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Abstract

This paper studies how amatching rule affects the evolution of fairness in the ultimatumgame.
Gale et al. [1995] show that under the randommatching rule, a partially fair imperfect Nash equi-
librium in which all proposers are fair but some responders are selfish is asymptotically stable in
the limit as noise in learning vanishes if responders are noisier than proposers. This paper shows
that, under an assortative matching rule, a mutually fair imperfect Nash equilibrium in which all
proposers are fair and all responders are reciprocal is limit asymptotically stable as noise due to
committed agents vanishes.

1 Introduction

Why would people behave in a fair manner while sacrificing their own monetary payoffs? In the
ultimatum game, subgame perfection predicts that selfish individuals will make proposals to exploit
almost all of the total surplus, and denotes those who accept these unfair offers as responders. In
contrast to this prediction by standard game theory, many experimental data show that people tend
to equally divide the total surplus (e.g. Binmore et al. [2002], Güth et al. [1982]). In the present study,
this paradox is investigated within the framework of the evolutionary game theory by focusing on a
matching rule.

Gale et al. [1995] study the replicator dynamics of the ultimatum mini game. There are two
populations—proposers (population 1) and responders (population 2).The two populations are equal
in size. In each period, an agent in one population matches with an agent in the other population at
random. Each pair of agents plays the ultimatum (mini) game, as shown in Figure 1.

In the game, agent 1 proposes either a high (H) or low (L) offer. If she adopts strategy H, it is
assumed that agent 2 (responder) always accepts it. If she adopts strategy L, the responder decides to
either accept (Y) or reject (N) it.
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ments. I am very grateful to Professor Akira Okada for his guidance and encouragement. This work was supported by
Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) Fellows.

†Graduate School of Economics, Hitotsubashi University, 2-1 Naka, Kunitachi, Tokyo, Japan. E-mail:
yasuhiro.shirata@gmail.com

1



b
�

���
��

H
HHH

HH

1
H Lr

2,2
rr

�
�

�

@
@
@

2
Y Nr

3, 1
r

0, 0
Figure 1: The ultimatum mini game.

We call a proposer selfish if she adopts strategy L and fair if she adopts H. Similarly, we call a
responder selfish if he adopts strategy Y and reciprocal if he adopts N .1 Let x1 denote the proportion
of selfish proposers in population 1 and x2 denote the proportion of selfish responders in population
2. A state of the system is represented by a pair x = (x1, x2) ∈ [0, 1] × [0, 1]. The average fitness of
action k (k = L,H,Y ,N) at state x is denoted by fk(x). Then, the average fitness of population 1
and population 2 is given by ϕ1(x) = x1 fL(x) + (1 − x1) fH(x) and ϕ2(x) = x2 fY(x) + (1 − x2) fN(x),
respectively.

The standard replicator dynamics (RD)2 is described as follows:

ẋ1 =g1(x) = x1( fL(x) − ϕ1(x)) = x1(1 − x1)( fL(x) − fH(x)) (1)

ẋ2 =g2(x) = x2( fY(x) − ϕ2(x)) = x2(1 − x2)( fY(x) − fN(x)). (2)

In the ultimatumgame, fL(x) = 3x2, fH(x) = 2, fY(x) = x1+2(1−x1), and fN(x) = 2(1−x1).Therefore,
the RD for the ultimatum game is described by g1(x) = x1(1 − x1)(3x2 − 2) and g2(x) = x2(1 − x2)x1.

As illustrated by the phase diagram of RD for the ultimatum game (1)–(2) in Figure 2, Gale et al.
[1995] show that the subgame perfect equilibrium and the imperfect Nash equilibria are locally (Li-
apunov) stable and that the subgame perfect equilibrium is the unique asymptotically stable point.
Boundedly rational people may play wrong strategies by learning errors. To represent such an evolu-
tionary drift, Gale et al. [1995] and Binmore and Samuelson [1999] introduce the following perturbed
selection dynamics: For all i = 1, 2,

ẋi = gi(x) + hi(x).

They show that if the drift function h1 of proposers is constant in the fitness difference between actions
L and H and h2 of responders is strictly decreasing in the fitness difference between actions Y and
N (which implies that the noise level is higher for responders than for proposers near the imperfect

1Reciprocal is one of descriptions of this strategy. It can alternatively be called fair or spiteful.
2We consider only the (perturbed) replicator dynamics. However, this can be interpreted as an approximation tomany

learning models (Gale et al. [1995]). Section 5 constructs an imitation learning model leading to the replicator dynamics.
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Figure 2: Phase diagram under the random matching rule. N is the set of imperfect Nash equilibria
and SPE is the subgame perfect equilibrium.

equilibria)3, there exists an asymptotically stable point that converges to an imperfect Nash equilib-
rium, resulting in the fair allocation as noise vanishes. This result implies that in the long run, people
may behave in a fair manner as a consequence of noisy learning.

The asymptotically stable point, however, critically depends on the formof h (Binmore and Samuel-
son [1999]). For example, if h2 is not sensitive to payoffs, then only the subgame perfect equilibrium
is asymptotically stable. Thus, if we consider any other noisy learning, then under the replicator dy-
namics with the random matching rule, only the unfair behavior survives.

Unlike these previous approaches, this paper studies how a matching rule affects the evolution of
fairness under the replicator dynamics. In particular, we analyze an assortative matching rule intro-
duced by Becker [1973, 1974]. According to the assortative matching rule, pairing of similar types of
individuals is more likely than they are paired under the random matching rule.

In contrast to the randommatching rule, an interaction rate between individuals depends on their
own actions under the assortativematching rule.This property leads to replicator dynamicswith non-
linear fitness functions (Taylor andNowak [2006]). Taylor andNowak [2006] introduce a generalized
matching rule with non-uniform interaction rates for symmetric 2×2 strategic form games in a single
population. They show that the non-uniform interaction rates generate interior equilibria even if one
strategy dominates another. Bergstrom [2003] introduces another type of the assortative matching
rule in the prisoners’ dilemma game, and Taylor and Nowak [2006] and Bergstrom [2003] show that
cooperation survives under the assortative matching rule in the prisoners’ dilemma game.

Departing from the assortative matching in a single population, we introduce assortativity into
interactions between two different populations. Following Gale et al. [1995], we assume that agent 1 is
drawn from the population of proposers and that agent 2 is drawn from the population of responders.

3Gale et al. [1995] give a plausible explanation for this drift.
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It is widely observed that bargaining in two-sided markets such as marriage, and labor markets, in
which the two sides of overall population are clearly separate. Many interactions in these markets
often have assortativity because of social signals such as region, education, skills, and conventions.4

Section 5 constructs a model of partner choice resulting in assortative matching. Biologically, it is
important to study assortative matching by size, color, or signals in conflicts between two different
sexes and species (Marrow et al. [1996], Zu et al. [2008]).

