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PRODUCTION THEORY WITH CONVEX LABOR FRICTION:
FOUNDATION OF AN OPTIMAL NON-MARKET-CLEARING ECONOMY

KOJI YOKOTA

A. This paper provides a general framework for the supply sidewhen a firm employing multiple workers faces

convex search friction. It also provides analytical schemefor non-steady states. Convex search friction makes the path

outside of unbounded steady states possess greater significance than mere transition, since any level of output can be

supported as a steady state equilibrium depending on the state of expectation. The marginal profit value of labor is

always strictly positive, which results in persistent excess demand in the labor market as well as excess supply in the

goods market. However, the fact that convex search frictionmakes immediate adjustment of employment suboptimal

induces further hiring to depend on coordination of expectation. It raises non-market-clearing equilibrium in terms of

long-run without price- nor wage-rigidity in competitive markets.

1. I

The present paper studies optimal employment policy of a firmoperating in a frictional labor market in which

friction is representable by a convex vacancy cost function, and studies its implication on employment distribution

and market equilibrium. In generalizing a matching model from one-to-one to one-to-many, it is natural, or even

necessary, to assume a convex vacancy cost function —a function which literally relates number of job vacancy

posting to the cost. The existence of friction make it inevitable to use internal resources to hire workers so that it

causes congestion over those resources. Search friction inherently arises from heterogeneity in undocumentable

properties of workers or firms. Any friction attributable todocumentable properties can be part of friction, but

it is easily eliminated with information technology to a negligible level. As such, selection of workers requires

tacit knowing by insiders, and therefore, if a firm intends toincrease number of hiring, the accompanying cost

should exhibit more than linear increase as any kinds of adjustment cost do (Uzawa (1969), Yashiv (2000, 2006)).

Yashiv (2000) shows that empirical hiring cost function is highly convex in terms of weighted average of posted

vacancy and actual hiring. Moreover, convexity in the vacancy cost function is supported from the fact that it

is the only class robust against small perturbations on functional form, the derivative of which is monotone and

which does not diverge in equilibrium. Requirement of robustness would be natural, because there is no logically
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strong,a priori reason that the vacancy cost function must have a particularfunctional form. For an analysis to be

applicable to actual economies, it must be based on robust assumptions.

It will be shown that the marginal wage cost value determinedby bargaining isalwaysstrictly smaller than

the marginal production value of labor as far as employment is below the unbounded steady state. On the other

hand, the optimal employment policy under the convex vacancy cost function does not allow the path to jump

to the unbounded steady state. This is in contrast to the linear vacancy cost case of Smith (1999). Any firm is

willing to accommodate all the demand directed to it at any moment. However, investment decision on hiring

cost depends on the expected demand in the next moment which is contingent on the action of other firms. For an

economy to converge to the unbounded steady state, agents must share dynamically persistent common knowledge

that the economy ultimately reaches to that state. Once agents become to believe that demand is already satiated,

strategy to make additional employment becomes suboptimal, and thus demand will not actually grow. This

brings the same implication as non-market-clearing (NMC) approach by Barro and Grossman (1976) on rational

basis with flexible prices. Flexible prices will eliminate temporary disequilibrium but not the state of long-run

disequilibrium that arises from the degree of coordination. The model presented in this paper is a generalization

of the Mortensen-Pissarides model which assumes that production is undertaken by a pair of a worker and a job.

The Mortensen-Pissarides model can be interpreted that it assumes that the “firm” employing multiple workers is

decomposable to independent units of jobs. Its assumption of constant vacancy cost is literally hypothesizing a

linear vacancy cost function. It assumes that the size of employment in the economy is determined by the entry

condition that the value of vacancy equals zero, together with the assumption that each production pair always

successfullyearns constant income. However, it is not guaranteed that the level of employment this condition

requires is not so huge that it exceeds the existing population. At the unbounded steady state, we should observe

that potential entrepreneurs cease job posting simply because labor market tightness makes the waiting time for

arrival of workers too long compared to vacancy cost. However, such behavior can be observed, if any, only in

the acme of economic boom. The existence of free public intermediaries and the fact that vacancy cost should

decline as market tightness increases enforce the view thatthe required employment is too high. The decrease of

vacancy cost is due to the decrease of applicants that a particular firm receives requiring less cost for interview and

selection activities. Also, linear hiring cost implicitlyassumes that hiring activities do not consume any internal

resources. Namely, the selection process must be trivial sothat it simply does not exist or it is outsourced. In the

former case, search friction due to heterogeneity of agentswill not exist. The latter case implies that all properties

related to worker selection must be describable to delegatethe selection.

