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PRODUCTION THEORY WITH CONVEX LABOR FRICTION:
FOUNDATION OF AN OPTIMAL NON-MARKET-CLEARING ECONOMY

KOJI YOKOTA

AsstracT. This paper provides a general framework for the supply widen a firm employing multiple workers faces
convex search friction. It also provides analytical schéonenon-steady states. Convex search friction makes the pat
outside of unbounded steady states possess greater sigodithan mere transition, since any level of output can be
supported as a steady state equilibrium depending on tte aft@xpectation. The marginal profit value of labor is
always strictly positive, which results in persistent eeccdemand in the labor market as well as excess supply in the
goods market. However, the fact that convex search friatiakes immediate adjustment of employment suboptimal
induces further hiring to depend on coordination of expema It raises non-market-clearing equilibrium in ternfs o

long-run without price- nor wage-rigidity in competitiveankets.

1. INTRODUCTION

The present paper studies optimal employment policy of adiperating in a frictional labor market in which
friction is representable by a convex vacancy cost functon studies its implication on employment distribution
and market equilibrium. In generalizing a matching modeirfrone-to-one to one-to-many, it is natural, or even
necessary, to assume a convex vacancy cost function —adamnehich literally relates number of job vacancy
posting to the cost. The existence of friction make it inevié to use internal resources to hire workers so that it
causes congestion over those resources. Search frichieneintly arises from heterogeneity in undocumentable
properties of workers or firms. Any friction attributable documentable properties can be part of friction, but
it is easily eliminated with information technology to a tigiple level. As such, selection of workers requires
tacit knowing by insiders, and therefore, if a firm intendsrtorease number of hiring, the accompanying cost
should exhibit more than linear increase as any kinds ofstisjent cost do (Uzawa (1969), Yashiv (2000, 2006)).
Yashiv (2000) shows that empirical hiring cost function ighty convex in terms of weighted average of posted
vacancy and actual hiring. Moreover, convexity in the vayarost function is supported from the fact that it
is the only class robust against small perturbations ontfomal form, the derivative of which is monotone and

which does not diverge in equilibrium. Requirement of rabass would be natural, because there is no logically
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strong,a priori reason that the vacancy cost function must have a partifuuiational form. For an analysis to be
applicable to actual economies, it must be based on robsisirgtions.

It will be shown that the marginal wage cost value determibgdbargaining isalwaysstrictly smaller than
the marginal production value of labor as far as employmebeiow the unbounded steady state. On the other
hand, the optimal employment policy under the convex vagaost function does not allow the path to jump
to the unbounded steady state. This is in contrast to tharlimecancy cost case of Smith (1999). Any firm is
willing to accommodate all the demand directed to it at anyrmant. However, investment decision on hiring
cost depends on the expected demand in the next moment wghiontingent on the action of other firms. For an
economy to converge to the unbounded steady state, agestsinane dynamically persistent common knowledge
that the economy ultimately reaches to that state. Oncetisilgenome to believe that demand is already satiated,
strategy to make additional employment becomes suboptiamal thus demand will not actually grow. This
brings the same implication as non-market-clearing (NMg@praach by Barro and Grossman (1976) on rational
basis with flexible prices. Flexible prices will eliminatentporary disequilibrium but not the state of long-run
disequilibrium that arises from the degree of coordinatibhe model presented in this paper is a generalization
of the Mortensen-Pissarides model which assumes that ptiodus undertaken by a pair of a worker and a job.
The Mortensen-Pissarides model can be interpreted thsgiinaes that the “firm” employing multiple workers is
decomposable to independent units of jobs. Its assumpfioorestant vacancy cost is literally hypothesizing a
linear vacancy cost function. It assumes that the size ofl@yment in the economy is determined by the entry
condition that the value of vacancy equals zero, togethtr thie assumption that each production pair always
successfullyearns constant income. However, it is not guaranteed tlealetrel of employment this condition
requires is not so huge that it exceeds the existing populaft the unbounded steady state, we should observe
that potential entrepreneurs cease job posting simplyuseciabor market tightness makes the waiting time for
arrival of workers too long compared to vacancy cost. Howemgch behavior can be observed, if any, only in
the acme of economic boom. The existence of free publicrimdiaries and the fact that vacancy cost should
decline as market tightness increases enforce the viewttbaequired employment is too high. The decrease of
vacancy cost is due to the decrease of applicants that ayartfirm receives requiring less cost for interview and
selection activities. Also, linear hiring cost implicithssumes that hiring activities do not consume any internal
resources. Namely, the selection process must be trivididatdt simply does not exist or it is outsourced. In the
former case, search friction due to heterogeneity of ageilitaot exist. The latter case implies that all properties
related to worker selection must be describable to dele¢gatselection.

Section 2 summarizes the structure of the model. Sectioudest how the value of unemployment, the
threat point in wage bargaining, is determined. Sectiomdiss the outcome of wage bargaining. It is shown that
integral equation is useful to solve non-stationary valuesfions. Section 5 studies the firm’s optimal employment
behavior. Section 6 rationalizes the assumptions madectioge3 are actually consistent with the whole model.

Section 7 analyzes the behavior on the demand constraimttiibeonstraint is stationary. Section 8 delivers some
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implication on interest rates, which might resolve the @dlion paradox. Section 9 provides some concluding

remarks.

2. TueE MoDEL

2.1. Firm. A competitive firm under the presence of search friction eltbor market is considered. The number
of firms is continuous with fixed measure ohédamely, one particular firm has continuously small measure.
Therefore, the change in the supply of the firm canrffgch aggregate supply, resulting not only in unchanged
prices but also in unchanged aggregate income. There argdeas in the economy: output goods and various
types of labor. Output goods is taken to be numeraire and lalheeterogeneous with unknown properties so that
optimal search behavior of a firm is not trivial. A firm uses tiplé workers of potentially dferent types. Types of
workers can be categorized into two classes, declarabds typd non-declarable ones. The former is the properties
that can be prescribed as hiring requirements, such asgsissef driver’s license and academic background. The
latter is the attributes that cannot be documented. Thexgtoey are only revealed after having an interview with
workers. Personality or suitability to particular corp@raulture falls in this category. The notion of quality of
match is also covered by this concept as far as it is revealetediately. Non-declarable types are assumed to be
matching-specific. Worker types are expressed by a conbimat declarable and non-declarable types, therefore
let bundle {, j) denote a worker type with declarable tyipe {1,..., L} and non-declarable typee {1,..., M;}.
Different types are clearly distinguished from each other. Afsriire assumed to be unable to choose their types
to abstract theféect of education and training. Same type of workers are hemegus. Production function

of a firm is given byf(l) wherel = (I1,...,1.) andl; = (li1,...,lim,) are vectors of employment such that

is employment of i( j)-type worker,0f/ol;; > 0 andf is concave. We also assume Inada condition around the
origin: 9f/dlij; — +oo aslijj — 0.

Since labor market is frictional, a firm cannot adjust empiewnt stock directly. It can only adjust inflow to and
outflow from the stock. For the inflow, the firm decides how mimtarnal resources to spend on recruiting workers
in the labor market to adjust employment. After the choictheflevel of recruiting activitiesn = (ny, ..., m_) for
each declarable type, it would observe a variety of appl&trarrive stochasticall/A matching session proceeds

in a way that firms post job advertisement first and workerdyeiopa preferred job. Such a matching mechanism

11t should be emphasized that thisrist assuming away free-entry to get the results obtained inpdr. The reason that this condition
is required is that, 1) a vacancy cost function with no fixest,cg) variable measure of firms and 3) the production econsimply cannot
coexist. Once we allow variable measure of firms, infinite banof firms employing no workers is created, leading to zeoapction (not
indeterminate, see arguments below). To describe praguetionomy, either 1) or 2) must be discarded.

The reason that the vacancy cost functicsuch that(0) = 0 is incompatible with variable measure of firms bounded b¥eny condition
J(0,y) = O is as follows (please refer to later pages for definitiofisy. = 0, thenJ(0,y) = 0 holds with no firm entry. On the other hand, if
y > 0, firm entry must continue unti)(0,y) = O is restored witly = 0 (adjustment through alone cannot bring = 0 since, for any high
value off, the entrant firm can set arbitrarily smad). Thus, no production equilibrium can be supported witifougtd costs.

The other strategy to build a model for production economyldide to throw away 1), namely to assume that there exist such that
x(0) = k. Itimplies that the no-entry condition holds wigh> 0. SincedJ(t)/dl;j () > 0, it makes new entrants give up, whereas existing firms
are willing to operate. Hereby, simply assumiti@0) > O will not sufice, because it will make all firms shut down by optimality citiod
(5.6) so far as entrants do not want to enter. Since the iatic of such an alternative model does not significantijedifrom the present
model, the simpler model is adopted. However, the emergehttee distribution of firm size is abstracted by doing so, ahhivould have
arisen in the alternative model by historical movemen.of

2By equation (2.1)m is directly related to the increase of labor force. It is labeas “level of recruiting activities” instead of “numbefjob
vacancies” to abstract the strategic behavior to annourare job posts than actually wanted.
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would be a natural equilibrium when most of characterigticirms relevant to matching are declarable whereas
those of workers are non-declarable. It results in the sam®ome as random matching, so that the probability
that a firm receives applications per job posting is a deargdsnction of theVU ratio in the labor market of
declarable typé, 6. It is denoted byy(6) : R, — R.,.2 On the other hand, non-declarable type is matching
specific and non-declarable typemerges with probabilitg;; € (0, 1) among declarable typavhere}’; gi; = 1.
Therefore, if a firm exerts recruitingfert m on declarable typein the labor market, it will receivei; y(6;) m
applications from typei( j) worker.

On the other hand, there are two factors whiffee outflow from the employment stock. One is an uncontrol-
lable leave of worker8.This natural separation of type {) worker at timet is a Poisson arrival with parameter
oij(t) > 0.5 The other factor is intentional dismiss by the firm. Dismissfatype (, j) worker is denoted by
Xij € [0, X] whereX € (0,) is a suficiently large number and can be interpreted as a physicaidary of
adjustment speed of employment downward. Note that the fanmspecify the worker type to dismiss since the
non-declarable property of a worker is revealed during thpleyment period.

Now, the firm can control the time derivative of typejj employment usingn andx;j so that
(2.2) i = gw@m—oqli—x;  Vi=L..,LVj=1. . M.

Notationg;; (t) := g;;(t) ¢(6i(t)) is sometimes used for simplicity.