The main result of this paper is that under a certain assortative matching rule, there exists a limit
asymptotically stable point in which equal allocationmay prevail. In particular, if thematching rule is
completely assortative, there exist only two limit asymptotically stable states—the mutually fair equi-
librium and the selfish equilibrium. The results provide evolutionary support for the fair allocation
observed in many experiments in the ultimatum game.

The reminder of the paper is organized as follows. Section 2 defines an assortative matching rule
and the selection dynamics of the ultimatummini game. Section 3 presents the main results. Section
4 provides an example of an assortative matching rule. Section 5 discusses the results, and Section 6
concludes the paper.

2 The Model

We first extend the RD (1)–(2) for the ultimatum game in Figure 1 to the RD with a general matching
rule.The state space of theRD is [0, 1]×[0, 1]. Wedefine amatching rule α = (p1(x), p2(x), q1(x), q2(x))
on [0, 1] × [0, 1] between population 1 and population 2. Here, p1(x) is the probability that a selfish
proposer (L) meets a selfish responder (Y), and q1(x) is the probability that a fair proposer (H) meets
a reciprocal responder (N) at state x (Figure 3). Similarly, p2(x) is the probability that a selfish re-
sponder meets a selfish proposer, and q2(x) is the probability that a reciprocal responder meets a fair
proposer at state x.

Definition 1. A quadruplet α = (p1(x), p2(x), q1(x), q2(x)) is a matching rule on [0, 1]× [0, 1] if for
all i = 1, 2 and all x ∈ [0, 1] × [0, 1], pi(x) and qi(x) satisfy

x1p1(x) = x2p2(x), (3)

(1 − x1)q1(x) = (1 − x2)q2(x), (4)

x1(1 − p1(x)) = (1 − x2)(1 − q2(x)), (5)

(1 − x1)(1 − q1(x)) = x2(1 − p2(x)). (6)

Equations (3), (4), (5), and (6) are parity equations and imply that probability functions pi and
4The literature on search theory (e.g. Atakan [2006], Shimer and Smith [2000]) investigates the assortative matching

in two-sided market. Mendes et al. [2007] empirically find assortative matching between firms and workers, which they
measure as correlation between a firm-specific productivity and the time-average share of high educated workers using
data from Portugal.
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Figure 3: Matching probability in population 1: p1 = Pr(L meets Y), q1 = Pr(H meets N).

qi are consistent as a matching rule. All agents can be paired as long as these equations are satisfied.
Note that any one of four equations is derived from the others, and that if any one of p1, p2, q1, and q2

is given, then the other variables are uniquely determined by these equations. The randommatching
rule on [0, 1] × [0, 1] underlying the standard RD (1)–(2) assumes that pi(x) = qi(x) = x j for all
i , j = 1, 2 (i ≠ j) and all x ∈ [0, 1] × [0, 1], independently of the distribution in population i, xi .

Under a matching rule α = (p1(x), p2(x), q1(x), q2(x)) on [0, 1] × [0, 1], the average fitness of
selfish and fair proposers is given by f αL (x) = 3p1(x) and f αH(x) = 2, respectively. Similarly, the
average fitness of selfish and reciprocal responders is given by f αY (x) = p2(x) + 2(1 − p2(x)) and
f αN(x) = 2q2(x), respectively. Parallel to the RD (1)–(2), the Replicator Dynamics with matching rule

α (RDα) of the ultimatum game is defined by the following system:

ẋ1 = x1(1 − x1)ψα
1 (x) (7)

ẋ2 = x2(1 − x2)ψα
2 (x), (8)

where ψα
1 (x) = f αL (x) − f αH(x) and ψα

2 (x) = f αY (x) − f αN(x). Equations (7) and (8) are different from
(1) and (2) only in that the average fitness fk is replaced by f α

k
for every action k = L,H,Y ,N .

Next, we introduce an assortative matching rule.

Definition 2. Amatching rule α = (p1(x), p2(x), q1(x), q2(x)) is assortative if for all i , j = 1, 2 (i ≠ j),
pi and qi satisfy the following conditions:

(i) pi(x) is monotonically non-increasing in xi and monotonically non-decreasing in x j, and
qi(x) is monotonically non-increasing in x j and monotonically non-decreasing in xi .

(ii) pi(x) ≥ x j and qi(x) ≥ 1 − x j for all x ∈ (0, 1) × (0, 1).

(iii) pi and qi are Lipschitz continuous on the open set (0, 1) × (0, 1).5
5A function p on the product (a, b)×(c, d) is Lipschitz continuous if there exists a constant k such that ∣p(x)− p(y)∣ <

k(∣x1 − y1∣ + ∣x2 − y2∣) for any x , y ∈ (a, b) × (c, d).
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The assortative matching rule has two characteristics. By condition (i), the increase in the fre-
quency of selfish agents xi causes the decrease in the probability pi(x). Under the random matching
rule, pi(x)(= x j) is independent of xi . By condition (ii), the probability pi(x) that a selfish agent
meets a selfish opponent is higher than that under the random matching rule for any interior state
x ∈ (0, 1) × (0, 1). Condition (iii) is a technical property so that the RDα has a unique solution path
to the initial value problem within domain (0, 1) × (0, 1). Let A be the set of all assortative matching
rules. We henceforth assume that a matching rule is assortative.

Section 5 shows that there exists an assortative matching rule α ∈ A that cannot be extended to
a Lipschitz continuous rule on the the closed set [0, 1] × [0, 1]. To overcome the difficulty, we use a
“perturbation” method, which is in the same spirit as the trembling-hand approach (Selten [1975]) in
the literature on refinement. Roughly, we introduce a slightly perturbed version of RDα (7)–(8), and
analyze a limit point of asymptotically stable states of the perturbed system as perturbation vanishes.

Formally, we define a perturbed replicator dynamics on state space [є, 1−є]× [є, 1−є] for the RDα

and noise level є ∈ (0, 1/2) as follows.

Definition 3. A Perturbed Replicator Dynamics of the RDα with noise є (PRDα,є) is defined by

ẋ1 = gα,є1 (x) =
1

1 − 2є(x1 − є)(1 − є − x1)ψ
α
1 (x) (9)

ẋ2 = gα,є2 (x) =
1

1 − 2є(x2 − є)(1 − є − x2)ψ
α
2 (x), (10)

where ψα
1 (x) = f αL (x) − f αH(x) = 3p1(x) − 2, ψα

2 (x) = f αY (x) − f αN(x) = 2 − p2(x) − 2q2(x), and
x ∈ [є, 1 − є] × [є, 1 − є]. The value є is a noise level of the PRDα,є.