Section 2 summarizes the structure of the model. Section 3 studies how the value of unemployment, the

threat point in wage bargaining, is determined. Section 4 studies the outcome of wage bargaining. It is shown that

integral equation is useful to solve non-stationary value functions. Section 5 studies the firm’s optimal employment

behavior. Section 6 rationalizes the assumptions made in section 3 are actually consistent with the whole model.

Section 7 analyzes the behavior on the demand constraint when the constraint is stationary. Section 8 delivers some
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implication on interest rates, which might resolve the allocation paradox. Section 9 provides some concluding

remarks.

2. TM

2.1. Firm. A competitive firm under the presence of search friction in the labor market is considered. The number

of firms is continuous with fixed measure one.1 Namely, one particular firm has continuously small measure.

Therefore, the change in the supply of the firm cannot affect aggregate supply, resulting not only in unchanged

prices but also in unchanged aggregate income. There are twogoods in the economy: output goods and various

types of labor. Output goods is taken to be numeraire and labor is heterogeneous with unknown properties so that

optimal search behavior of a firm is not trivial. A firm uses multiple workers of potentially different types. Types of

workers can be categorized into two classes, declarable types and non-declarable ones. The former is the properties

that can be prescribed as hiring requirements, such as possession of driver’s license and academic background. The

latter is the attributes that cannot be documented. Therefore, they are only revealed after having an interview with

workers. Personality or suitability to particular corporate culture falls in this category. The notion of quality of

match is also covered by this concept as far as it is revealed immediately. Non-declarable types are assumed to be

matching-specific. Worker types are expressed by a combination of declarable and non-declarable types, therefore

let bundle (i, j) denote a worker type with declarable typei ∈ {1, . . . , L} and non-declarable typej ∈ {1, . . . ,Mi}.

Different types are clearly distinguished from each other. Workers are assumed to be unable to choose their types

to abstract the effect of education and training. Same type of workers are homogeneous. Production function

of a firm is given by f (l) where l = (l1, . . . , lL) and li = (l i1, . . . , l iM i ) are vectors of employment such thatl i j

is employment of (i, j)-type worker,∂ f /∂l i j > 0 and f is concave. We also assume Inada condition around the

origin: ∂ f /∂l i j → +∞ asl i j → 0.

Since labor market is frictional, a firm cannot adjust employment stock directly. It can only adjust inflow to and

outflow from the stock. For the inflow, the firm decides how muchinternal resources to spend on recruiting workers

in the labor market to adjust employment. After the choice ofthe level of recruiting activitiesm = (m1, . . . ,mL) for

each declarable type, it would observe a variety of applicants to arrive stochastically.2 A matching session proceeds

in a way that firms post job advertisement first and workers apply to a preferred job. Such a matching mechanism

1It should be emphasized that this isnot assuming away free-entry to get the results obtained in thispaper. The reason that this condition
is required is that, 1) a vacancy cost function with no fixed cost, 2) variable measure of firms and 3) the production economysimply cannot
coexist. Once we allow variable measure of firms, infinite number of firms employing no workers is created, leading to zero production (not
indeterminate, see arguments below). To describe production economy, either 1) or 2) must be discarded.
The reason that the vacancy cost functionκ such thatκ(0) = 0 is incompatible with variable measure of firms bounded by no-entry condition
J(0, y) = 0 is as follows (please refer to later pages for definitions).If y = 0, thenJ(0, y) = 0 holds with no firm entry. On the other hand, if
y > 0, firm entry must continue untilJ(0, y) = 0 is restored withy = 0 (adjustment throughθ alone cannot bringJ = 0 since, for any high
value ofθ, the entrant firm can set arbitrarily smallm). Thus, no production equilibrium can be supported withoutfixed costs.
The other strategy to build a model for production economy would be to throw away 1), namely to assume that there existsκ > 0 such that
κ(0) = κ. It implies that the no-entry condition holds withy > 0. Since∂J(t)/∂li j (t) > 0, it makes new entrants give up, whereas existing firms
are willing to operate. Hereby, simply assumingκ′(0) > 0 will not suffice, because it will make all firms shut down by optimality condition
(5.6) so far as entrants do not want to enter. Since the implication of such an alternative model does not significantly differ from the present
model, the simpler model is adopted. However, the emergenceof the distribution of firm size is abstracted by doing so, which would have
arisen in the alternative model by historical movement ofy.
2By equation (2.1),mi is directly related to the increase of labor force. It is labeled as “level of recruiting activities” instead of “number of job
vacancies” to abstract the strategic behavior to announce more job posts than actually wanted.
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would be a natural equilibrium when most of characteristicsof firms relevant to matching are declarable whereas