Job posting is assumed to be costly. Smith (1999) assumatar lvacancy cost function, so that a firm
employs all necessary workers to reach to the steady stdteifirst period, and then it maintains the steady
state forever. With this carefully arranged setup, adjestnprocess to the steady state is virtually abstracted but
at the same time it omits robustness against small pertartsabn functional form. To restore robustness, we
are induced to assume a convex vacancy cost function faip@iminimalist principle, which has the property
that the derivative is monotone and also the implied equilib outcome does not diverge. It would be a natural
assumption from the viewpoint that a vacancy cost functimuid be regarded as an adjustment cost function. In
practical applications, the cost should be interpreted¢hide the cost for orientation, training and deterioratio
of productivity that arises from on-the-job training anéxperience of new workers, as well as the cost necessary
for actual recruiting. Modifying the functional form in #hiway definitely complicates the analysis compared
to a linear case, but it should be emphasized that such a nboidels significantlydifferent macroeconomic
implications. We denote the vacancy cost function of dedkrtype by «(m;,t) : R, x R, —» R, wherex; > 0,
dki/omy > 0, 9%/Om? > 0, xi(0,1) = d«i/dm(0) = 0, and the second argument will be sometimes omitted for

simple notation, i.ex;() := (-, t). The time-dependency ef allows it to depend o#;. Another cost for a firm is

SThis is a special case of Yokota (2004) so that the qualitgstold of a firm to decline an applicant is set to zero to cenftire current
problem setting. In this paper, rejection is detached tahivice ofx;;.

4Since it turns out later that the value of employment stadumways greater than the value of unemployment statussiizisk is not only
external for firms but also for workers.

Sit may be more natural to assume that the quality of a matctiugitly turns out on the job as in Jovanovic (1979). Howeves,alistract
internal working of separation.
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wage payment to each type of workers. Wage payment is detediy bargaining between a firm and workers to
share their rent that arises from historical advantagdsathalready-formed coalition possesses. Wage rate will
be shown to be a function of employment. Therefore, the firoidi#s the amount of employment knowing the
wage schedule it faces. We denote the wage function of fypety wi;(l).

On the demand side, consumers demand outputs based on atifammabout current assets, current income
andthe state of expectation on series of future incavhéch is influenced by the degree of coordination among
agents. The expectation on intertemporal income holds @ot#ind ¢ equilibrium paths. In the present model,
temporary equilibrium is brought by adjustment in the iagtrrate. Temporary supply is fixed at any given
instance, therefore interest rate adjusts temporary déntameet it &ecting intertemporal relative prices. The
model also allows for analysis when disturbances are addi tadjustment in interest rates in the goods market.
In such a case, temporary disequilibrium arises in additidiong-run disequilibrium. Another such instance is
the case of perishable goods since it physically prohibtesrtemporal consumption smoothing by consumers. Let

us denote by(t) the “demand density” defined by

1
(2.2) () = f(l(t),n)+(D(Ir,i/,t)—fO f(l(t),n)dn)
and
(2.3) y(t) = D(r.9.1)

where we explicitly denote the production function of firmttwindexn by f(I, n) assuming integrability im,
andD(r, §,t) is the total demand for outputs as of timahich is dfected by interest ratgr) (t < 7 < o) and
income streany(7) (t < 7 < ). It also includes “queue” of demand which has not met by ey supply.
Equation (2.3) and the second term of equation (2.2) imposedgeneity among firms in terms of their future
prospectives, since they imply that additional demandgqually distributed among them. Modification of these
terms will introduce heterogeneity in their, say, markgtpower and others. Thug,should be understood as
rational expectation among market participants on prdsmecof each firm. Since any firms cannot directly
affectr, y is given for any particular firm under rational expectatiadormalizing the price of output to one, the

instantaneous profit of the firmis given by

L
7= minfy, f () =w(l) 1= > i (m).
i=1

6As Arrow (1959) argued that the economy will show evidendem@nopoly and monopsony in any state of disequilibriumeipg strategy
must be examined carefully here. Firms can potentially bsg profits to lower nominal prices and expand their marketrs permanently.
However, such a move will be retaliated by other firms, ré@sylin failure of the original intention of market share end®n. If demand is
elastic in interest rate, it increases temporary markedyrtion and lowers interest rate, but reduces future dem&undh a strategy costs
more than proportionate hiring costs but shifts demand fiitore to today. We assume away such a strategic move in geitiags and the
firm simply takes the bargaining outcome of real wages. Wieenahd has zero elasticity, there is no incentive to martpylaces.
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When miny, f(1)} =y, as far as there is no reason for labor hoarding, incredgimgnakef (1) > y is obviously
suboptimal. Since the above formulation introducesftiedéntiability inz that makes succeeding analysiffidi
cult. In stead of handling the above formulation directlg, &re going to analyze an “approximate” problem that
the firm maximizes profit = f (I) —w(l) - | = X5,  (m) under the constrairft(l) < y. Itignores cases in which

a firm hoards labor facintemporarydemand recession, however their long-run outcome shoudlibe similar.

If it is expected that labor hoarding never occurs in futireth outcomes exactly coincideAgain, for simple

notation, the following notation is sometimes useg!) := wi; (1) I;; for any (, j).

2.2. Workers and consumers. Workers are in either state, employed or unemployed. An yh&yed worker

of type (, -) at timet receives instantaneous unemployment bebgtit. An employed worker of typei(j) will

be paid instantaneous wagg (t). The value of typei(-) unemployment at timeé is denoted byJ;(t) and the
value of type-{, j) employment at timéis denote byE;j(t). Matching sessions between job-seekers and vacancies
open at any moment. Matching probability of an unemployedkenis given byy;(t). It is in general influenced

by 6;(t) but we suppress its explicit notation. Matching sessioestimme-consuming and the length is random.
Agents cannot attend other matching sessions simultalyaohie he is engaged in a particular sessiowhen

an unemployed worker of declarable tyige successfully matched to find out his undeclarable tygehs shifts

to the employment status of typg f). Namely, on success, he receives capital gajt) — Ui(t). Assuming

workers are risk neutral, the Bellman equation for unemplent status is
(2.4) r(t) Vi) = bi () + (0 Ej [Eij(®) - Ui@)] + Ui, vi

wherer is interest rate anH, [Eij(t) - Ui(t)] = Z?ﬁl ij (1) E;j(t) — Ui(t). Similarly, the employment value of type

@i, ) is given by
(2.5) (1) By (1) = wi(0) - 5 (O [Ey () - Bi®)] + Ej®, Vil |

wheredij(t) = o3 (t) + xij (t)/1;;(t) is separation probability for a worker.

3. BARGAINING OVER COALITIONAL RENT

When there exists friction in the labor market, pseudo-agises in an existing firm-workers group. The rent
comes from the fact that any firms or workers who have not fdrengroup yet must enter a costly process of
search. It makes a room for bargaining over the rent betwd@maand workers who have already formed a
group. Therefore, production should be regarded as omaditly undertaken by the going concern and present

employees, and distribution of pa§®is made through bargaining taking into account futurewahef players.

7If unintended inventory investment is included in the déifami of y as in that of national accounts, this problem will not arise.
8f matching sessions open continuously and end instantehecall agents on one side of the labor market will be matdnemediately
almost surely.
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Coalition of a firm and each type of workers with meadyraill get intertemporal payf F which is the value of

00 L £
F(I) = f [f(l*(é-‘))—zki(m*(é-‘)) e kg
i=1

wherel” andm’ areon the optimal path for the firin the concomitant problem defined in section 5. In this
coalition, bargaining is made among continuously many gaigy It will be found that the imputation to give

workers just the half of their marginal gain, i.e.

1. 10F
Eij=-Ui+zo
1= gan

is strongly supported as a bargaining solutidfor the moment, to clarify conditions characterizing theison,
argument proceeds with a general setup that wage bargahongdd satisfy.

LetQ be a set of all players. Players are partitioned by gr&@jgs= 0,1,..., M; M € N) such thanN:lSi =Q
and mi’ilsi = (. Each group consists &; € N U {co} players. Thej-th player in grougs; is denoted bys ()
(j=1,...,N). s(j) has measurd|; for all j and there exists a fixed numldee R, such that\; dl; = |; for all i.

Characteristic function is denoted kay 2* — R. We require following assumptions:

(1) (Essential game) The game is essentialM(@) > > s V({S}).

(2) (Anonymity) Players in the same group are anonymous,foeany S and j, V(S v {s(j)}) -Vv(S) is
common.

(3) (Indispensability) Missing groups make coalition unghuctive, i.e V(S) = 3’ jes V({S (J)}) if there exists
isuchthaSnS; =0.

(4) (Existence of a non-degenerate play®y)s a special group which consists of only one playerNg= 1.

Refer to this game with symba@,(Q,v) whereN := (Ny,...,Ny). Next, define a more specific game in the
class ofog (€, v) which possesses essential concavity as an additionainasism. It requires concavity only
for coalitions with more than two players so that esseyialf the game will not be lost® Namely, we put the

following additional property:

(5) (Essential concavity) The gamedssentially concave.e. its characteristic functiomhas the property

that, if S, T € Q satisfiedd c S c T, then
V(SU{s}) = V(S) =T u{s}) —«(T)

foranyse Q\T.

Refer to this game with symbé‘lzN(Q,v). Finally, define an even more specific ga@%((), V) which is directly

related to our problem. Players are grouped by categoriedwalne classified in two dimensions so that any player

Swe require a singleton solution to proceed with the modetsdtides (1985) assumed that, in the case that productiomdertaken by a
pair of a firm and a worker, they divide the rent by a Nash baiggisolution. There is an option to generalize it adoptinglayer Nash
equilibrium. However, since the present model containgi@@nt asymmetry between a firm and workers, it seems mdrgaido take
coalitional rationality into account.

104 globally concave game always violates zero-additivityst formation of non-trivial coalitions cannot be expected
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belongs td5;; fori =0,...,Landj=1,..., M, WhereUiLzouz.\’jl Sij = QandS;;nSi; = 0forany(, j) # (", ).

Characteristic function is defined by

Yies Ui if there exists such thaS N S;; = 0
3.1) (S) =
F(i1,....1m,) otherwise
whereU; > 0 for alli, Ijj := ||Sn S;j|| andF is increasing and concave. Obviously, this is a special ofise

02(Q, V) with S = Syt mj-1- However, we will not utilize the above additional specifioas to characterize
solution concepts. They are only used to relate the reshittsreed in this section to the rest of the paper.

Our objective is to obtain a bargaining solution of the abgames wheMN — oo’ whereco’ := (0, ..., ) €
(R U {oo})M keepingl; fixed for alli > 0. Note that, by doing so, the firmy(1) keeps discrete influence on
coalitional payd. The property that workers get only partial contributiopeleds on the assumption that players
in Sg does not degenerate, rather than the particular value @sisumiy = 1. Also, note that concavity ofand
F is suficient to holdonly from belowat Q andl, respectively, i.e. the concavity need not hold for sugerseQ
or anyT > | with ﬂj > l;; for somei, j. This fact will be used in section 6. Denote the density imafiah to player

shy «(s), i.e. imputation of playes with measurell becomes(s) dl.

Lemma 1. In 91, (Q, V), the imputation to allocate

(3-2) (s (i) dli = %V({s(j)}) + % V(@) - v(Q\{s(i)})]

to any workers of typé, j) is supported by Shapley value.