Although this dynamics is not the standard replicator dynamics, it has the same properties—
regularity andmonotonicity (Binmore and Samuelson [1999]). In the PRDα,є (9)–(10), the growth rate
is continuous on state space [є, 1−є]×[є, 1−є] (regularity) and the growth rate of a relatively low-payoff
action is smaller than that of a relatively high-payoff action (monotonicity). Section 5 discusses an
interpretation of this perturbed dynamics and constructs the PRDα,є from a simple imitation learning
model.

Finally, we define a limit rest point and a limit asymptotically stable point. Recall the standard
stability concepts of a dynamical system (Vega-Redondo [2003]).

Definition 4. Let ẋi = gi(x), i = 1, ..., k, be a dynamical system in Rk.

(1) A state x∗ ∈ Rk is a rest point if gk(x∗) = 0 for all k.

(2) A state x∗ ∈ Rk is an asymptotically stable point if the following two conditions hold:

(i) (Liapunov stability) Given any neighborhood U1 of x∗, there exists some neighborhood U2

of x∗ such that for any path x = x(t), x(0) ∈ U2 implies x(t) ∈ U1 for all t > 0.
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(ii) There exists some neighborhood V of x∗ such that for any path x = x(t), x(0) ∈ V implies
limt→∞ x(t) = x∗.

We then define a notion of limit stability. A sequence of noise levels {єn}∞n=1 is admissible if єn
converges to 0 as n goes to infinity. Since pi and qi are Lipschitz continuous on (0, 1) × (0, 1) for
i = 1, 2, the PRDα,єn is Lipschitz continuous on [єn , 1 − єn] × [єn , 1 − єn] for all єn.

Definition 5. (1) A state x = (x1, x2) ∈ [0, 1] × [0, 1] is a limit rest point of RDα if for any admissible
sequence {єn}∞n=1, there exist some sequence {xn}∞n=1 and n̄ such that (i) xn = (x1n , x2n) ∈ [єn , 1 −
єn] × [єn , 1 − єn] is a rest point of the PRDα,єn for all n > n̄, and (ii) xn converges to x as n goes to
infinity.

(2) A state x = (x1, x2) ∈ [0, 1]×[0, 1] is a limit asymptotically stable point of RDα if for any admissible
sequence {єn}∞n=1, there exist some sequence {xn}∞n=1 and n̄ such that (i) xn = (x1n , x2n) ∈ [єn , 1 −
єn]× [єn , 1−єn] is an asymptotically stable point of the PRDα,єn for all n > n̄, and (ii) xn converges
to x as n goes to infinity.

For any limit rest point and any limit asymptotically stable point of RDα, there exist a rest point
and an asymptotically stable point of PRDα,є in є-neighborhood of those states for any sufficiently
small є > 0, respectively.

3 Results

We characterize a set of limit asymptotically stable states of RDα. Given a noise level є ∈ (0, 12), let
R(α, є) = { x ∣ gα,є1 (x) = gα,є2 (x) = 0 } be the set of all rest points of PRDα,є (9)–(10) for an assortative
matching rule α = (p1, p2, q1, q2) ∈ A, andR(α) be the set of all limit rest points of RDα as є vanishes.

Proposition 1. R ≡ ⋃α∈AR(α) = { (1, 0), (1, 1)} ∪ {(0, c) ∣ c ∈ [0, 1]} ∪ {(c, 12)∣c ∈ [0, 34] }.

Proof. For all i = 1, 2, gα,єi (x) = 0 in (9)–(10) if and only if xi = є, xi = 1 − є, or ψα
i (x) = 0. Obviously,

the four states (є, є), (є, 1 − є), (1 − є, є), and (1 − є, 1 − є) are inR(α, є) for all є and all α ∈ A. Hence,
(0, 0), (0, 1), (1, 0), (1, 1) are in R(α) for any α. We then examine the stability of other five cases in
R(α, є).

Case (i): (x1(α, є), 1 − є) with ψα
1 (x1, 1 − є) = 0. We show that there exists no solution x1(α, є) of

ψα
1 (x1, 1− є) = 0 for any α ∈ A if є < 1

3 . Suppose that ψ
α
1 (x1, 1− є) = 0. Then, p1(x1, 1− є) = 2

3 . However,
this contradicts condition (ii) in Definition 2 since p1(x1, 1 − є) = 2

3 < 1 − є if є < 1
3 . Thus, there exists

no (x1(α, є), 1 − є) with ψα
1 (x1, 1 − є) = 0.

Now, the following four cases remain; case (ii) (x1(α, є), є)withψα
1 (x1, є) = 0, case (iii) (є, x2(α, є))

with ψα
2 (є, x2) = 0, case (iv) (1 − є, x2(α, є)) with ψα

2 (1 − є, x2) = 0, and case (v) (x1(α, є), x2(α, є))
with ψα

1 (x1, x2) = ψα
2 (x1, x2) = 0.
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Case (ii): (x1(α, є), є) with ψα
1 (x1, є) = 0. We first prove that a limit rest point of RDα is (0, 0) for

any α in this case. Consider a rule α under which there exists a solution x1 of ψα
1 (x1, є) = 0 for any є.

Then, p1(x1, є) = 2
3 since ψ

α
1 (x1, є) = 0. By (3) and p2 ≤ 1,

x1 =
є

p1(x1, є)
p2(x1, є) ≤

3
2
є.

Thus, (x1(α, єn), єn) converges to (0, 0) for any α as n goes to infinity.
We next construct an assortative matching rule α under which there exists a solution x1(α, є) of

ψα
1 (x1, є) = 0 for any є. Consider an assortative matching rule α(λ) = (p1, p2, q1, q2) such that

p1(x1, x2) = (1 − λ)x2 + λ(min{ x2
x1
, 1 }) (11)

for all x ∈ [є, 1 − є] × [є, 1 − є], where λ ∈ (0, 1]. Take λ = 1. Then, x1 = 3
2є ∈ [є, 1 − є] is a solution of

ψ
α(1)
1 (x1, є) = 3p1(x) − 2 = 0.
Case (iii): (1− є, x2(α, є)) with ψα

2 (1− є, x2) = 0. Similarly to case (ii), we can show that under the
rule α(1), there exists a solution x2(α, є) of ψα(1)

2 (1− є, x2) = 0. Next, we show that (1, 1) is a limit rest
point for any α. Substituting p2, q1 ≤ 1 and (4) into ψα

2 (1 − є, x2) = 0, we obtain

2 = p2(1 − є, x2) + 2q2(1 − є, x2)

= p2(1 − є, x2) + 2q1(1 − є, x2)
є

1 − x2
≤ 1 + 2 є

1 − x2
.