those of workers are non-declarable. It results in the same outcome as random matching, so that the probability

that a firm receives applications per job posting is a decreasing function of theVU ratio in the labor market of

declarable typei, θi . It is denoted byψ(θi) : R+ → R+.3 On the other hand, non-declarable type is matching

specific and non-declarable typej emerges with probabilitygi j ∈ (0, 1) among declarable typei where
∑

j gi j = 1.

Therefore, if a firm exerts recruiting effort mi on declarable typei in the labor market, it will receivegi j ψ(θi) mi

applications from type (i, j) worker.

On the other hand, there are two factors which affect outflow from the employment stock. One is an uncontrol-

lable leave of workers.4 This natural separation of type (i, j) worker at timet is a Poisson arrival with parameter

σi j (t) > 0.5 The other factor is intentional dismiss by the firm. Dismissal of type (i, j) worker is denoted by

xi j ∈ [0,X] whereX ∈ (0,∞) is a sufficiently large number and can be interpreted as a physical boundary of

adjustment speed of employment downward. Note that the firm can specify the worker type to dismiss since the

non-declarable property of a worker is revealed during the employment period.

Now, the firm can control the time derivative of type (i, j) employment usingmi andxi j so that

(2.1) l̇ i j = gi j ψ(θi) mi − σi j l i j − xi j ∀i = 1, . . . , L, ∀ j = 1, . . . ,Mi .

Notationφi j (t) := gi j (t)ψ(θi(t)) is sometimes used for simplicity.

Job posting is assumed to be costly. Smith (1999) assumed a linear vacancy cost function, so that a firm

employs all necessary workers to reach to the steady state inthe first period, and then it maintains the steady

state forever. With this carefully arranged setup, adjustment process to the steady state is virtually abstracted but

at the same time it omits robustness against small perturbations on functional form. To restore robustness, we

are induced to assume a convex vacancy cost function following a minimalist principle, which has the property

that the derivative is monotone and also the implied equilibrium outcome does not diverge. It would be a natural

assumption from the viewpoint that a vacancy cost function should be regarded as an adjustment cost function. In

practical applications, the cost should be interpreted to include the cost for orientation, training and deterioration

of productivity that arises from on-the-job training and inexperience of new workers, as well as the cost necessary

for actual recruiting. Modifying the functional form in this way definitely complicates the analysis compared

to a linear case, but it should be emphasized that such a modelbrings significantlydifferent macroeconomic

implications. We denote the vacancy cost function of declarable typei by κi(mi , t) : R+ × R+ → R+ whereκi ≥ 0,

∂κi/∂mi ≥ 0, ∂2κ/∂m2
i > 0, κi(0, t) = ∂κi/∂mi(0) = 0, and the second argument will be sometimes omitted for

simple notation, i.e.κi(·) := κi(·, t). The time-dependency ofκi allows it to depend onθi . Another cost for a firm is

3This is a special case of Yokota (2004) so that the quality threshold of a firm to decline an applicant is set to zero to conform the current
problem setting. In this paper, rejection is detached to thechoice ofxi j .
4Since it turns out later that the value of employment status is always greater than the value of unemployment status, thisshock is not only
external for firms but also for workers.
5It may be more natural to assume that the quality of a match gradually turns out on the job as in Jovanovic (1979). However, we abstract
internal working of separation.
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wage payment to each type of workers. Wage payment is determined by bargaining between a firm and workers to

share their rent that arises from historical advantages that an already-formed coalition possesses. Wage rate will

be shown to be a function of employment. Therefore, the firm decides the amount of employment knowing the

wage schedule it faces. We denote the wage function of type (i, j) by wi j (l).

On the demand side, consumers demand outputs based on information about current assets, current income

andthe state of expectation on series of future incomewhich is influenced by the degree of coordination among

agents. The expectation on intertemporal income holds bothon and off equilibrium paths. In the present model,

temporary equilibrium is brought by adjustment in the interest rate. Temporary supply is fixed at any given

instance, therefore interest rate adjusts temporary demand to meet it affecting intertemporal relative prices. The

model also allows for analysis when disturbances are added to the adjustment in interest rates in the goods market.