Proof. Choose a playes;(j) for somer'and;. Consider any coalitio such thats(j) € S containingn; players
from groupS; such thatn; > 0 andn; > 1. The contribution o%;()) to coalitionS is v({s(})}) if there exists
such thaS N S; = 0 from the indispensability assumption. In other casesMf® — V(S \ {s())}). The Shapley’s
weighty(S) for the contribution of;() to coalitionS is given by

(Elon - DI N = 2, n)!
(St No)!

o) oy

i=0

¥(S)

Without loss of generality, let us assume 1 below for concise notations. From the anonymity assumptay

S with same (o, ..., Nyw) has the same(S). The number of cases to form coaliti@containings;(j) = s1())

(o) (o) (o) ()

with same (o, . .., Nw) is given by
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Then, Shapley value is given by

(3:3) mamnm=[ Do Mis()+ D> TS)[US) - S\ ()]
{S:TIM, ni=0} {STIMni>1}
e Mty (e () (-0 () ()
(5) =7 )'(no)'(nl—l)'(nz)m(nM)_ '

M) (2o Ni-1
(Zi:o N') (EMZ ni—l)
Proposition 23 in Appendix A show that déieientI'(S) is a probability mass function such tH&S) = Y (no, N1 —
1,ny,...,nm; No,N: — 1, Np, ..., Nyw) where distributiory is defined in Appendix A. Note that the distribution
possesses point symmetfyny, ..., Ny; 41, ..., 4m) = T({1 — M, ...,dm — Nw; &1, - - -, dv). Using these two facts,

PIRICEERIEC)
{S:np=0} (Sing=1}

Now;, in either case afip = 0,1, Y. n,-0) [(S) = 0 asN; — coforalli = 1,.... M. Ygu 0 I'(S) can be

written as

Z F(S) Hli:ni:O,nlzl) (’?)II) Z n[i:nizl,mzZ] (':II)

TN (N

1 n[i:nizl,nlzzl (’r\WIii)

TN (2N

{s:1#, ni=0}

where the right hand side converges to zerblas> «. Therefore,

1
Z I(S) ~ Z I(S) = Z I(S) ~ Z I(s)~ 3.

{s:11My ni=0} {S:no=0} {Sino=1} {s:TM ni>1}

It shows the cofficient OfV({Sg(j)}) dl; in (3.3) converges to/2 asN — oo’. From Proposition 24 in Appendix A,

we obtain
(s () dh = v(Is (D)) + 5 [W@) - v\ (sG]

foralli, j. O

The above derivation critically depends on the indispeifisalind the existence assumption of a non-degenerate
player, which enable for the firm to keep discrete influencpaydts whereas that of individual workers becomes
negligible asN — «’. On the other hand, characterizing bargaining solutionuatelus requires an additional
assumption that the game should be essentially concaveneAdltset, the following lemma shows that core is
non-empty if and only if the production process is more puiihe for the last marginal worker than unemploy-

ment in terms of value.
Lemma 2. Dﬁ,(v, Q) has non-empty core if it is zero-additive. So d@%ﬁv, Q) if and only if

(3.4) V(@) -v(@\ {s(i)) = v(ts (i)
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foralli, j. In D:’,\“(v, Q), the condition(3.4)is replaced byF/dlij > U;.

Proof. We start from the necessary condition¥. Consider imputation such that asg Q \ Sy is allocated by
1(s) = v({s}) and playersy(1) is allocated by(so(1)) = V(Q) — Y.sca\s, V(). This is feasible by essentiality of the
game. Obviously, ang such thatsy(1) ¢ S satisfies coalitional rationality SinCBg.s t(S) = V(S) = X ss V({S}).
So does any coalitio such thatsy(1) € S since its imputation yield§ ¢ s «(S) = V(Q) — Y55 V(S) = V(S) by
zero-additivity. which implies that this imputation is ted in core. If (3.4) holds fad?, zero-additivity holds
from the essential concavity, which shows that (3.4) is @asary condition fob?. The case foD? is direct from
this sinceD? is a special case @?.

To show (3.4) is a dficient condition foro?, suppose/(Q) — V(Q \ {s(j)}) < v({s(j)}) for somei, j. The
individual rationality ofs(j) requirea(s(j)) > v({s(j)}). Also, coalition of the rest requireEseg\‘S(j)}L(s) >
V(Q \ {s(j)}), which implieSL(s(j)) < Vv(Q) - V(Q \ {s(j)}) < v({s(j)}). These two equations are not satisfied
at the same time, thus core is empty. It shows zero-adgiiwialso sificient. The result foD? is derived from

this. g

Following the context of our model in which workers and thnfare all rational in participating in production,
the bargaining solution must be in core. Otherwise, at leastplayer will leave the coalition, which implies
that the current coalition is not actually on the optimalhpathe above lemma means that the problem can be

restricted to the case 6F/dl;; > U; on the optimal path.
Lemma 3. If game(Q, v) is essentially concave in which players are partitioned tmugs such tha® = M, S;

andNM, S; = 0, then for any ST ¢ Q such that Sc T, the following inequality holds.

V(T) = V(T \S) = Y IS N Sill[v(T) = (T \{s()})]

i=1

Proof. See Appendix B. O

This lemma is analogous to the property of an ordinary com@awction: f (X1 + AXa, ..., Xn+ AXp) < fx, AXqg +

.-+ + fy, A%y in which each axis corresponds|i® N Sj|l. Itis required to derive nucleolus of the game.
Lemma 4. In 92 (Q,V) for any N, the imputatior(3.2)is supported by nucleolus.

Proof. The proof starts from the following lemma.

Lemma 5. Consider a coalitional game? (€, v) for givenN in which Q) - v(Q\ {s(j)}) = v({s(j)}) holds for

any i j. Then, in any max-reduced gameaﬁ(Q,v), the least cord'(ey) is characterized by excess

(3.5) 0 =~ [v@n) ~v(@n \ (s()]) ({5

whereQ, is a set of players in the n-th reduced game ardarg min v (Qn) — v(Qn \ {s:(j)}) - V({si(j)}) in which
j can be arbitrary by anonymity.

L1This result coincides with Stole and Zwiebel (1996) by edlirg its result to a case of infinite number of agents.
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Proof of Lemma 51n then-th reduced game, characteristic function is given by

VIQ\QnUS) - Yo, (9 ifs(l)eS
(3.6) V(S) =
YeesV(Is)) if so(1) ¢ S

for anyS C Q.
Consider imputation in the-core for given excess,. Individual rationality with excess requires(s(j)) to

be

3.7) us(j) = v(s(j)) - &n

for alli, j. On the other hand, coalitional rationality with excessf the complement of the above, i@, \{s(j)},

requireszsegn\{s(j)} ((s) > V(Qn \ {s(j)}) — &n. Since total rationality impliegs(j)) = v(Qn) — ZSGQH\{S(D} (9), it

leads to

(3.8) «(s(1)) < V(Qn) = V(Qn \ {s({)}) + &n

In the paydf spacgX € RZiN} whereX := (L(S]_(l)), Y (NM))), consider a domain which satisfies coalitional
rationality of player se§ and its complemert, \ S on simplex manifold\ := {X € RZN : ¥ () = V(Qn)}
to satisfy total rationality and denote it IB(S, £,). Without loss of generalityso(1) ¢ S can be assumed by

symmetry. Theng-core is obtained by finding out mife : (Ngeoon B(S, en) # 0}. GenerallyB(S, en) has the form
(3.9 B(S,&n) = {X €A:V(S)—éen < Z U9 < v(Qn) —Vv(Qn\S) + sn}.

seS
From (3.7) and (3.8)8({s(j)}. &n) becomes

(3.10) B({s(i)}n) = {X € A1 u(s(§) — & < US(J) < V(Qn) — V(@0 \ {S()}) + &

and therefore

M M
(311) () B({s) ) = {x €A > w8 - (Z Ni]s < DU < ) [VQn) —V(Qn \ (SH)] + (Z Ni]s}

s€Qn seQn i=1 s€Qn seQn i=1

Since ¢ forms least core, it is chosen to maBé{s(j)}, en) non-empty. We are going to show mjfe, :

ﬂSeZﬂﬂ B(S» 3n) # 0} = minsn{gn . mseﬂn B({S}, Sn) + 0.

From Lemma 2¢, < 0. Therefore,

(3.12) V(S) = &n < V(S) - men < ) (I8} - mep
seS
for anym € N. On the other hand, from Lemma 3,

V(Qn) —V(Qn\S)+en = V(Qn) —V(Qn\ S) + Mey
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(3.13) > > [VQn) = @0\ {s()))] + men
seS

holds for anym € N. From (3.12) and (3.13), (3.9) and (3.11) imply, for &g 2%, B(S, £) 2 Nsq, B({S}. &n),
from which min, {en : Nsezon B(S, &n) # 0} = min,, {en : Neq, B({S}, &n) # 0} is derived.
From (3.10), the condition to degenerdi®(j)) to a point is given by(s(j)) — en = V(Qn) —V(Qn \ {s(j)}) +é&n
from which we obtain
£3(1. 1) = 3 [v(@n) (@0 \ 1)) ~W(Is (D))
If &, becomes smaller that(i, j), «(s(j)) that satisfies (3.10) becomes empty. Thus, forpin : Neq, B({S) en) #

0} to be obtained, it must be sgt = max &;(i, j), from which the lemma is derived. O

Continuation of proof of Lemma 4£rom Lemma 5, any workers in groupbtain excess (3.5). Therefore, their

paydf «(si(j)) becomes

. . 1 . 1 _
(si(D) = v({s(D)) = en = SW({SD) + 5 [v(@n) = V(@0 \ {s(D})].
The (h + 1)-th reduced game has player §gt1 = Qn \ ﬂ;“:?l{g(j)}, i.e. all players in groupare removed from
the game. Note that playas(1) stays in the new game. According to the definition of meaced games, its
characteristic function becomes

N;
V(Qni1) = V(Qn) = D (i) = v@) - | «(9)

j:l SEQn1

and, for anyS c Qn.1,

v(S)

max{v(s uQ) - Z (9): QcCcQ\ Qn+1}
s€Q

V(S U (Q\ Qni1) = Yscas () if so(1) €S

Zses V(9) if (1) ¢S

which confirms that the assumed characteristic functidof actually correct by induction.
If F/dli; > U; for all T, the game is zero-monotone, and the above lexicographtercsmucleolus?). Since

core is non-empty from Lemma 2, the nucleolus is includeirec O

Theorem 6. In 92, (Q, V), the following imputation is supported by Shapley value ancleolus.
1 oF
Eij(n) = > (Ui + GI_.J)
Proof. The result follows from Lemma 1 and Lemma 4. For the latteis Buficient to show thaF satisfies
essential concavity. From concavity Bf 3 j (9F (1)/alij) dli; < X (6F(1%)/al;;) dlij. Pick up any typer(3)
and setllij = 0 forany , j) # (3, ). Then,(aF(1)/dl;;) dl;; < (9F (1)/l;;) dli; which implies essential concavity
of F,i.e. F(I* + 6l3) — F(IY) < F(I12 + 6l3;) — F(1?) wheresl;; denotes the measure of type{iabor. O
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We labeledSy as a set of a firm or an entrepreneur above. However, if theaayiplayer who exerts non-
degenerate influence on productivity or, in other wordssé¢howho embodies critical knowledge for production as
rent, this player will receive non-marginal part of coalital rent. In this section, we derived bargaining solution
in terms of value function. Its distribution is actually dothrough wage payment. Bargaining outcome in terms

of wages is derived in section 4 and Appendix C.

