case (more generally in vCr case although detailed 

data are not given here) among players who die at period 500, most players do not reach their 

ageOfChange; and players who have reached that age did not vary their threshold very often, 

decreased their threshold (to become more cooperative) less often, or almost never increased 

their threshold (to become more defective).  This is true for both DR and PD game although 

the mature rates are larger in PD game than in DR game.  erCr’s for inc are smaller than the 

Table 7.  Further data in lMgP. 

lMgP 1ALL 
vCr 

2ASYM
vCr

mature

DR

0.053 0.059
no 0.922 0.888
inc 0.004 0.002
dec 0.074 0.111

mature

PD

0.124 0.096
no 0.940 0.915
inc 0.000 0.001
dec 0.060 0.084

aCr DR 0.453 0.459
PD 0.482 0.477

erCr 
DR inc 0.431 0.444

dec 0.575 0.569

PD inc --- 0.429
dec 0.595 0.608

deathAge DR 5.30 5.63
PD 8.51 7.28

Table 8.  Further data in gMlP. 

gMlP 1ALL 
vTend 

2ASYM
vTend

mature

DR

0.054 0.059
no 0.784 0.760
inc 0.057 0.074
dec 0.159 0.165

mature

PD

0.084 0.102
no 0.751 0.840
inc 0.097 0.031
dec 0.152 0.129

aCr DR 0.453 0.464
PD 0.477 0.502

erCr 
DR inc 0.629 0.538

dec 0.584 0.586

PD inc 0.668 0.658
dec 0.591 0.602

deathAge DR 5.25 5.49
PD 6.79 7.53
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corresponding aCr’s, whereas erCr’s for dec are larger than the corresponding aCr’s. 

Table 8 shows, for example, that in gMlP and DR game case among players who die at 

period 500, about 5% of them are older than their ageOfChange; about 77% of whom did 

nothing, about 7% of whom increased their threshold, and about 16% of whom decreased 

their threshold.  Thus in gMlP case (more generally in vTend case although detailed data are 

not given here) among players who die at period 500, most players do not reach their 

ageOfChange; and players who have reached that age did not vary their threshold very often, 

decreased their threshold (to become more cooperative) less often, or increased their threshold 

(to become more defective) still less often.  This is true for both DR and PD game although 

the mature rates are larger in PD game than in DR game.  erCr’s for both inc and dec are 

larger than the corresponding aCr’s. 

aCr’s in Tables 7 and 8 are almost smaller than 0.5, that is, it is expected that a player 

receives the opponents’ cooperative move C smaller than 50% of the time on the average.  

By the relation between aCr’s and erCr’s in Tables 7 and 8, the players who decrease their 

threshold at period 500 experience higher cooperation rate than on the average, whereas the 

players who increase their threshold at period 500 experience smaller cooperation rate than on 

the average in lMgP case (Table 7) or higher cooperation rate than on the average in gMlP 

case (Table 8).  This relation between aCr’s and erCr’s holds in general if we replace lMgP 

with vCr and gMlP with vTend, which is stated in the following Observation (varying 

threshold and experienced Cr), although detailed data are not given here.  Also deathAge’s in 

Tables 7 and 8 are much smaller than 15 (minimum value of ageOfChange), which is 

consistent with the low mature rates.  Note that deathAge’s of PD games are larger than 

those of DR games. 

We summarize important results in the following observations about at period 500 and 

conjectures about at typical periods: 

Observation (average of actual cooperation rate):  A player receives the opponents’ 

cooperative move C almost smaller than 50% of the time on the average. 

Observation (varying threshold and experienced Cr, erCr):  A player who decreases his 

threshold (to become more cooperative) has experienced the opponents’ cooperative move 

C more often than on the average.  A player who increases his threshold (to become more 

defective) has experienced the opponents’ cooperative move C less often than on the 

average in vCr case and more often than on the average in vTend case. 

Observation (behavior of threshold):  Most players die before their ageOfChange.  

Among players who reach their ageOfChange, most of them do nothing, some of them 

decrease their threshold, and almost none of them (in vCr case) or less of them (in vTend 

case) increase their threshold.  Particularly, a player varies his threshold very rarely in his 

lifetime (smaller than 2.1%).  Furthermore, it almost never holds that erCr < ecCr  
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tolerance (0.05) at ageOfChange in vCr case; since ecCr is in [0.35,0.55). 