In such a case, temporary disequilibrium arises in additionto long-run disequilibrium. Another such instance is

the case of perishable goods since it physically prohibits intertemporal consumption smoothing by consumers. Let

us denote byy(t) the “demand density” defined by

(2.2) y(t) = f (l(t), n) +

(

D(r, ỹ, t) −
∫ 1

0
f
(

l(t), n
)

dn

)

and

(2.3) ẏ(t) = Ḋ(r, ỹ, t)

where we explicitly denote the production function of firm with indexn by f (l, n) assuming integrability inn,

andD(r, ỹ, t) is the total demand for outputs as of timet which is affected by interest rater(τ) (t ≤ τ < ∞) and

income stream ˜y(τ) (t ≤ τ < ∞). It also includes “queue” of demand which has not met by previous supply.

Equation (2.3) and the second term of equation (2.2) impose homogeneity among firms in terms of their future

prospectives, since they imply that additional demands areequally distributed among them. Modification of these

terms will introduce heterogeneity in their, say, marketing power and others. Thus,y should be understood as

rational expectation among market participants on prospectives of each firm. Since any firms cannot directly

affectr, y is given for any particular firm under rational expectation.6 Normalizing the price of output to one, the

instantaneous profit of the firmπ is given by

π = min {y, f (l)} − w (l) · l −
L∑

i=1

κi (mi) .

6As Arrow (1959) argued that the economy will show evidences of monopoly and monopsony in any state of disequilibrium, pricing strategy
must be examined carefully here. Firms can potentially use their profits to lower nominal prices and expand their market share permanently.
However, such a move will be retaliated by other firms, resulting in failure of the original intention of market share extension. If demand is
elastic in interest rate, it increases temporary market production and lowers interest rate, but reduces future demand. Such a strategy costs
more than proportionate hiring costs but shifts demand fromfuture to today. We assume away such a strategic move in pricesettings and the
firm simply takes the bargaining outcome of real wages. When demand has zero elasticity, there is no incentive to manipulate prices.
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When min{y, f (l)} = y, as far as there is no reason for labor hoarding, increasingl to makef (l) > y is obviously

suboptimal. Since the above formulation introduces indifferentiability inπ that makes succeeding analysis diffi-

cult. In stead of handling the above formulation directly, we are going to analyze an “approximate” problem that

the firm maximizes profitπ = f (l) −w (l) · l −
∑L

i=1 κi (mi) under the constraintf (l) ≤ y. It ignores cases in which

a firm hoards labor facingtemporarydemand recession, however their long-run outcome should bequite similar.

If it is expected that labor hoarding never occurs in future,both outcomes exactly coincide.7 Again, for simple

notation, the following notation is sometimes used:ci j (l) := wi j (l) l i j for any (i, j).

2.2. Workers and consumers.Workers are in either state, employed or unemployed. An unemployed worker

of type (i, ·) at timet receives instantaneous unemployment benefitbi(t). An employed worker of type (i, j) will

be paid instantaneous wagewi j (t). The value of type-(i, ·) unemployment at timet is denoted byUi(t) and the

value of type-(i, j) employment at timet is denote byEi j (t). Matching sessions between job-seekers and vacancies

open at any moment. Matching probability of an unemployed worker is given byµi(t). It is in general influenced

by θi(t) but we suppress its explicit notation. Matching sessions are time-consuming and the length is random.

Agents cannot attend other matching sessions simultaneously while he is engaged in a particular session.8 When

an unemployed worker of declarable typei is successfully matched to find out his undeclarable type isj, he shifts

to the employment status of type (i, j). Namely, on success, he receives capital gainEi j (t) − Ui(t). Assuming

workers are risk neutral, the Bellman equation for unemployment status is

(2.4) r(t) Ui(t) = bi (t) + µi(t) E j

[

Ei j (t) − Ui(t)
]

+ U̇i(t), ∀i

wherer is interest rate andEj

[

Ei j (t) − Ui(t)
]

:=
∑Mi

j=1 gi j (t) Ei j (t) −Ui(t). Similarly, the employment value of type

(i, j) is given by

(2.5) r(t) Ei j (t) = wi j (t) − σ̃i j (t)
[

Ei j (t) − Ui(t)
]

+ Ėi j (t), ∀i, j

whereσ̃i j (t) := σi j (t) + xi j (t)/l i j (t) is separation probability for a worker.