Thus,

x2(α, є) ≥ 1 − 2є. (12)

Hence, the rest point (1 − єn , x2(α, єn)) converges to (1, 1) for any α as n goes to infinity.
Case (iv): (є, x2(α, є)) with ψα

2 (є, x2) = 0. We first show that for any c ∈ [0, 1], there exists some
λ ∈ (0, 1] such that under the assortative matching rule α(λ), (0, c) is a limit rest point of RDα(λ).
Since x2 ≥ є, (11) implies p1(є, x2) = (1 − λ)x2 + λ under the rule α(λ). Substituting (3) and (5) into
ψ
α(λ)
2 (є, x2) = 2 − p2(є, x2) − 2q2(є, x2) = 0 yields 2x2

1+x2 = p1(є, x2). Thus, any solution x2(α(λ), є) of
ψ
α(λ)
2 (є, x2) = 0 satisfies x2 = λ

1−λ . When λ ∈ [ є
1+є ,

1−є
2−є], x2 ∈ [є, 1 − є]. Then, there exists a solution

(є, x2) of ψα(λ)
2 (є, x2) = 0 under the rule α(λ).

Let {єn} be any admissible sequence. For any d ∈ [0, 12], choose λn ∈ [
єn
1+єn ,

1−єn
2−єn ] such that {λn}

converges to d as n goes to infinity. Then, the solution x2(α(λn), єn) = λn
1−λn of ψα(λn)

2 (єn , x2) = 0
converges to d

1−d as n goes to infinity. Hence, (0, d
1−d ) is a limit rest point. Since d

1−d ∈ [0, 1], there
exists a rule α(λ) under which (0, c) is a limit rest point for all c ∈ [0, 1]. For any other rule α ∈ A,
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if there exists a limit rest point, then it is in {(0, c) ∣ c ∈ [0, 1]} since {єn} converges to 0 as n goes to
infinity.

Case (v): (x1(α, є), x2(α, є)) with ψα
1 (x1, x2) = ψα

2 (x1, x2) = 0. Since ψα
1 (x1, x2) = 0, p1(x1, x2) = 2

3 .
By (3) and (5), p2(x1, x2) = 2x1

3x2 and q2(x1, x2) = 1 − x1
3(1−x2) . Hence, ψ

α
2 (x1, x2) = 0 implies x2(α, є) = 1

2 .
Then, x1(α, є) ≤ 3

4 by p2 ≤ 1. Using the same procedure as in case (iv), for all c ∈ [0, 34], there exists a
rule α(λ) with λ ∈ [ 13 , 1] under which (c, 12) is a limit rest point as n goes to infinity. Then, any state
(c, 12) with c ∈ [0, 34] is a limit rest point.

By the cases (i)–(v),R = { (1, 0), (1, 1)} ∪ {(0, c) ∣ c ∈ [0, 1]} ∪ {(c, 12)∣c ∈ [0, 34] }.

Since any state x with x1 = 0 is in R, the equal allocation is supported by a limit rest point of
RDα for some α. The following proposition shows that the equal allocation is asymptotically stable
for some α. LetA(α, є) be the set of all asymptotically stable states of PRDα,є, andA(α) be the set of
all limit asymptotically stable states of RDα.

Proposition 2. A ≡ ⋃α∈AA(α) = { (1, 1) } ∪ { (0, c) ∣ c ∈ [0, 1/2) }.

Proof. Obviously, A(α, є) ⊂ R(α, є). Therefore, we only examine the asymptotic stability of all rest
points inR(α, є) for any α and any є. We first prove two claims.

Claim 1. Both (є, 1 − є) and (1 − є, є) are not asymptotically stable states of PRDα,є for any assortative

matching rule α and any sufficiently small noise level є.

We show only that (є, 1−є) ∉ A(α, є) for all sufficiently small є and all α ∈ A. The Jacobian matrix
of g at (є, 1 − є) is:

∂g

∂x
(є, 1 − є)

=
⎛
⎜
⎝
(3p1(є, 1 − є) − 2) 0

0 −(2 − p2(є, 1 − є) − 2q2(є, 1 − є))

⎞
⎟
⎠

=
⎛
⎜
⎝
(3p1(є, 1 − є) − 2) 0

0 ( 2−є1−є p1(є, 1 − є) − 2)

⎞
⎟
⎠
.

It is well-known that a rest point of the system is asymptotically stable if and only if the real parts of
both eigenvalues of the Jacobian are negative (e.g. Arnold [2006]). Thus, (є, 1 − є) is asymptotically
stable if and only if both eigenvalues (3p1(є, 1 − є) − 2) and ( 2−є1−є p1(є, 1 − є) − 2) are negative. That is,
p1(є, 1− є) <min{ 2

3 ,
2(1−є)
2−є }. However, since p1(є, 1− є) ≥ 1− є by (ii) in Definition 2, p1(є, 1− є) > 2

3

for any є < 1
3 . We can show that (1 − є, є) is not asymptotically stable for any α and any sufficiently

small є by the same procedure.

Claim 2. Any solution x(α, є) of ψα
1 (x) = ψα

2 (x) = 0 is a saddle point for any assortative matching rule

α and any sufficient small noise level є.
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Recall the case (v) in Proposition 1: p1(x1, x2) = 2
3 and x2 = 1

2 for any solution (x1, x2)ofψα
1 (x1, x2) =

ψα
2 (x1, x2) = 0. The Jacobian matrix of g at (x1, x2) is

∂g

∂x
(x1, x2) =

1
1 − 2є

⎛
⎜
⎝
(x1 − є)(1 − є − x1)( ∂ψ

α
1

∂x1
(x)) (x1 − є)(1 − є − x1)( ∂ψ

α
1

∂x2
(x))

(x2 − є)(1 − є − x2)( ∂ψ
α
2

∂x1
(x)) (x2 − є)(1 − є − x2)( ∂ψ

α
2

∂x2
(x))

⎞
⎟
⎠

= 1
1 − 2є

⎛
⎜
⎝
(x1 − є)(1 − є − x1)(3 ∂p1

∂x1
(x)) (x1 − є)(1 − є − x1)(3 ∂p1

∂x2
(x))

( 12 − є)2(−6x1
∂p1
∂x1
(x)) ( 12 − є)2(x1( 163 − 6

∂p1
∂x2
(x)))

⎞
⎟
⎠
.