4. WaGe FuncTioN

In this section, wage function is derived when there existaess; > 0 for all i such thai’; = & for all j.
This is the case, for example, if there are multiple declarglpes, the natural separation rate is common for all
those types and potential demand constraint is unbindiig. cbndition is obviously satisfied with one kind of
labor. The wage function in general cases is more comptidhten presented in this section and it is derived in
Appendix C*?

By definingz; := Ejj — U; for all (i, j) € r in Bellman equations (2.4) and (2.5), the dimension of theayics

is reduced by one:

(4.1) z(t) = A(t) z(t) - wi(t)

z1(t) r(t) + ai(t) + g (t) Qi (1) e Qim; i (1)

zo(t) Qi (t) r(t) + Gi(t) + gioui(t) Oim, i (1)
wherez(t) := ) VA = ) '

zv, (t) Ginui(t) Gi2ui(t) s 1 (1) + Fi(t) + gimai (1)

wi1(t) — ba(t)

Wia(t) — ba(t) _ . . .
ando(t) := . . Note thatA(t) has eigenvaluegt) + &(t) with multiplicity (M — 1) andr(t) +

Wi (1) = b(t)
&i(t) + u(t) with multiplicity onel? It can be confirmed that the following provides the elemegntaatrix d(t, 5):

Di(t, 5) = ek AT _ o ¢@+5(@)da [| + (ejg‘m)dq _ 1) G]
wherel is an identity matrix ané; is an “expectation matrix”

g1 Y2 - Om
g1 G2 - Owm

12mne arguments below follows the traditional derivation @fg®s for comparison purpose. However, it would be moregtifarward to use
“integral version” of Bellman equations as in Appendix C ofisteady state.
1370 obtain this simple result, common separation rate ambnopdeclarable types of workers is critical.
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Namely, z(t) = ®@;(t, ) c for any ¢ € R? solves the accompanying homogeneous equation to (4.1)n, The
solution to (4.1) is given by(t) = ®(t, 0)[z — fot D(s,0) L w(s) dg = ebA@da[z _ fot e b A@da (9) d for any
initial value z(0) = zy = (20, . . .,Z0). Note thatd(t,s)™* = e L A@da_For the no-Ponzi game condition to hold,
the initial value must be set & = fooo ®(s, 0)" w(s) dsin which integration is bounded. For such an initial value,
2(t) = [T o(s )t w(s)ds= [~ ek A@da (g ds Using the fact thatl[+ (@ — 1) G] L = | + (cfl - 1)G for any
scholare, it is found that

@ (s 1)t = g k) [I + (e’f”i - 1) Gi] .

Namely,
(4.2) 2 () = ftw e K07 [(wj - by) - Ej (wij — by)|ds+ ftm e K e7E, (w; - by) ds

where expectatiog is taken over all possible undeclarable worker types. 8gldifferential equation (2.4) for

U;j using (4.2),
43) 0O = [ L] 1o & (i@ - b@)e 7| as
Similarly, we obtain the value function of employment fockaype.
(4.4) £ = [ e wy(9ds
o [ as el e FUN [ (wi©) - bi@) - (wy - b)) e
_ f ds f e K16(9)- & FOamE, (wy(6) - bi(9)) dé

The unemployment value is the discounted series of unempaybenefit and capital gain arising from matching.
The employmentvalue is the discounted series of wage pgiecéed change of capital gain in new jobs and capital

gain (loss) of dismissal.

Proposition 7. Wage rate at time t is given by

(4.5) wij(t) = bi(t) + (Ehz‘sih(t) - @) + % (Enin() - &ij(1))

+ (5'i )+ @) jf (Ehg’ih(f) - &25)) e f‘f(”’“/z)df + %&i () jtm (Eh‘&ih(f) - ?Yii(f)) effrdf

whereg; is capital gain of marginal value of production, i.8;j := roF/olij — 62F/6talij.

Proof. Theorem 6 implie$?F/tdl; = 2E; — U. Applying (2.4), (2.5), (4.3) and (4.4),

92F (1)
atal;;

020 - (2wij (1) = bi(0) + 253() 2 (1) ~ (V) ft " En (W — by e Ko

(4.6) s
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Taking diterence of (4.6) for anyandj # i, we obtain a Volterra integral equation of the second kintteoning

wih andw;j.*

(4.7) (Wu(t) W.h(t) o-.(t)f W (&) - W.h(f)) Feage - [r(t)(aF(t) _ 5':('[)) B (32F(t) B 32F(t))]

6|ij Alin 3t3|ij otolin

On the other hand, taking expectation of (4.6) yields

«m>Emwm—mm—(mr“‘ﬂ[ En (Win(&) — bi(&) & K g

Y

IF()  9°F(1)
e (o - So0 - n o)

dlin otolin

The above results suggest that it is beneficial to define neablasY;;(t) (j = 1,2,..., M;) as follows.

Yia (1) G| %2 O3 - O wir(t) — bi(t)
Yia(t) 1/-1 0 -~ 0 wiz(t) — bi(t)
(4.9) Yat) |=| 1|0 -1 .-~ 0O wiz(t) — bi(t)
Yinm, (1) 110 o --- -1 Win, (t) — bi(t)

Observe that the above conversion matrix is the same as gleawveictor matrix ofAi(t). By this change of

variables, we can “diagonalize” the simultaneous integgalations concerning;;’s, (4.7) and (4.8). Namely,

Yia(t) Kii(t, &) 0 Yi1(€) hi1

« 1
_ - : de ==
I} ' %7

YiMi(t) O KiMi(t7§) YlM.(é:) him

where

Kia(t.§) :—( i(t) - “'(t)) g K voim)

Kij(t,£) = () e K (forall j=2,..., M)
o OF(t) 0°F()
hi1(t) = Ep ((t) . —b.(t))
_ AF(t)  OF(t) ’F(t)  0°F(t) .
i (®) := r(t)( ol )_(atanj - atau,-) (forall j=2....M)

and the integration is applied element-wise. Then, thetisoltio this equation is given by

Yia(t) hia(t) Gii(t, €) O hi1(€)
1 . 1~ . .
-3 |2 - L%

Yim, (1) him, (1) o Gim, (t,€) )\ him (€)

14Note that it is impossible to obtain affirential equation by taking time derivative of this equatiincet resides inside of the integration.
Itis a general consequence of non-stationarity.
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where Gij(t,§) := — 72, Kf] (t,&)forj=1,2,..., M. Iterated kerneK" is defined b)K*n =Kx+K=x---xKand
n

K « L denotes the composition of the first kind definedkdy, &) = L(t, &) = f K(t, 7) L(, &) dr (see e.g. Yokota

(2006) and other literature on integral equations). Since

n-1
INGICRESLE
(n-1)!

KA = (5 + B Femn

[ [ ds]n_l

Ko = e (oo (forall j=2..... M)

(n-1)!
we obtain
Giy(td = - (5’i )+ ,u.T(t)) e K 0/
Gt = -Fmekl’ (foralj=2...,M)
and the solution folj; (t):
1

O = gha+ 3 (505D [ Lo

2
Y = %h”(m%&i(t)ftme*ffh”(adf (forall j =2.....M).

Inverting back tow;j(t) using the inverse function of (4.9), i.e.

wia (t) — bi(t) 1 g2 - O 0jo -0 Yia ()
wi®) =bi®) | || 1 92 - O 0|1 o) Yia(t)
wiv®-bi® ) [ 1 g2 - Om 0|0 1)) Yim (0
the result of the proposition is derived. O

Note that, whereas wage rate responds immediately to theyehaf separation ratés response to the change
of matching rate or marginal production value accompanietsetlag It is caused by the fact that, while the
adjustment of workforce through dismissal is achieved griynthe matching process is time-consuming. To see
the latter fact, suppose that there is only one kind of laBlatching rateu fluctuates according ta(t) = 1 + sint

and other unrelated variables are fixed. Then, from equédi&), wage rate is given by

C0+C1(C2+@)Iwexp[—f(cgﬁlg)ds]dg

Co + C1 (C + sint) e (€0st-C:0/2 f " dleost—Cat) 2y
t

w(t)

whereC; (i = 1,2,3) are indeterminate constants. The functional form is dramthe first graph of Figure 4.1.

The second graph shows the response of wages against thgedhamarginal productivity. Note that marginal
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(1) Response of wagesto matching rate:

‘ ‘ ‘ ‘ L tine
-5~ -5 2.5 —6 2.5, 5 7.5

(2) Response of wagesto marginal value of productioff /ol
w(t ) —

——

) ;o Nof /ol (
i\” /\ /\ -
Ty ‘\/5 ©NREE

Both show reaction ofv to the forced oscillation in matching rate and in marginaldurctivity, respectively, where
u(t) = af /0l = 1+ sintis assumed. Vertical constants are arbitrarily adjustetiatothe phase shift is easily visible.
Used parameters arb:= 1, 7 = 1, r = 0.05, ¥ = 1 for the first graph anb = 1, u = 1, r = 0.05, t¢ = 20 for the
second wher¢ is the entering time to the bounded surface.

Figure 4.1: Response of wage rate to forced oscillation

productivity is a decreasing function gf It will be shown that, when a firm is operating below the dethan
surface, the marginal production value is givenady ol = fe of /ol e*f(”&)dg wheret® is the entering time to
the demand surface. It assungdgdl = 1 + sint,*> which implies = psint — ¢ cos for somep andg, therefore

the wage function becomes

w(t)

Co+g+Cy f (Cz + &) e =€ 0de
t

_ Cos r sintz— cost + Gyt foo (Cz LT Singz— cosé e Ok s
t

These fects of matching rate and marginal productivity would shoarenor less synchronized behavior in the
actual economy, since they are countercyclical from ealsbrofThe lagged response shown above is not limited
to a special case where intertemporal fluctuatiop of 9f/dl is represented by a sine curve. As far as they are
absolutely integrable in terms of time, similar propertienild be shown via Fourier transformation.

The above ffect distorts the share between entrepreneurs and workers$osiness cycles. It can have real
effects when the aggregate demand is a function of the relatstgbdition between these two groups. Such
examples include the case where entrepreneurs héeeatit saving ratio from workers, and the case where the

investment decision of firms is a positive function of profits

Corollary 8. At steady state with one kind of labor, the wage rate w sagigffie following relation

F 9 o b b
(4.10) F (oo Jw,_o b, (wW_b
ol r+u+a/r r+u+or r+u+o\r r

15The case of binding demand constraint can be derived in desimay where the only dlierence is that a cyclical component is introduced
in the discount factor. On the other hand, if the economy diato leave the demand constraifiE/dl is not a simple integration of marginal
productivity.
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Furthermore, if w> b, then

holds.

Proof. Equation (4.10) is obtained by settihg= 1, M; = 1 and all related variables to be at steady state. For the
latter half, we see thatF/dl > w/(r + &) is equivalent to1? + &1 + us)w > (r?> — 5-2)b using equation (4.10). If

w > b, then (2 + &1 + ué)w > r’w > r2b > (r? — 5?)b, which shows that this proposition is true. i

The steady state mentioned in the corollary can be eithevwmiied or bounded steady states. It shows that, as
far as work is more preferable than staying unemployed fakers,the firm is willing to employ more workers
once there arises additional demand for outpBurthermore, it should be observed that if output increathe
marginal productivity of labor, i.e. the left-hand side iquation (4.10), decreases. This¢rease of output
is achieved through the decrease of real wage rate in the veaggaining, ceteris paribusThis result largely
depends on our setup assumptions that labor intensity istaot) that workers are not allowed to do overtime
work and that profits are not redistributed to workers, saprovide incentives forféorts.