3. B  C R

When there exists friction in the labor market, pseudo-rentarises in an existing firm-workers group. The rent

comes from the fact that any firms or workers who have not formed a group yet must enter a costly process of

search. It makes a room for bargaining over the rent between afirm and workers who have already formed a

group. Therefore, production should be regarded as coalitionally undertaken by the going concern and present

employees, and distribution of payoffs is made through bargaining taking into account future renewal of players.

7If unintended inventory investment is included in the definition of y as in that of national accounts, this problem will not arise.
8If matching sessions open continuously and end instantaneously, all agents on one side of the labor market will be matched immediately
almost surely.
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Coalition of a firm and each type of workers with measurel i j will get intertemporal payoff F̄ which is the value of

F
(

l(t)
)

=

∫ ∞

t



 f
(
l∗(ξ)

)
−

L∑

i=1

κi
(
m∗i (ξ)

)



 e−
∫ ξ

t
r(τ) dτdξ

where l∗ andm∗i areon the optimal path for the firmin the concomitant problem defined in section 5. In this

coalition, bargaining is made among continuously many players. It will be found that the imputation to give

workers just the half of their marginal gain, i.e.

Ei j =
1
2

Ui +
1
2
∂F
∂l i j

is strongly supported as a bargaining solution.9 For the moment, to clarify conditions characterizing the solution,

argument proceeds with a general setup that wage bargainingshould satisfy.

LetΩ be a set of all players. Players are partitioned by groupsSi (i = 0, 1, . . . ,M; M ∈ N) such that∪N
i=1Si = Ω

and∩N
i=1Si = ∅. Each group consists ofNi ∈ N ∪ {∞} players. Thej-th player in groupSi is denoted bysi( j)

( j = 1, . . . ,Ni). si( j) has measuredli for all j and there exists a fixed numberl i ∈ R+ such thatNi dli = l i for all i.

Characteristic function is denoted byv : 2Ω → R. We require following assumptions:

(1) (Essential game) The game is essential, i.e.v(Ω) >
∑

s∈Ω v
(

{s}
)

.

(2) (Anonymity) Players in the same group are anonymous, i.e. for any S and j, v
(

S ∪
{

si( j)
})

− v(S) is

common.

(3) (Indispensability) Missing groups make coalition unproductive, i.e.v(S) =
∑

i, j∈S v({si( j)}) if there exists

i such thatS ∩ Si = ∅.

(4) (Existence of a non-degenerate player)S0 is a special group which consists of only one player, i.e.N0 ≡ 1.

Refer to this game with symbola1
N(Ω, v) whereN := (N0, . . . ,NM). Next, define a more specific game in the

class ofa1
N(Ω, v) which possesses essential concavity as an additional assumption. It requires concavity only

for coalitions with more than two players so that essentiality of the game will not be lost.10 Namely, we put the

following additional property:

(5) (Essential concavity) The game isessentially concave, i.e. its characteristic functionv has the property

that, if S,T ⊆ Ω satisfies∅ ⊂ S ⊂ T, then

v(S ∪ {s}) − v(S) ≥ v(T ∪ {s}) − v(T)

for anys ∈ Ω \ T.

Refer to this game with symbola2
N(Ω, v). Finally, define an even more specific gamea3

N(Ω, v) which is directly

related to our problem. Players are grouped by categories which are classified in two dimensions so that any player

9We require a singleton solution to proceed with the model. Pissarides (1985) assumed that, in the case that production isundertaken by a
pair of a firm and a worker, they divide the rent by a Nash bargaining solution. There is an option to generalize it adoptingn-player Nash
equilibrium. However, since the present model contains significant asymmetry between a firm and workers, it seems more natural to take
coalitional rationality into account.
10A globally concave game always violates zero-additivity, thus formation of non-trivial coalitions cannot be expected.
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belongs toS̃i j for i = 0, . . . , L and j = 1, . . . ,Mi where
⋃L

i=0
⋃Mi

j=1 S̃i j = Ω andS̃i j ∩S̃i′ j′ = ∅ for any (i, j) , (i′, j′).