Conjecture (varying threshold in vCr):  Transitions between strategy components such as 

(1,2) => (1,1) => (1,0) and (2,3) => (2,2) => (2,1) => (2,0) tend to happen; by the part of 

vCr case in Observation (behavior of threshold). 

Conjecture (varying threshold in vTend):  Transitions between strategy components such 

as (1,2) => (1,1), (1,0) => (1,1), (2,3) => (2,2) => (2,1), and (2,0) => (2,1) tend to happen; 

since among players who reach their ageOfChange, some of them decrease their threshold, 

and less of them (in vTend case) increase their threshold by Observation (behavior of 

threshold) and erCr’s are in (1/4,3/4) for 1ALL(vTend) and in (1/2,5/6) for 2ASYM(vTend) 

by Table 8 and detailed data not given here. 

Fig 7 shows average frequency of strategy 

components at period 500 over non 

saturation runs (upper) in 2ASYM (vCr) and 

DR game of Table 5 (lMgP) and that (lower) 

in 2ASYM (vTend) and PD game of Table 6 

(gMlP).  Note that AllD bar and AllC bar 

have large frequency in upper vCr case but 

AllD bar and (2,1) bar have large frequency 

in lower vTend case.  The upper frequency 

of strategy components in Fig 7 follows 

from Conjecture (varying threshold in vCr).  

The lower frequency of strategy components 

in Fig 7 follows from Conjecture (varying 

threshold in vTend).  Let us deduce 

Observation (favorable way of varying 

threshold) from other observations and 

conjectures.  1ALL(vTend) and 

2ASYM(vTend) push their strategy 

components to (1,1) and (2,1), respectively, 

by Conjecture (varying threshold in vTend), 

but AllCAllD is favored over TFTAllD in lMgP case by Observation (favorable population 

between AllCAllD and TFTAllD).  Therefore we deduce that the cooperation emerges  less 

frequently at vTend than at vCr in lMgP case.  1ALL(vCr) and 2ASYM(vCr) push their 

strategy components to (1,0) and (2,0), respectively, by Conjecture (varying threshold in vCr), 

but TFTAllD is favored over AllCAllD in gMlP case by Observation (favorable population 

between AllCAllD and TFTAllD).  Therefore we deduce that the cooperation emerges  less 

frequently at vCr than at vTend in gMlP case. 

Fig. 7. Average frequency of strategy 
components at period 500 over non 
saturation runs in 2ASYM (vCr) in DR 
game for lMgP case (upper) and in 
2ASYM (vTend) in PD game for gMlP 
case (lower). 
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4 Conclusion 

Our main concern is to devise a proper representation of how people change their pattern of 

behavior.  We introduce variable-threshold strategies whose component is an extended form 

of TFT.  Thus we can say variable-threshold AllC who was born as AllC changes to TFT. 

We show two parameter settings where the cooperation emerges more frequently with 

variable-threshold strategies than without them although each player varies his threshold very 

rarely in his lifetime (smaller than 2.1%).  We deal with two ways of varying threshold, one  

(vTend) by cooperation tendency and the other (vCr) by expected cooperation rate.  vTend is 

based on the comparison between two objective values; experienced cooperation rate and 

cooperation tendency.  vCr is based on the comparison between two values; objective 

experienced cooperation rate and subjective expected cooperation rate.  We emphasize that 

the latter subjective expected cooperation rate of a player affects not his moves directly but 

his pattern of behavior.  vTend promotes the emergence of cooperation by pushing threshold 

in both cooperative and defective directions in one parameter setting where TFTAllD is 

favored over AllCAllD with respect to the emergence of cooperation.  vCr promotes the 

emergence of cooperation by pushing threshold in one cooperative direction in the other 

parameter setting where AllCAllD is favored over TFTAllD.  Donor-Recipient game is 

randomly alternating move game and Prisoner’s Dilemma game is simultaneous move game.  

They are quite similar but their emergence rates of cooperation is different; the former is 

larger than the latter.  It is important to pay attention to which is better to represent real 

situations in order to model them. 

In summary, we show through Agent-Based Simulation that the variable-threshold 

strategies are useful to enhance the emergence of cooperation where players may move and 

play globally in Demographic Donor-Recipient and Prisoner's Dilemma games. 
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