Now, we can present some general properties on wages. thiestxpected present value of wages is gener-
ally greater than that of unemployment benefits as far ag temains production opportunities. Second, if the
marginal contribution to the value of production is decieg®ver time, wage rate is greater than unemployment

benefit.
Proposition 9. If 9F/dl;; > U; for all (i, j), then [~ Ejwij(g)e™ [+ )ds > [ bi(s) e /+Ttmds,
Proof. From Lemma 1, the conditio®F/dl;; > U; implieszj = (dF/dli; — U;)/2 > 0. Namely,
2= [ Enln - ble 05— [ {Eq[wn b - (w - b)) e S+ #ds> 0
must hold for all {, j) from (4.2), which yields
ftm Ep [win — bi] & [+ ds > mjaxftm {En [win — bi] — (wij — bi)}e-ﬂrﬂ;iw)ds >0
to obtain the result. O
Proposition 10. If 32F/atol;j — U; <0, then w; (t) > bi(t) for all (i, j) e Y and t.
Proof. From Theorem 6,

. 1/(- 9°F
(4.11) Eij(t) = > (Ui(t) + Whj(t))
which yields
&F
atal;;

Eij(t) - Ui(t) = %( (t)_Ui(t))So
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From (2.4) and (2.5)

Wi — b = (r + &i)(Eij - Ui) + uEh [Eih — Ui] - (Eij - U.) > 0.

The condition of Proposition 10 obviously holds at a steddteseither when the demand constraint is binding
or unbinding. On the other hand, whbris expected to rise only for a ficiently short period of time from now
on, it can happen that wage rate becomes temporarily snthlarunemployment benefit wherdas> U still

holds and thus workers do not willing to quit the current jobs

5. RropucTtioN PLan

The results of the previous section show that the wage raefusiction of employment. Based on rational
expectation on wage schedwé), the firm determines optimal policy on vacancy post and disat. The optimal

problem for the firm is given by

. L
) 20.9) = max [ [f(l)—w(l)-I—;Ki(m}exp[— [ o) e
subject to
(2.1) i = gjw@)m —oijlij —xj, Yi=1....Lj=1...,M
(5.1) O<x;i<X  Vi,j
(5.2) m=0 i
(5.3) f(h<y
(5.4) ;20 Vi,]

li;(0), Vi, j given

where parameteng g, 6, o are generally time-dependent aKds an arbitrarily large numbeiX is assumed to
be large enough so that a firm can accommodate any negatimgebéy. r is bounded and(t) - 0 ast — oo.
Also, y(t) € C? as of the time of planning. It can shaex postindifferentiability as a result of unexpected shift
of y. It will be proven that labor market constantly shows theestd long-run excess demand below unbounded
steady states. Namely, if the firm can employ additional wosldue to the increase gf then it can increase
profits. Walras Law implies that the goods market is alwaythestate of excess suppiggardless the relative
price between output goods and lab@mn the other hand, the presence of a convex vacancy coskfapcohibits
discrete increase of employment, which implies that agapeegroduction and income can grow only continuously

from the current level, and thus the excess supply in the gowtket will not be resolved.
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Denote the costate variables corresponding to each ti@msijuation ofj; by 1i;. An augmented Hamiltonian

H is defined by

(5.5) H@ =f (1) -w()- 1= > km)+ > 4 (aym - oyl - x;)

L
i=1 ]

. f.
+MO[Y—Z gl—ij|ij]+izj:ﬂiljxij + ;#ﬁ (X— Xij)+Z)’imi

i=ij

whereR(t, ) = fr(r) dr andup, pi”j > 0 for Vi, j,nandy; > O for Vi are Lagrange multipliers such that any

terms including them are zero. From maximization of Hamilém function, optimal conditions fany are given

by

(5.6) K (m) = Z¢ij(/lij—#ofij)+%
j

(5.7) ym = 0

(5.8) A - pofy = g - 4

wheref;; := 9f/dl;j, and costate dynamics is given by
(5.9) Aj =(f+f7ij)/lij +#o(fij —O'ijfij)—(fij —Cij) Vi,

wheref;j := Y,p(0?f/01ij0lab) lan, o > 0 when the demand constraint is binding agd= 0 when not.
5.1. Optimal control.

(a) Off demand constraintslf the demand condition (5.3) is not binding, we haye= 0. Then, the optimal

condition forx is given by

0 if ;>0
(5.10) Xij = Vi,j
X if Ai; <0

Proposition 11. When {l) <, if 3; ¢ij4i; > 0, then m> 0. If 3; ¢ij4i; < 0, then m = 0.

Proof. If 3; ¢i4i > 0, the right-hand side of equation (5.6) is strictly pogfiwhich impliesm > 0. If 3 ¢ij 4ij <
0, theny; > 0 since the left-hand side of equation (5.6) must be nonthegaFrom equation (5.7), it implies
m = 0. If 3};#ij4;; = O, then equation (5.6) becomegm) e Rt = 4. If we assumey; > 0, equation (5.6)
impliesm, > 0, contradicting equation (5.7). Thug,= my = 0. O

Corollary 12. If f(I) <y and m> 0, then x; = Ofor all j.

Figure 5.1 shows the case i = 2.
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(m> 0 for all 1; and1,)

X1 = X X1 =0 1 1 , 2la+ X
1 1 A= %417 %K (alfltl;ff;rlefz;fz)()
(a) Off demand constraints (b) On demand constraints

Figure 5.1: Optimal control

(b) On demand constraintdVhen the demand constraint (5.3) is binding, it imposesiodisins on controls in

the form ofy}; ; fijlij = ¥, or
(5.11) Z[Z(ﬁijfij]m =Y+Z(0'ijlii+xii)'
i j ij
Since (5.11) is constraint expressed iffeliential form, the initial condition must be provided at tenjunction

time. However, given that the path is on the constraint serfa the neighborhood of the present time, (5.11)

sufices.

Proposition 13. Define K, (1a, Ab; 1) 1= Aia/ fia = Ain/ fib.

Q) If Ya¢ia fiakiaj < «/(m) for all i and j wherem is a solution to

y= Z[Zrbufi;]nﬁ —sz:o—”f”hj

YaPiadia — K/ (M) _ ZaPiradia — K, (M)
Za ¢ia fial Za ¢i’afi’a ’

.,
Yi, 1,

thenni = m and x; = Oforalliand j.
(2) IfsetS:={(i, j) : Zarﬁiafiak;j > k{(m)} is non-empty, then s determined by

A A _ )
«, (M) = Zmafi/a(# - J) > (M)  VieS
a

ira i

Y.a Piadia — & (M) _ Yadradia— « (M)
> adiafia Yadiafia |

Vi ¢S.
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On the other hand,ix=Oforall (i, j) ¢ S and x for all (i’, j’) € S is given by
D, Ty = Z{Z¢ii fij]fﬁ - >, it =y
(i-7)es AN P

and distribution among;x.'s is indeterminate.
Proof. DefineA;j := Ajj — pofij. From (5.8),
0 if Aj >0
Xj=1[0,X] if A;j=0
X if Aj <0

SinceX is suficiently large, the condition < X is never binding, which implies tha@; > O for alli, j and thus

Y.a®iaAia = 0 for alli. Then, sincey; = 0 for alli, /(M) = 35 diaAa. Solving this obtains

_ Y.aPiadia — Ki/ (my)

(5.12) Ho Za ¢ia fia

for all i. First, suppose;; = 0 for alli andj. (5.11) and (5.12) together with; = 0 determinesn; which is
common for all range of; = 0 for all i, j for givenl. Let us denote it byn. Then, fromA;; > 0, the condition
xi; = 0 for alli, j is equivalent to domaiansiafiakiaj < «/(m) forall i andj. Next, suppose that there exist some
i” andj’ such thatx,j; > 0. Then, fromug = Ai-j/ firj,

/1'/ /l'/'/
<(m) = Zmafi,a(f'—a - fi',;,)
a

i’a

From the demand constraint (5.13), (34 ¢ia fia) (M —m) > 0. On the other hand, from (5.12),n = m for

somei, thenm; 2 m; for any j. These leads tm > m for all i. O

Optimal control for each for the case of two undeclarable types is shown in Figurel'ak;l,can be interpreted
as pressure that represents the necessity of structurajelimemployment composition between typendb. If
the pressure is relatively weak, the structural changei®aed solely through the adjustment of new employment
and natural separation. As the pressure grows, the firm ipeted to adopt dismissal. The bandwidth of the
no-dismissal domaix; = X, = 0 positively depends ohis. The linear structure of the optimal control on the
demand constraint shown in Figure 5.1 (b) is a direct consecpi of the presence of the demand constraint.
If there exists infinitesimal transformation that presertdamiltonian, the first integral exists and it is actually

demand constraint. The following two theorems are relateslit problem.

Theorem 14. The necessary andgigient condition for function G to be the first integral of Hdtmnian dynamics

with Hamiltonian H is{G, H} = 0.

Theorem 15 (Noether’'s Theorem)For function H defined on a simply-connected domain, thefatg two

statements are equivalent.
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The Hamiltonian of this vector field becomes the first integnathe
Hamiltonian field in the configuration space.

Figure 5.2: Vector field in the conjugate space brought byd#raand constraint

(1) There exists a function G such that
(a) G is not a constant function and
(b) G satisfiegG, H} = 0.
(2) There exists a one-parameter group of transformation wétameter sps, such that
(a) ¢sis a canonical transformation,
(b) ¢ satisfies Ho 95 = H and

(c) ¢sis not an identity transformation.

Obviously, the demand constrai@t = f(l) —y = 0 is constant over time, so it is one of the first integrals.

Theorems 14 and 15 guarantee that we should be able tg{ititht satisfies condition (2) in Theorem 15 from

which we can construct change of variables to facilitateatiyits on manifolds. To find suah, the key findings

is that its projection on the conjugate subspace need &hgétie following relationship:

A11 /111 fll

(5.13) : = : + : S=:!psd

Am, Am, fLm,

where (A11,...,ALm, ) iS the costate vector after transformatianis an arbitrary parameter ang|d denotes

the projection of transformation on subspacelfs,...,A.m, ). This is the transformation of variables along

contours shown in Figure 5.1 (b). Since the optimal congr@ivariant under this transformation, it also preserves

Hamiltonian.¢s constructed in this way is obviously not an identity tramsfation. Therefore, remaining task is

to adjustyg|l to makeps a canonical transformation. This will be done in the nextisac Another view is to look

at the vector fieldg which equation (5.13) generates (see Figure 5.2). The véetd X can be obtained by
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the infinitesimal transformation of this group which is

= Z fiji
0 43 04jj

whered/da;; is the basis of the tangent space. Then, it turns out that kam#n G of the vector fieldXg is

dos
ds

actuallyG = f(l) —y.