The determinant of this matrix (x1−є)(1−є−x1)(1−2є)(4x1 ∂p1∂x1
(x)) ≤ 0 since ∂p1

∂x1
(x) ≤ 0. This implies

that one eigenvalue is non-negative and the other is non-positive. Therefore, x(α, є) is a saddle point
for any α and any є.

We next examine the asymptotic stability of (є, є), (1− є, 1− є), and points in cases (ii)–(iv). First,
consider the rest point (є, є) of PRDα,є. By (3) and (5), the Jacobian matrix of g at (є, є) is:

∂g

∂x
(є, є) =

⎛
⎜
⎝
(3p1(є, є) − 2) 0

0 (2 − p2(є, є) − 2q2(є, є))

⎞
⎟
⎠

=
⎛
⎜
⎝
(3p1(є, є) − 2) 0

0 ( 2є
1−є − p1(є, є) 1+є1−є).

⎞
⎟
⎠

If a rule α satisfies 2є
1+є < p1(є, є) < 2

3 , then both eigenvalues are negative. Under the rule α( 1
10) (defined

by (11)), these conditions are satisfied. Hence, there exists an assortative matching rule α under which
(є, є) is an asymptotically stable point of PRDα,є for any є. For other rest points, (1−є, 1−є) and points
in cases (ii)–(iv), we can show that there exists a rule α under which each rest point is asymptotically
stable for any є by the same procedure.

For each state inA(α, є), the conditions for rule α that it is an asymptotically stable point of PRDα,є

are given as follows:

(a) (є, є) is asymptotically stable if α satisfies

2є
1 + є < p1(є, є) <

2
3
. (13)

(b) (1 − є, 1 − є) is asymptotically stable if α satisfies

2
3
< p1(1 − є, 1 − є) < 1 −

є

2 − є . (14)

10



(c) Case (ii): (x1(α, є), є) with ψα
1 (x1, є) = 0 is asymptotically stable if α satisfies

∂p1

∂x1
(x1(α, є), є) < 0

2є
1 + є < p1(x1(α, є), є) =

2
3
.

(15)

(d) Case (iii): (1 − є, x2(α, є)) with ψα
2 (1 − є, x2) = 0 is asymptotically stable if α satisfies

2
3
< p1(1 − є, x2(α, є)) = 2

x2(α, є)
1 + x2(α, є)

∂p1

∂x2
(1 − є, x2(α, є)) > 2

1 − x2(α, є)
1 + x2(α, є)

.
(16)

(e) Case (iv): (є, x2(α, є)) with ψα
2 (є, x2) = 0 is asymptotically stable if α satisfies

2
3
> p1(є, x2(α, є)) = 2

x2(α, є)
1 + x2(α, є)

∂p1

∂x2
(є, x2(α, є)) > 2

1 − x2(α, є)
1 + x2(α, є)

.
(17)

States (0, 0) and (1, 1) are limit asymptotically stable since the asymptotically stable states (єn , єn)
and (1 − єn , 1 − єn) converge to (0, 0) and (1, 1), respectively, as n goes to infinity for any α ∈ A.
Next, consider the the asymptotically stable states (x1(α, є), є) and (1 − є, x2(α, є)) such that x1(α, є)
and x2(α, є) are solutions of ψα

1 (x1, є) = 0 and ψα
2 (1 − є, x2) = 0 respectively (cases (ii) and (iii)).

By Proposition 1, for any α ∈ A, (x1(α, єn), єn) and (1 − єn , x2(α, єn)) converge to (0, 0) and (1, 1),
respectively, as n goes to infinity.

Finally, consider the asymptotically stable point (є, x2(α, є)) such that x2(α, є) is a solution of
ψα
2 (є, x2) = 0 (case (iv)). By Proposition 1, for each state (0, c)with c ∈ [0, 1], there exists a rule α under

which rest point (єn , x2(α, єn)) converges to (0, c) as n goes to infinity. By (3) and (5), ψα
2 (є, z2) = 0

implies the following:

p1(є, x2(α, є)) = 2
x2(α, є)

1 + x2(α, є)
.

By (17), (є, x2(α, є)) is asymptotcally stable if x2(α, є) < 1
2 . Then, for any (0, c) with c ∈ [0, 1/2), we

can construct an assortative matching rule α such that (0, c) is limit asymptotically stable.
Therefore,A = { (1, 1) } ∪ { (0, c) ∣ c ∈ [0, 1/2) }.

Proposition 2 shows that there is a limit asymptotically stable point in the set of imperfect Nash
equilibria {(0, c)∣c ∈ [0, 1/2)} for some assortative matching rules. We call each imperfect Nash equi-
librium state (0, c) with c ∈ (0, 1/2) an partially fair equilibrium state in which all proposers are fair
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but there exists a non-negligible quantity of selfish responders; the imperfect Nash equilibrium state
(0, 0) the mutually fair equilibrium state in which all proposers are fair and all responders are recip-
rocal; and the subgame perfect equilibrium state (1, 1) the selfish equilibrium state in which all agents
are selfish.

Proposition 3. The mutually fair equilibrium state and the selfish equilibrium state are limit asymptot-

ically stable states if assortative matching rule α satisfies
∂p1
∂x1
(x1(α, є), є) < 0 and 2є

1+є < p1(є, є) for any
є ∈ (0, 12), where x1(α, є) is a solution of ψα

1 (x1, є) = 3 − 2p1(x1, є) = 0.

Proof. When p1(є, є) < 2
3 , (є, є) is asymptotically stable by 2є

1+є < p1(є, є) and (13). When p1(є, є) ≥ 2
3 ,

we consider (x1(α, є), є). Since p1(x1(α, є), є) = 2
3 , it is asymptotically stable by ∂p1

∂x1
(x1(α, є), є) < 0

and (15). Thus, since limn→∞(єn , єn) = limn→∞(x1(α, єn), єn) = (0, 0), the mutually fair equilibrium
state is limit asymptotically stable under any α that satisfies ∂p1

∂x1
(y1(α, є), є) < 0 and 2є

1+є < p1(є, є).6
When 1− є

2−є > p1(1−є, 1−є), (1−є, 1−є) is asymptotically stable by (14) and p1(1−є, 1−є) ≥ 1−є > 2
3

for any є ∈ (0, 13). When 1− є
2−є ≤ p1(1−є, 1−є), we consider (1−є, x2(α, є))with ψα

2 (1−є, x2) = 0. By
(ii) inDefinition 2 and (12), we obtain p1(1−є, x2(α, є)) > x2(α, є) > 2

3 for any є ∈ (0, 1
6). Furthermore,

by (5) and (i) in Definition 2 ( ∂q2
∂x2
≥ 0),

∂p1

∂x2
(x) ≥ 1 − p1(x)

1 − x2
.

Substituting (3) and (5) into ψα
2 (1 − є, x2) = 0, we obtain

1−p1(1−є,x2(α,є))
1−x2(α,є) = 1

1+x2(α,є) . Combining these
with (12) yields that for є ∈ (0, 1

4),

∂p1

∂x2
(1 − є, x2(α, є)) ≥

1
1 + x2(α, є)

> 21 − x2(α, є)
1 + x2(α, є)

.

Thus, (1 − є, x2(α, є)) is an asymptotically stable point of PRDα,є for any є ∈ (0, 1
6) by (16). Since

limn→∞(1− єn , 1− єn) = limn→∞(1− єn , x2(α, єn)) = (1, 1), the selfish equilibrium state is limit asymp-
totically stable under any assortative matching rule.

Proposition 3 provides a sufficient condition of assortative matching rules for the existence of the
limit asymptotically stable mutually fair equilibrium state. Since 2є

1+є ≈ є (the difference converges to
0 as є goes to 0) and any assortative matching rule satisfies p1(є, є) > є, the mutually fair equilibrium
state is a limit asymptotically stable point unless the matching rules has very low assortativity. How-
ever, the selfish equilibrium state is also a limit asymptotically stable point for any matching rule, and
then either fair or selfish behavior survives depending on the initial state.

Intuitively, it is easy for reciprocal responders to encounter fair proposers compared to selfish
responders by assortativity. Hence, if proposers are almost fair (x1 ≈ 0), then action N generates

6However, partially fair equilibrium states are not always limit asymptotically stable. A counter-example is given in
Section 4.
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Figure 4: Probability p1 = Pr(L meets Y). The graph on the left is p1(x1, 0.5). The graph on the right
is p1(0.5, x2).

higher average fitness than action Y . If proposers are almost selfish (x1 ≈ 1), in contrast, the average
fitness is less for action N than action Y . Therefore, both the mutually fair equilibrium state and the
selfish equilibrium state are limit asymptotically stable.

4 An Example

This section provides a completely assortative matching rule under which only themutually fair equi-
librium and the selfish equilibrium are limit asymptotically stable states.

Definition 6. A matching rule ᾱ = (p̄1, p̄2, q̄1, q̄2) on [0, 1] × [0, 1] is completely assortative if the
matching probability is defined as follows: In population 1,

p̄1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x2
x1

if x1 > x2
1 otherwise,

q̄1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1−x2
1−x1 if x1 ≤ x2
1 otherwise.

In population 2,

p̄2 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1
x2

if x1 ≤ x2
1 otherwise,

q̄2 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1−x1
1−x2 if x1 > x2
1 otherwise.

The rule ᾱ is equal to the rule α(1) defined by (11). Figure 4 shows the probability that each selfish
proposer encounters a selfish responder under this assortative matching rule and under the random
matching rule. It is evident that fair proposers are more likely to encounter reciprocal responders
than selfish proposers. The completely assortative matching rule maximizes the number of pairs that
consist of a fair proposer and a reciprocal responder.

Under ᾱ, the PRDᾱ,є is given as:
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Figure 5: Phase diagram under the completely assortative matching rule. N is the set of imperfect
Nash equilibria, and SPE is the subgame perfect equilibrium.

Case 1 : When x1 > x2,

ẋ1 = g ᾱ,є1 (x1, x2) =
1

1 − 2є(x1 − є)(1 − є − x1)(3
x2

x1
− 2) (18)

ẋ2 = g ᾱ,є2 (x1, x2) =
1

1 − 2є(x2 − є)(1 − є − x2)(1 − 2
1 − x1
1 − x2

). (19)

Case 2 : When x1 ≤ x2,

ẋ1 = g ᾱ,є1 (x1, x2) =
1

1 − 2є(x1 − є)(1 − є − x1)(3 − 2) (20)

ẋ2 = g ᾱ,є2 (x1, x2) =
1

1 − 2є(x2 − є)(1 − є − x2)(
x1

x2
+ 2 − 2 x1

x2
− 2). (21)

Figure 5 illustrates the phase diagram for the nonlinear system (18)–(21).

Proposition 4. Let Ā(є) = A(ᾱ, є) be the set of asymptotically stable states of the system (18)–(21)

under a noise level є. Then, Ā(є) = { ( 32є, є), (1 − є, 1 − 2є) }.

Proof. It is straightforward that the system (18)–(21) has the following set of rest points:

R(ᾱ, є) = { (є, є), (є, 1 − є), (1 − є, є), (1 − є, 1 − є) }

∪{ (3
2
є, є), (1 − є, 1 − 2є)(3

4
,
1
2
) } .

To prove the proposition, we examine the eigenvalues of the Jacobian matrix at each rest point. In
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the case of (1 − є, є), the Jacobian matrix at (1 − є, є) is

∂g

∂x
(1 − є, є) =

⎛
⎜
⎝
2 − 3є

1−є 0

0 1 − 2є
1−є

⎞
⎟
⎠
.

Therefore, (1 − є, є) is not asymptotically stable for sufficiently small є. Similarly, we can show that
(є, 1 − є) is not asymptotically stable.

In the case of (1 − є, 1 − є), it is not sufficient to consider the system in any one case since both
cases of the system is clearly included in any neighborhood of (1 − є, 1 − є). The Jacobian matrices at
(1 − є, 1 − є) in the cases 1 and 2 are the same and are given by

∂g

∂x
(1 − є, 1 − є) =

⎛
⎜
⎝
−1 0

0 1

⎞
⎟
⎠
.

Therefore, (1 − є, 1 − є) is a saddle state for sufficiently small є. We can show that (3/4, 1/2), (є, є) are
saddle states in the same manner.

Finally, we examine the case of ( 32є, є). The Jacobian matrix at ( 32є, є) is as follows:

∂g

∂x
(3
2
є, є) = 1

1 − 2є
⎛
⎜
⎝
− 2

3 + 5
3є 1 − 5

2є

0 −1+2є
1−є

⎞
⎟
⎠
.

Thus, ( 32є, є) is asymptotically stable for sufficiently small є. We can show that (1− є, 1− 2є) is asymp-
totically stable in the same manner.

Since ( 32єn , єn) and (1−єn , 1−2єn) converge to (0, 0) and (1, 1), respectively, as n goes to infinity for
any admissible sequence {єn}, Proposition 4 shows that only the mutually fair equilibrium state and
the selfish equilibrium state are limit asymptotically stable states when thematching rule is completely
assortative.