5.2. Costate dynamics out of constraint surface.d is an influence function which shows the impact of the
marginal change of the initial state vallen the present value of profits The properties oft out of demand

surface is closely related to the presuppositions imposedage bargaining. When the demand constraint is
unbinding, it equals the discounted series of marginal fgrofi labor where discount rate is the sum of interest

rate and separation rate.

Proposition 16. Let £ € T€ is the first entering time after t. Costate variables whendfage constraint is not

binding is given by

te f L .
(5.14) uo= [ [‘9— - %]e- e 4 G, (1)
v 0l & ol
foralli, jwhere € = 0 if T¢ = 0.
Proof. Equations (5.9) withip = 0 yields equation (5.14) witl; undetermined. O

5.3. Costate dynamics on the constraint surfaceCostate dynamics on théfective demand constraint can be
solved by focusing on “pressure to change employment snra’tk;b. As mentioned above, this fact is no more
than the other side of the coin that the model has a demandraionsn the configuration space. Please observe
the symmetricity between canonically conjugate coordigafThe key is to apply the following transformation
@ : Q — wtothe model wher€ = *(Ly,..., L, A, ..., AL, w =g, ..., 1, A, .., A, Li = Y(Lig, . . ., Limy)s

Ai = '(Ai, .. Aim), i = Wi, .., lim) @and A = Y(Aig, ..., Aim,). Note that one can choogé(i) to make

Za¢iafiak;j*(i) > 0 for alli by takingj*(i) = arg min 4;;/ fi; for giveni:

lix Li1 Ain Ai -y + TijmAiL
(O3 li,j*(i) = g(t, L) a.nd /li2 = fi,j*(i)Ai,j*(i) fOI‘ a” |
lim, Lim, Aim, Ai gy + TijrmAim

whereg : R, x--- xR, — R, is a function that satisfiegt) — f(..., Li j-g-1, 9(t, L), Li j=G)-1, . . .) = Li,j=G). Notice
that this transformation belongs to the class of point fiamsation and therefore is a special case of canonical

transformation.Canonical transformatiors defined to be the one the pull-back of which maps a seconet ord
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differential form to itself and is known to preserve the Hamitionfunction!® Point transformatioris one of
canonical transformation in which the configuration suloggda transformed to itself.
The construction o® is easily observed by the following arguments. Suppbgéfii = min, Aia/ fia for given

i without loss of generality. We construct a point transfatiorad : (L; A) — (I; 2) = (¢(L); 2) such that

Lis y(t) - (1) lia g(t. L)
» Lip liz ) liz Lip
o _ = ) or equivalently @ =
LiMi liMi IiMi I_iMi

For it to be a point transformation, Hamiltonian must be iraat except for the “time-variant” term. Therefore,

Ain A1 -+ 10 -0 A1 -4

Aiz . Ai2 -£ |1 O |l iz Ao — £
fm: fm:

Aim, Aim, —fll' O 1 Aim, Am, — fll'/ll

must hold, which implies

Ai1 -fiA1
/1i2 A2 + f2A1
/liMi AMi + fMiAl

Note that, with this choice of(i), it becomes possible to makeg, ¢iaAia = 0 so that the transformation does not
conflict with the limitation of’~1(-) that is defined only on domai®, . The HamiltoniarkK on the new coordinates

is given by
K(t, L, A) = H(t, (t, L, A)) - <got, (t‘PL)_l A>

which simplifies to

(5.15) K = f(. L Ot L), Lo, ) - c(. oL Ot L), Lo, )

- Z i [m [Z ¢iaAia] 30 Aa

a#j* i azj*

¢iam[z ¢ibAm] - maLia))

b j*

wherem(-) := «’~1(-). The equation does not contaiy}, showing that.j- is cyclic coordinate. Also, this consists
of an energy surface on which a path is restricted. With twalkiof undeclarable types, it fully characterizes
the solution. Note thai;- is indeterminant on the demand surface without specifyinghle leaving point or a

bounded steady state.

5.4. Costate discontinuity on junction points.

1801 analytical mechanics, see e.g. Arnol'd (1989) and 1896).



PRODUCTION THEORY WITH CONVEX LABOR FRICTION 26

Entering condition to the demand constraittet C ¢ RM be a configuration space. Define aentering time

t¢ € R to a state constraint surfagec C such that the Lagrange variahlgadjoint to the state constraiftyields
1o(t®) = uo(t®—¢&) = 0 andup(t®+&) > 0 for any arbitrarily smalk > 0. Letz(t) : R — C be a path, i.e. a trajectory
projected onto the configuration space. Defi(t€) as anentering point Similarly, leaving time 't € R from a
state constraing is defined to beu(t') = uo(t' + &) = 0 anduo(t' — £) > 0 for any arbitrarily smalk > 0. z(t')

is called aleaving point Denote a set of all entering time By and a set of all leaving time by'. We also call

tl € TN T' a junction time and(t)) a junction point. In general, costate variables can showe-iliscontinuity
either at entering or leaving points (see e.g. Bryson etl8638)). This is due to the fact that, over time, the state
constraint separates the normal of intertemporal trangition of the neighborhood of the optimal trajectory on
the limiting surface at entering or leaving time from themat of the limiting surface itself. Despite tha fact, for
the current problem, it turns out that costate variablesaateally continuous both at entering and leaving time.
This is due to the one-way property of the path, i.e. as faoasxternal force is added gnthe path permanently

stays on the demand surface. At conjunction tiraeT®uU T',

(5.16) Aig = Aig + pfia

(5.17) H™ = H* +py

must hold wherg is a Lagrange variable adjoint to the state constréffit— y = 0 and, for any variablé, we

denoteA™ := limyp A, A" = limyp A. From (5.16),

-
fial
for all i anda, which implies
. AL Al
(5.18) AKL, = ta Ao _
fia fip

for all i, a andb such that # b. It implies that costate variables jump at entering poifdagcontour lines ofm

as shown in Figure 5.1 so thleiatb does not change. From (5.17),
Z’lﬂ (¢ijm‘ - aijlij - Xa) - Zki (my) = Z/lf] (¢ijm+ - oijlij = Xf]) - Z «i (M) + py
1] | 1] i
Using (5.16), it turns out
0 ifteT®

(5.19) D (M)~ > wi (M) = D (d1j5) (M —mp) + > (x5 = ;) 4 =
i i 1]

¥ p(y- filf - fi3) ifteT
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Or, the same relation can be expressed as

V- fils — fol5) ifteTe
(5.19') Z () — Z (') - Z% ; m_m+)+z( )i = p (V- fil} - fal3)

0 ifteT!

Proposition 17. At both entering and leaving points; end 4;; are continuous at fn= m; and atd;; > 0. X;; is
continuous at x = 0 both at entering and leaving points whgre — 3’ ; oijlij. If y < = X j oijlij, X > 0 for

some(i, j) showing discontinuity at entering points. Also, enteriingetis characterized by

(5.20) K (M%) = Z¢.Ja,,(te)
where £ e TE.
Proof. Whent € T¢, 4; =20 forvi, j. If A4; <0 for somei andj, thenx = X, which implies}}; j fij 'a <Y,

violating the entering conditiop; ; f.,la > Y. First, suppose;; > 0 for someé andj. Then, (5.19) becomes

Zki(m+)=ZKi(m_)+Z & (M) (M —mp) — ZXIJ ij

whent € T®. However, since; is a convex function ang > 0, the above relation is only possible whep = m
andx’ = O for alli andj. On the other hand, it;; = O for alli andj, (5.19) yieldsy; xi(m") = % «i(m) = 0
and agairm is continuous at zero for ail In this casek;b(te) = A/ fia — A/ fio = A/ fia — A3,/ fip = O for all
i,a, bwhich impliesx;; = 0 for alli, j as far ag/> - 3; ; ovjjlij by Proposition 13. If/'< — 33 ; ojlij, some ofx;
are strictly positive according to (2) of Proposition 131t m" = ny” andx; = x; = 01in (5.19) givesp = 0

which implies thaty;; is continuous for ali, j atA;j = A = > 0 from (5.16). At leaving points, (5.19’) becomes

ZKi(nT)zzki(er)"'Z ,(n})(m M) ZXIJ ij

whent € T!, and sincex is a convex function anet > 0, the above relation is only possible whepi = nt
andx; = 0 for alli andj. Putting these results in (5.19) givesas= 0 which implies continuity oft;; for all
i, j at leaving time. (5.21) comes from the fact theiny (%)) = X; ¢i;.4;; (t°) from (5.6), My (t°) = m(t°) from

Proposition 13 and (t°) = m'(t®) from the above results. O

From Proposition 17, entering points locate in domggm&iafiakiaj < «/(m). Itimplies that the entering to the
demand constraint must be “smooth” in the configurationsjgiae> - 3'; ; o;li;. Namely, growth of labor must

slow down as employment approaches to the demand constraint

Leaving condition from the demand constraibhtaving points exist in thinterior of ), ¢ia fiakiij < «/(m). Note
that leaving from the demand constraint never occurs scsfara0. Leaving occurs when catchup to the growth
of demand becomes too costly in terms of accompanying vgceost. Asy becomes too large, it becomes

suboptimal to stick to the surface of the demand constrlittat happens is that ggrows, the ban@® > k > C
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(Zaqﬁiafiak;j < «{(m)) in Figure 5.1 widens while the width of other bands are laptstant. It implies that for
givenk, it becomes more likely to fall in the domaBi> k > C. Unless the value of is such that corresponding
optimal control keeps the state variabéemctlyon the surface of the demand constraint, as sodafalts in the
domainB > k > C, the state variables leaves the demand constraint. The¢em/more likely to happen ik| is

small.

Proposition 18. Leaving time is characterized by
(5.21) K (m(t)) = Z i A5 (1)
]

where t € T'. Leaving points satisfy the conditigfy, ¢ia fiak}; < «{(M).

Proof. From Proposition 18 ang(t') > 0, mandx are continuous at andx;; (t') = 0 for alli, j, from which (5.21)
is derived. From Proposition 18}, ¢ia fiak}; < /(M) must hold at = t'. Also, from (5.6) and/(t') > 0, &}, > 0
must hold for some, j. Supposéjaqbiafiak;j = «{(m). Then, for anyi, j, X5 ¢ia fia (/ha/ fia — /lij/fij) = Yadiadia

holds which impliest;; = 0 for anyi, j. This is a contradiction. O

6. RarioNaLE oF WAGE FuncrioN

Ais an influence function dfon J which is the value of the optimand in the maximization probfer a firm.
To derive the wage function in Section 3 and 4, however, wel h@&now the marginal impact of changelion

F() = ftm[f - ZKi]eRdf

I
instead ofJ, when| follows the optimal employment path for a firmActually, it can be shown that a new
“influence” function ofl onF can be constructed based on the derivatiom. denote the new influence function
by 2*. The above equation can be rewritten as
(6.1) F(l) = f (H+c+ " 1)eRds = 2*(00) - I(c0) + A (1) - I(t) + Z ply—f)
t teTeuT!

using the new costate variablé Taking total derivative,

- [
t

holds at allt whereu = (m, x). We want to seft* so that we can neglect théfect of §1(¢) (t < &€ < o) onsF.