5 Discussion

Assortative Matching Rule By Definition 2, any assortative matching rule is Lipschitz continuous
on the open set (0, 1)× (0, 1). We show that if the state space is the closed set [0, 1]× [0, 1], then there
exists an assortative matching rule α that is discontinuous on [0, 1] × [0, 1]. Consider the assortative
matching rule α(λ) defined by (11). Then p1(x) = (1 − λ)x2 + λmin{ x2

x1
, 1 } for all x ∈ (0, 1) × (0, 1).

Under α(λ), limx2→0 p1(x1, x2) = 0 for all x1 ∈ (0, 1). Hence, limx1→0 limx2→0 p1(x1, x2) = 0. However,
since p1(x , x) = (1− λ)x + λ for all x ∈ (0, 1)×(0, 1), limx→0 p1(x , x) = λ > 0. Therefore, the rule α(λ)
is discontinuous at (0, 0) if the state space is the closed set [0, 1] × [0, 1].

In words, suppose that almost all proposers are fair and a small proportion є > 0 of them are
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selfish, whereas all responders are reciprocal ((x1, x2) = (є, 0)). Then, under any matching rule, the
probability that every selfish proposer meets a selfish responder is zero, independent of є. However,
if the population of responders also has a є-proportion of selfish responders ((x1, x2) = (є, є)), then
under an assortative matching rule, the probability that a selfish proposer meets a selfish responder is
λ > є for any є > 0.This implies that an assortativematching rule is discontinuous at (0, 0).Therefore,
we introduce the perturbed replicator dynamics on state space [є, 1 − є] × [є, 1 − є].

Perturbed Replicator Dynamics We have studied the PRDα,є (9)–(10). This perturbed dynamics is
interpreted as follows. There are two types of agents—committed and uncommitted agents.7

Suppose that there is a small exogenous fraction (say 2є) of committed agents in the two popula-
tions. They play one of two actions repeatedly as a dominant strategy. An evolutionary interpretation
for commitments may be as follows. Committed agents are (genetically) programmed to play a pre-
scribed action. They do not change their actions even when they receive a revision opportunity. We
assume that each action k is played by є of committed agents, k = L,H,Y ,N .

The remaining 1−2є of agents are called uncommitted. The evolution of behavior of uncommitted
agents is subject to the replicator dynamics. We normalize the population size of uncommitted agents
to 1. Let yi ∈ [0, 1] be the normalized mass of selfish uncommitted agents. Thus, the mass of selfish
agents xєi = (1−2є)yi +є for i = 1, 2. Note that xєi ∈ [є, 1−є] for i = 1, 2. Fix α ∈ A. Then, parallel to the
replicator dynamics (1)–(2), the replicator dynamics for uncommitted agents is given by the following
system:

ẏ1 = y1( f αL (xє) − ϕα
1 (xє)) = y1(1 − y1)( fL(xє) − fH(xє)) (22)

ẏ2 = y2( f αL (xє) − ϕα
1 (xє)) = y2(1 − y1)( fY(xє) − fN(xє)), (23)

where ϕα
i is the average fitness of uncommitted agents in population i (i = 1, 2) given by

ϕα
1 (xє) = y1 f αL (xє) + (1 − y1) f αH(xє)

ϕα
2(xє) = y2 f αY (xє) + (1 − y2) f αH(xє).

Therefore, since xєi = (1 − 2є)yi + є, the dynamics for the total populations is given by

ẋє1 = (1 − 2є) ẏ1 =
1

1 − 2є(x
є
1 − є)(1 − є − xє1)( f αL (xє) − f αH(xє))

ẋє2 = (1 − 2є) ẏ1 =
1

1 − 2є(x
є
2 − є)(1 − є − xє2)( f αY (xє) − f αN(xє)).

This dynamics is equal to the PRDα,є (9)–(10).
The PRDα,є (9)–(10) is Lipschitz continuous on state space [є, 1−є]×[є, 1−є], and the growth rate of

7This interpretation is suggested by an anonymous referee.
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any action has a finite limit as state x goes to the boundary (regularity). The growth of dying action is
0 when a state is on the boundary. Thus, there is no extinction of any actions at all time. Furthermore,
PRDα,є satisfies the monotonicity, which is violated in the perturbed replicator dynamics defined by
Gale et al. [1995]. When a state is in interior, the growth rate of relatively high-payoff action in the
PRDα,є is smaller than that in the RDα, but the signs are always the same.Thus, although the PRDα,є is
not standard, it is a qualitative invariant of the standard RDα. Note that every regular and monotonic
selection dynamics has the same set of asymptotically stable states (Cressman [1997], Samuelson and
Zhang [1992]).

Imitation Learning In the above, we assume that the evolution of behavior of uncommitted agents
is given by the replicator dynamics. The replicator dynamics can be interpreted as an approximation
of some learning models (e.g. reinforcement learning (Bögers and Sarin [1997]) and imitation learn-
ing (Schlag [1998])). We derive the replicator dynamics for uncommitted agents from the following
proportional imitation learning rule.

The imitation learning rule is given as follows. Consider the normalized mass of uncommitted
agents in population 1, y1 ∈ [0, 1]. We assume that each uncommitted proposer only imitates un-
committed proposers. According to Gale et al. [1995], divide time into discrete periods of length ∆t.
In each period, each uncommitted proposer k independently receives an opportunity to learn with
probability ∆t. Let ak(t) be the action adopted by k and gk(t) be the payoff of k at time t.

The imitation rule is given as follows. Suppose that uncommitted proposer k with ak(t) = H

receives an opportunity. This event occurs with probability ∆t(1 − y1(t)). After receiving the op-
portunity, k randomly samples another uncommitted proposer l . Then, k observes l ’s current action
al(t) and payoff gl(t). If al(t) = L and gl(t) > gk(t), then k imitate l ’s action (i.e. ak(t + ∆t) = L)
with some positive probability that is proportional to the payoff difference gl(t) − gk(t), otherwise,
k does not imitate (ak(t + ∆t) = H). That is, if gl(t) > gk(t), k switches her action at time t + ∆t to
ak(t+∆t) = Lwith probability y1(t)β(gl(t)−gk(t)), where β is a constant switching rate. Each k with
ak(t) = L imitates by the same rule. Therefore, the average net increase of uncommitted proposers
who adopt action L is given by

y1(t + ∆t) − y1(t) = ∆ty1(t)(1 − y1(t))β( f αL (xє(t)) − f αH(xє(t))),

where f αL (xє(t)) and f αH(xє(t)) are the average payoffs of uncommitted proposers who adopt actions
L and H, respectively. Hence,

y1(t + ∆t) − y1(t)
∆t

= βy1(t)(1 − y1(t))( f αL (xє(t)) − f αH(xє(t))).
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(L,Y) (H,N)
(L,Y) 2, 2 1, 1
(H,N) 1, 1 2, 2

Figure 6: Payoff matrix in the role game
with 2 types.