(%_T + Z—‘.’ + 2*)6I(§) + %w(f)} d™Rdg - A'(c0) - 61(c0) + °(V) - 61(1)

Then, dynamics of* should be given by

- oH dc - odc
(62) /l——ﬁ—a— —a
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both on and & the demand surface. The nai(t) which follows the above dynamics is the “influence”lafpon

the paydr of the total coalition, sincad"(t) = 6F/5l(t). It implies that, ¢f the demand surface,
te
(6.3) A = f fj e Jt+oldst C
t

fromyo = 0in equation (5.9). In the wage bargaining, marginal impétiiedecreasén the number of coalitional
members matters. Note that when an agent leaves the coatiéonand constraint becomes unbinding even if it
was initially binding. Therefore, regardless whether decheonstraint is binding, (6.3) shows marginal impact of
dljj < 0.

Theorem 19. F is increasing and concave in domdiffy 1, . ..,fLML) :0< I]- < ljj).

Proof. We only need to considélj; < O which leads the state constraint unbinding. Increasiogeuty results
from the following facts: 1)3;;(t) > O for anyt when it is on the demand constraint, singe< 0 makesx; = X
and resultin(jij makes the path detached from the surface. 2) Moreover, $inisecontinuous on junction points,
Cij(t) > 0 holds in equation (5.14). Thereforg; > 0. 3) From (5.9) and (6.2)F/dlij = 4;; > 4 > 0.
Along the optimal pathdi/dt < 0 and thusdnydt < 0. Together with transition equation (2.1), they imply

dlij(r) < e‘f"dlij(t) for all r > t around the optimal path. Then, from equation (6.3),
oF .
2 mmH0 = 240
¢ ot
_ - [(r+o) N
= .Z,:(ft i5° dr+C)dI.J(t)

L)
.Z,:( ToN I dT+C)d|ij(t)

t

te
= dfe/rdr+C
t

dF

\%

whereC > 0 is constant and this shows concavityFof O

Theorem 19 shows thé& satisfies the condition @b in section 3. Namely, the bargaining game assumed in
section 3 is actually consistent with the whole model. Thet tieeorem completes the argument that there will
be excess demand for labor if the demand constraint is umgmehich is the source of the (modified) principle
of effective demand. Since increase of labor always amplifiestprofirm, it is always willing to accommodate

additional potential demand as far as it is smaller than ttiunded steady state level.

Theorem 20. If the demand constraint is unbinding ahts smaller than the unbounded steady statgddl 3- 0.

Moreover, ifoF /otol;; — Ui <0, then w; (t) < of(t)/ol;j for all (i, j) € Y and t.

Proof. The first statement is obvious from the fact that> 0 for alli, j when the demand constraint is unbinding

andl is smaller than the unbounded steady state. The seconthstateomes from the following. Froat/dl; =
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A5, A = =i + (r + 03)&;;. Equation (4.6) yields

i)
fij —wij = (Wij - bi) + 0 dj] +,Uif En [Win — bi] €/ ?ds— 203(Eij - Uy)
t

=(Wij —bi)+,uif En [win — bi] e‘f"‘ds+ aiU;

t

>0

where the second line is obtained usigg— U; = (/li*j — Uj)/2 and the last inequality comes from Proposition 9

and Proposition 10. O

7. SreEADY STATE ON THE DEMAND SURFACE

The model allows for analysis of a perpetually moving econday truncating the economy in ficiently
distant future. However, to settle down the endpoint of@iestariables, it is sometimes convenient to analyze the
steady state. The previous analyses showed that unlessishaordinated expectation among economic agents
which persists for infinite length of time, the economy wititmeach to the unbounded steady state. On the other
hand, the economy can be settled in a steady state on thenstgtidemand constraint. Suppgse: 0 in this
section. Then, we find out strictly positive amount of reif@etof job application at steady state “almost surely”.
A bounded steady state maximizes profits obtainable whéalistate of labor can be directly chosen. Consider

the following static problem.

L
(P) mﬁfxxx{f (I -w(h)-1- Zki(m)}
’ i=1
subject to
(2.1) gijm = (r + oij)lij + Xij, Vi, ]
(5.3) y=f(l)

Theorem 21. Steady-state solution of problem (P) is equivalent to thetsm of (P’).

Proof. The optimality condition of the problem (P’) is given by

(5.6) Km) = > i
j

Ao fi-a .
5.9 Ajj -
( ) . I + 0ij #0r+o-i,-

0 if ;lij >0
(5.10') Xij =
X if 4 <0
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and the constraints Wheﬁ@ andyp are costate variables adjoint to equations (2.1") and Y&&Spectively. From

(5.6") and (5.9)),

B Zj r-‘f(i)j'ij (fij —cij) - K'/(m)

dii £
2] mfu

(7.1) Ho

SinceX is arbitrarily large and therefore the steady state cooifior [;; does not hold whew;; = X, fli,- <0is

impossible for ali. Thus,4; > 0 or ;; = 0. If there exist{, j) such thatl;; = 0, then for suchi( j)’s

. fij—gj S
(7.2) fio = % V(i j), 4ij =0
i
and for otheri( j)’s such thatl;; > 0,
(7.3) xj=0  V¥(i,j), ;>0

holds. Then, the solution is completely characterized by’ 25.3"), (7.1), (7.2) and (7.3).
On the other hand, the bounded steady state solution to ii@arproblem (P) is given by imposing steady
state conditioh = A = fij = 0 to each optimal condition. Imposing it on (2.1) and (5.3pdts the same condition

as (2.1’) and (5.3’). From (5.9) and the steady state cammiti

(5.9”) Ay = fj—c, oify

I+ 0ij OI' + Tij ’
Substituting this to (5.6) derives

~ 2 rf—i;ij(fij - Cij) — &/ (M)

i 5 ’
rZJ I +0ij fl]

(7.1) Ho

which is equivalent to (7.1) if we defing = ruo. From (5.9) and (5.9") ;5 = iij + uofij, which results in

equivalence relation between

0 if Aj>0 0 if 4ij >0
Xij = in problem (P) = Xij = in problem (P’).
[0,X] ifAj=0 [0,X] if 4;=0
All of the above equivalences show that problem (P’) is egeint to problem (P). O

The next theorem shows that, in general, the pointin whingdnun profit is maximized does not coincide with
the point in which a bounded steady state is achieved witfirimg}. It means that either dismissal or rejection of

job application will occur at a bounded steady state.

Theorem 22. If max M; > 2, the set of parameter®, o) that brings x = 0 for all (i, j) at steady state has

measure zero in the parameter space for given f and



PRODUCTION THEORY WITH CONVEX LABOR FRICTION 32

Proof. From Theorem 21, the proposition can be proved via probleéjn xRvhich appears in (P’) can be viewed

as a slack variable substituting equality of equation §2vth inequality. Namely, it is equivalent to the following

problem:

L
(P") min {w(l) 1+ izl]xi(m)}
subject to
(2.17) dijm Z(r‘*‘o'ij)lij» Vi,
(5.3) y=f(l)

Obviously,my maximizes the maximand when it is settp= min;{(r + oj)lij/¢i;} in equation (2.1”). Maximiza-
tion on| with this condition completely determines solution foHowever, in general,

I+ oijj I+ oij
|ij * Iij

Bij dij’

foranyj’ # j, makingx;; > 0 for anyj’ such thatj’ # arg min{(r + oi;)lij/¢i;}. Even when the condition

Bij - dij’

r+o-i,-| r+o-i,-/|
ij

(7.4)
forall j, j’,i holds, it fails to hold once any small perturbation is addedie ofr,o- or ¢ keeping other parameters.
Namely, a set of parameters which satisfies (7.4) does ndaieoimner points, which implies that it has zero

measure in the parameter space whgn M; > 2. o

The above theorem shows that dismissal or rejection of eqjbingenericallyoccurs at least in one of the
labor types not only in transition on the demand constrairfese but also at steady state, when there exist more
than two labor types in the economy.

Figure 7.1 shows typical dynamics toward steady state ihenl andM; = 2. Paths starting from initial
pointsA; andA, converge to a steady stafevia entering point®; andB,, respectively, when steady state demand
level isy;. If the demand shifts up unexpectediyte vy, in neighborhood o€, the path starts to move toward
the new demand surface and after counterclockwise entéroantinues with zero dismissal until it crosses a line
which passes through the origin. After crossing over the, linstarts to dismiss type 1 workers and converges to

the new bounded steady stéle

8. A Note oN DEMAND FOR WORKING CAPITAL AND THE RATE OF INTEREST

One of characteristics peculiar to search models is thasfara required to put “advances”. Especially, when
| = 0, they must find a way to finance those advances, as the dassd to assume. Let us assume firms demand
for working capital for this reason. Sinads higher wher is low, the demand for lending is higher for a smaller

firm with unbounded demand. On the other hand, at a boundadysstate, requireth and therefore necessary
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Iso-quant curves (Unbounded steady state)

0 I1

y = 0 is assumed in the above graph.

Figure 7.1: Typical trajectories andfect of unexpected shift of demand constraint

working capital«(m) are higher whery is higher. This observation provides two contradictingdimcies de-
pending on whether or not the demand constraint is bindingpp8se that firms are homogeneous and supply
of working capital is constant. If the demand constraintribinding in the economy, interest rate gradually de-
creases as the economy grows. On the other hand, compangcomomies staying at bounded steady states
with different level ofy, the rate of interest is higher for the developed economy tha other. This fact may
explain so-called allocation paradox (Lucas (1990); Gulras and Jeanne (2007)). Even though our model did
not introduce physical capital, if capital should be intetpd as a fund to cover the set-up cost, the same logic can
be applied in an extended modélUnder the presence of friction, the state of coordinateaetgtion critically

affects the equilibrium rate of interest.

9. CoNcLUDING REMARKS

This paper showed that if there is search friction repreg#aty a convex vacancy cost function ——however
small for a given amount of hiring——, the economy obeys tlieative demand principle. Wage rate is always
smaller than marginal productivity, and a direct attempoweer wage rate will not remove unemployment, as the
old Keynesian arguments suggest. It should be noted thatiadg of sticky price is not assumed in this model.
The existence of convex vacancy cost prohibits convergerme unbounded steady state, oeguilibrium in the
long run, without persistent coordination of expectation. Wage ratfflexible reflecting redundant resources in
the labor market. One of the important consequences of tirels¢heory is that, when search friction is present,
Keynes'’s first postulate of classicals —the wage is equdl@ariarginal product of labour— must be abandoned
on a rational basis. This paper showed that, together withieoovacancy cost, it also rejects the second postulate
in a literal sense: the utility of wages when a given volumkabbur is employed is equal to the marginal disutility

of that amount of employment. Instead, the second postislamaintained in a broader sense that workers follow

1% there is no genuine working capital, those financial angsiital capitals coincide.
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their optimal choicepn a boundaryWorkers’ optimal behavior is to work more below unbounde@dy states,
but such behavior is bounded by limited working opport@siti Anyway, this partial rejection of the second
postulate enables involuntary unemployment — not by sed@oiarpretation, but in the original definitiormen
are involuntarily unemployed if, in the event of a small riseghe price of wage-goods relatively to the money-
wage, both the aggregate supply of labour willing to worktfee current money-wage and the aggregate demand
for it at that wage would be greater than the existing volurheroploymenf{Keynes (1936, p.15)). Since wage
bargaining is based on rational expectation on both sitlesg is no built-in mechanism which brings the economy
back to a natural level of output nor natural rate of unemiplet. If there is a tendency toward full employment,
it must be pursued in exogenous factors from the model pteddrere. One of important factors excluded from
our model is the possibility for workers to escape to autafkys can &ect long-run unemployment rate and can
be a source of poverty trap.

In search models, profit of a firm is strictly positive even wilee commodity market is competitive. The fact
that an entrepreneur earns non-zero profit and that he hasveaaswer in bargaining as suggested in this paper
raises a fundamental question that who really is the “engregur”. The question cannot be neglected when one
undertakes explicit specification of demand side becaueEeitts the distribution of income and potentially the
level of investment. There can be two most straightforwardextreme ways of extension: one is to assume that
income level has no impact on pattern of consumption andstnvent. The other is to assume that there are two
classes, workers and entrepreneurs in a Kaldorian way. dtter literally assumes that the entrepreneur (and
his successor) embodies all the knowledge needed to mamagarfd it will never be transferred to workers.
However, as many examples show, even family successord@amstmanagement as workers before he succeeds

the company. This fact shows that much complicated intdoneés are working in firms’ organization.

AprpenDIX A. DisTRIBUTION OF COEFFICIENTS OF (3.3)

Proposition 23. Let ({1, ..., {n) € NN be a vector of parameters. For anyg/N such tha0 <y, < £, define

1 l—li’\il (f/')
Al YY1, . YN (e ) = —
(A.1) (Y1, -+ YNG 41 n) 113N (Z:Mii:)

Then, equatiofA.1) is a probability mass function.

Proof. T > 0 is obvious. If we sum it up for alf;, it becomes

1 & o Hi’\il(i)
ZT Bl 1+Zi’11§izmz Zi“ilay

0 yuzo ( )
Y1 ym Zi’\il)’i

1+ XN 468 s g ()
1 2

- - Mult.Hypg.(1, ..., YN K 41, ..., ON)
1+ Zi,il i kZ::o Z;k
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=1

where Mult.Hypg s, ..., ¥n; K; Z1, . . ., {n) is @ multivariate hypergeometric distribution with paegter K; £1, . . ., n).

It sums up to one if alh’s are summed up keepifgn; = k. O

Proposition 24. Define a density functioif : RN — R characterized byr' such that
(A.2) rY‘(Xl,...,X|\|)('.“1-'-d|[\| ='Y‘(y1,...,yN)

where x = yidl; and0 < X < |; where | is fixed for any; and d| keeping | = &dl; (i = 1,...,N). Then, the

functional form ofY is given by

‘Y’(X]_,...,XN) =6(1- ﬁ, R X—N
l1 In
as(; — oo for all i where § denotes Dirac’s delta, i.e.
o ifVi,z=0
6(z1,...,2n) =
0 otherwise
and
1 1
(A.3) ff 6(zz,...,zn)dz - --dzy = 1.
0 0
Proof. From Proposition 23,
& IN
Z Z T(ye,....yn) =1
y1=1 yn=1
Using (A.2), it means
Iy In
Z Z 'Y'(X]_,...,XN)dh_---d'N =1
xp=dly xn=dly

which leads to shoW’ satisfies property (A.3) a$ — oo, i.e. dl; — 0, for alli. Note that

(1 160523

if there existd such that; < ;. Then, (A.2) becomes

5 1 MA(G) 1
T(lq,...,IN) 1+Z|’11§I (?’\'\%14) dly---dly
i=1Yi

11 (MLE) ()
MLl xha (509

Zi’\ﬂl Yi

as¢ — oo for all i if there existd such thaty; < ¢. On the other hand, ¥; = ¢ for all i, we have]’[i’\il (j‘l) =1
and thus
1

T(l1,. .. dN) = ————.
et TN g



PRODUCTION THEORY WITH CONVEX LABOR FRICTION 36

Then, from (A.2),

T In) = ! 1
1,---5IN - 1+le\i1§|d|l~~d|N
_ 1 .4
M1+ 38,4
The second fraction diverges &s become large, therefofg(ls, .. ., Iy) — o asé — oo for all i. O

AprPENDIX B. A ProPERTY OF EsseNTIALLY CoNcAVE GAME

Below is the proof of Lemma 3 in section 3.

Lemma 25 (Lemma 3) If game(Q, V) is concave or essentially concave in which players are panéd by
groups such tha® = Ui'\ﬂl Si and ﬂi'\jl Si = 0, then for any ST € Q such that Sc T, the following inequality
holds. ]

V(T) = V(T \S) > Y IS N Sill[MT) = V(T \ {s()})]

i=1

Proof. We use the fact that(T) — v(T \ S) has common value regardless of how playersSScdre removed

from T. Define Si,i,..ip(Mys - M) = Nicr.mn, 20 N5 {Si ()} where 1< m < M and 1< n < Ni. When
n, = O for all k, defineS;j,..;,(0---0) = 0 for convenience. Then, since\ Si,..i,(N1,...,Nm-1) O T\
Giyeim(Na, - . ., , Nm-1, Nm), from concavity,

V(T)-v(T\S)

Nk Ni,
= Z [V(T \ Sk(nk — 1)) — V(T \ Gk(nk))] + Z [V(T \ 61i2(N1, n, — 1)) - V(T \ Sliz(NL niz))]
ng=1 n,=1
Niy
+ -+ Z [V(T \ 61i2-»-iM (Nl, ey NiM_lniM - 1)) - V(T \ Sliz-»-iM(NL ceey NiM_l, niM))]
niy =1

\

Ng
M D" T\ &= 1) - V(T \ @utno)]

=1

Summing up the above inequality for &l 1,..., M,

M Ng
DTMT A\ @lne = 1) = (T \ &)

v(T)-v(T\S) =
k=1 nc=1
M
> IS NS MT) - v(T\ {sdi)))]
k=1
foranyj=1,...,NgsinceT \ Si,..i (N1,...,Nm-1,nm—1) D T\ Sj,..i,,(N1, . . ., Nm-1, Ni). O

AprPENDIX C. WAGE FUNCTION IN A GENERAL CASE

In this section, the case is handled in which worker separatites are not common for all type of workers. The

following approach can be used not only to obtain an exgdiizittional form but also for numerical calculations.
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The Bellman equations (2.4) and (2.5) are equivalent to

Ui(t) Es [f bi(r)e k" dr+ EiEij(f)e_f‘fr

E: [fV\’ii(T)efrdT"'Ui(f)efr}

Eij (1)

in integral forms, wherg&, is an expectation operator gnUsing partial integration, they simplify to

(C.1) Ui(t)

Iw(bi(f) +#i(§)EjEij(§)) e*ff(rwi) dé

(c2) Eij(t)

ftw(Wii(f) + o‘ij(f)U(g)) eﬁf(rmj) de

wheregij(£) » 0 andy(¢) + 0 as¢é — +oo are assumed. t; + 0 andy - 0, thenu - 0, since replacement
demand for labor does not vanish. We leaegbitrary but only assumed to be integrable. They guarantiseence

of U andE. (C.1) and (C.2) are singular Volterra integral equatioithie second kind and have a structure of

€3) Vi(t) - f T Ki(t.£) V(@) dé = hi(t)

whereV(t) = '(Ui(t), Ei1(t), ..., Eim (1)), theintegral kernel Kis given by

'
Kioo Kiox -+ Kiom 0 qui@e Fn . guum@e b
Ki = Killo Ki.ll Ki.lMi _ di1(é) e ko s
. N .. : . O
KiMiO KiMil e KiMiMi &iMi(é‘:) e_ftf&iMi

and theexceptional part his given by®

hio [b@e Fem g
h = hy | | [Twa@e fern g
hin, 7 wim (@) e Fovow) de

The following proposition can be derived.

Proposition 26. The solution to the simultaneous equati¢@s3)is given by
O =h®+ [ GtohEde
t

«{
where G is a Neumann series matrix in whichg@t,&) = 277, Kipq(t,€) (p,g = 1,..., Mj), provided that

Gipq(t, €) uniformly converges.

18Subscripii is sometimes omitted below when obvious.
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The composition of (0)-kernel is given by

M; M;

K. = D (Kor #Keo) (66) = > (Kar * Keo) (8.€)

=0 ¢=1
Mi
—ek f u(rye ko {Z NG ] dr
t f=)

The integral part equals the expected probability that aampioyed worker as of timeis employed afterwards
and separates again exactly at tithevhere expectation is taken for possible undeclarable typeber cross-

compositions are given by
K*Z(t §)=K*2 =0 Ve=1,..., M
(VAN 0 » - ) s> Vi
K2,(t.&) = f KpoKog = Kpo * Kog ~ V{(p,@)Ip=1vg>1}

The iterated kernels alternate between zero and stricHifipe numbers depending on whether the multiplicity of

the iteration is odd or even. That is

x x K2 | 0 e 0
00
K2n . K2n
00 OM; .
0 :
* * Ko % K20 % K
po * Pvgg * M0q
K2n . K2n
M;0 Mi M;
0
and
* * 0 Kg(()n_l) * K01 te Kgén_l) * KOMi
K2n71 . K2n71 =
00 OoM; 2(n-1)
_ KlO * KOO
KZT’Fl . sz;lfl O
M;0 Mi M 2(*n—1)
KMiO * KOO

forn=1,2,... K2 comprises of the core part of iteration in each element and

K%g(t,f)zefffdrnlftTn—ldTn2..,ftfz(ft”A)(fT:zA)...(j:_lA)drl

whereA := effngo_ The above can be interpreted as the expected discountbdlplity that an unemployed
worker as of timet repeats the cycle of employment and separatidimes in the period oft(¢] and the last

separation occurs exactly at tinfe Summing up the above results for allwe obtain Neumann seriéz; =
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p 2(-1) & 2(-1) &
T K2 S KA 4 Koy T KA s Koy,

*

2*—1
Zn KOl * KO(()n )
: Kpo * 2in Kgg * Kog

2*—1
Sn Ko * K

Using these results, the explicit form of wage rate functiogiven by the following proposition.

Proposition 27. The wage rate of typ§; j) worker as of time t is given by

M; oo ((® .n
wy (1) = @y (O + ) ft [Z Agt 5)] & O (o) de
k=1 n=1

where
Mi
AL ) = p(®) D o f (Gxi(t. ) = Goj(t, D))dr — 05 (V) f Goj(t, 7)dr
k=1
() = 6F('[)/6|2ij +hi() i) —20'ij(t) jt“’" o) & g
o5 [ Amdab@e e
for alli, j.

Proof. From Lemma 1Eij = [Ui + 32F/(3ta|ij)] /2. Substituting each value function by the time-derivatife

the result of Proposition 26, we get

OF/alij (1) + bi(t)  pi(t) — o (V)

1 (ee]
(c4) Wi (1) = 2 2 Mty ft Ajolt, &) bi(¢) & 1) dg

M
1 | " -
"2 Z ft At &) wi(&) e o des
k=1
for all i, j. Solving simultaneous equation (C.4) obtains the result. ]
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