(L,Y) (H,N) (H,Y) (L,N)
(L,Y) 2, 2 1, 1 2.5, 1.5 0.5, 1.5
(H,N) 1, 1 2, 2 2, 2 1, 1
(H,Y) 1.5, 2.5 2, 2 2, 2 1.5, 2.5
(L,N) 1.5, 0.5 1, 1 2.5, 1.5 0, 0

Figure 7: Payoff matrix in the role game with 4 types.

Taking the limit as ∆t goes to 0,

ẏ1 = βy1(1 − y1)( f αL (xє) − f αH(xє)).

Since the same derivation holds true for population 2, the dynamics is equal to the replicator dynamics
(22)–(23) when β = 1.

Comparison to Role Game Consider the following role game. All agents belong to the same single
population. They play the role of proposer with probability 1

2 and that of responder with probability
1
2 after they are paired under some matching rule. We assume that selfish agents play L or Y and that
fair agents playH or N , according to their roles.This role gamewith two types has a symmetric payoff
matrix, as shown in Figure 6. Under the random matching rule, the replicator dynamics is given by
ẋ = x(1− x)(2x − 1), where x is a frequency of selfish agents. Since dẋ

dx
= −6x2 +6x − 1 < 0 when x = 0,

the state in which all agents adopt (H,N) is asymptotically stable. Similarly, the state in which all
agents adopt (L,N) is also asymptotically stable. Hence, either selfish or fair behavior survives even
under the random matching rule without noise, depending on the initial state.

Under the assortativematching rule, the above result holds according toTaylor andNowak [2006].
That is, both the selfish equilibrium state (L,Y) and the fair equilibrium state (H,N) are asymptoti-
cally stable for any level of assortativity. Suppose that all agents are fair and a proportion є of entrants
invade the population. Let p(x) be the probability that each selfish agent meets a selfish agent, and
let q(x) be the probability that each fair agent meets a fair agent when the frequency of selfish agents
is x. If a proportion є of mutants invade the population, then they play each role with equal proba-
bility. Then, p(є) < q(є) by the parity equation є(1 − p(є)) = (1 − є)(1 − q(є)). The average fitness of
each mutant is 1

2(3p(є))+ 1
2(p(є)+ 2(1− p(є))), and the average fitness of each fair agent is 1+ q(є).

Therefore, the selfish action never diffuse since

1
2
(3p(є)) + 1

2
(p(є) + 2(1 − p(є))) − (1 + q(є)) = p(є) − q(є) < 0.

However, if the populations are separate and an entrant adopting Y invades, then this selfish respond-
ing action diffuses when the assortativity is low.8

Suppose that, in addition to selfish (L,Y) agents and fair (H,N) agents, there are (H,Y) agents
8Cressman [2006] studies relation between the asymptotically stability and the uninvadability in n-population games.

18



and (L,N) agents. This role game with four types is shown in Figure 7. In the standard replicator
dynamics, the state in which all agents adopt (L,Y) is the unique asymptotically stable point since
((L,Y), (L,Y)) is the unique strict Nash equilibrium and there is no interiorNash equilibrium.Thus,
only the selfish behavior survives under the random matching rule.

Even if we introduce the assortative matching rule, any state in which all agents are (H, ⋅) agents
(agents who proposeH ) is not stable. For any state in which there are only (H,Y) agents and (H,N)
agents, (H,Y) agents can diffuse under anymatching rule. Further, once there are only (H,Y) agents,
(L,Y) agents diffuse under any matching rule, since both the maximum payoff for (H,Y) agents
and the minimum payoff for (L,Y) agents are 2. Therefore, any imperfect Nash equilibrium of the
ultimatum game, in which equal allocation is achieved, is not asymptotically stable and the selfish
subgame perfect equilibrium is asymptotically stable.

Partner Choice and Reputation Bergstrom [2003] studies a model in which all players can choose
their partners according to some labels or signals as a foundation of assortative matching.9 Suppose
the following: each player’s label represents his/her true action, search cost is negligible, and proposers
can unilaterally propose an offer to any responder. Since each selfish proposer obtains a higher payoff
if her partner is also selfish, the number of pairs consisting of a selfish proposer and a selfish responder
is maximized (i.e. the completely assortative matching by labels) in the stable matching.

Suppose that labels are not accurate but based on a social reputation system (Nowak et al. [2000]).10

Consider a reputation system in which every responder obtains a bad reputation if he accepts any un-
fair offer in a previous period and a good reputation otherwise. Each selfish proposer has an incentive
to choose a responder who has a bad reputation in the reputation system since her unfair offer will
be accepted. Therefore, the social reputation system prompts assortativity.

Inequity Aversion We focused only on an evolution of behavior of populations with assortativity in
the ultimatum bargaining. Fehr and Schmidt [1999] and Bolton and Ockenfels [2000] point out that
people’s preferences are usually not self-interested but inequity averse. The preferences of inequity-
averse subjects depend not only on their own monetary payoffs but also on fairness or equity. This
notion can approximately justify the fair behavior surviving the evolutionary pressure with assorta-
tivity.

6 Concluding Remarks

We investigated the role of matching rules in the replicator dynamics in the ultimatum game. Gale
et al. [1995] shows that if encounters are random, then the imperfect Nash equilibrium resulting in

9The assortative matching by partner choice is also studied in the field of search theory.
10Nowak and Sigmund [1998] and Ohtsuki and Iwasa [2004] study the social reputation system in the prisoners’

dilemma game.

19



fair allocation is a limit asymptotically stable point as noise vanishes when the learning of responders
is noisier than that of proposers.

Here, we considered the evolution of fair actions under an assortativematching rule introduced by
Becker [1973, 1974].This can be regarded as an alternative explanation of fair behavior.The assortative
matching rule leads to the replicator dynamics with non-linear fitness functions, and thus expands
the set of stable states. For the ultimatum game, under some assortative matching rules, the average
fitness of reciprocal responders is higher than that of selfish responders when there is a large mass of
fair proposers. Then, the mutually fair imperfect Nash equilibrium state is limit asymptotically stable
as the noise due to committed agents vanishes. Therefore, the fair behavior may survive in the long
run.

Our study has some limitations. First, the selfish equilibrium state is also asymptotically stable.
The dynamic path depends on an initial state and an assortative matching rule. Second, it is not
known if the same result holds for other types of perturbed dynamics. The ultimatum “mini” game is
restricted. The analysis of general games is left for future work.
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