Characteristic function is defined by

(3.1) v(S) =






∑

i∈S Ui if there existsi such thatS ∩ S̃i j = ∅

F(l̃11, . . . , l̃LML ) otherwise

whereUi ≥ 0 for all i, l̃ i j :=
∥
∥
∥S ∩ S̃i j

∥
∥
∥ and F is increasing and concave. Obviously, this is a special caseof

a
2
N(Ω, v) with S̃i j = S∑i−1

k=0 Mk+ j−1. However, we will not utilize the above additional specifications to characterize

solution concepts. They are only used to relate the results obtained in this section to the rest of the paper.

Our objective is to obtain a bargaining solution of the abovegames whenN → ∞′ where∞′ := (∞, . . . ,∞) ∈

(R ∪ {∞})M keepingl i fixed for all i > 0. Note that, by doing so, the firms0(1) keeps discrete influence on

coalitional payoff. The property that workers get only partial contribution depends on the assumption that players

in S0 does not degenerate, rather than the particular value assumption N0 ≡ 1. Also, note that concavity ofv and

F is sufficient to holdonly from belowatΩ andl, respectively, i.e. the concavity need not hold for supersets ofΩ

or any l̂ ≥ l with l̂ i j > l i j for somei, j. This fact will be used in section 6. Denote the density imputation to player

sby ι(s), i.e. imputation of playerswith measuredl becomesι(s) dl.

Lemma 1. In a1
∞′

(Ω, v), the imputation to allocate

(3.2) ι
(

si( j)
)

dli =
1
2

v
({

si( j)
})

+
1
2

[

v(Ω) − v
(

Ω \
{

si( j)
})]

to any workers of type(i, j) is supported by Shapley value.

Proof. Choose a playerŝı( ̂) for some ˆı and ˆ. Consider any coalitionS such thatŝı( ̂) ∈ S containingni players

from groupSi such thatni ≥ 0 andnı̂ ≥ 1. The contribution ofŝı( ̂) to coalitionS is v({ŝı( ̂)}) if there existsi

such thatS∩Si = ∅ from the indispensability assumption. In other cases, it isv(S)− v(S \ {ŝı( ̂)}). The Shapley’s

weightγ(S) for the contribution ofŝı( ̂) to coalitionS is given by

γ(S) =
(
∑M

i=0 ni − 1)!(
∑M

i=0 Ni −
∑M

i=0 ni)!

(
∑M

i=0 Ni)!

=





M∑

i=0

Ni





−1 (∑M
i=0 Ni − 1

∑M
i=0 ni − 1

)−1

.

Without loss of generality, let us assume ˆı = 1 below for concise notations. From the anonymity assumption, any

S with same (n0, . . . , nM) has the sameγ(S). The number of cases to form coalitionS containingŝı( ̂) = s1( ̂)

with same (n0, . . . , nM) is given by
(

N0

n0

)

·

(

N1 − 1
n1 − 1

)

·

(

N2

n2

)

· · ·

(

NM

nM

)

.
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Then, Shapley value is given by

(3.3) ι
(

s1( ̂)
)

dl1 =





∑

{S:
∏M

i=0 ni=0}

Γ(S)




v
(

{s1( ̂)}
)

+
∑

{S:
∏M

i=0 ni≥1}

Γ(S)
[

v(S) − v
(

S \
{

s1( ̂)
})]

where

Γ(S) := γ(S) ·

(

N0

n0

)

·

(

N1 − 1
n1 − 1

)

·

(

N2

n2

)

· · ·

(

NM

nM

)

=

(
N0
n0

)

·
(
N1−1
n1−1

)

·
(
N2
n2

)

· · ·
(
NM
nM

)

(∑M
i=0 Ni

) (∑M
i=0 Ni−1

∑M
i=0 ni−1

) .

Proposition 23 in Appendix A show that coefficientΓ(S) is a probability mass function such thatΓ(S) = Υ(n0, n1−

1, n2, . . . , nM; N0,N1 − 1,N2, . . . ,NM) where distributionΥ is defined in Appendix A. Note that the distribution

possesses point symmetryΥ(n1, . . . , nM; ζ1, . . . , ζM) = Υ(ζ1 − n1, . . . , ζM − nM; ζ1, . . . , ζM). Using these two facts,

∑

{S:n0=0}

Γ(S) =
∑

{S:n0=1}

Γ(S)

Now, in either case ofn0 = 0, 1,
∑

{S:
∏M

i=1 ni=0} Γ(S)→ 0 asNi → ∞ for all i = 1, . . . ,M.
∑

{S:
∏M

i=1 ni=0} Γ(S) can be

written as

∑

{S:
∏M

i=1 ni=0}

Γ(S) =

∏

{i:ni=0,n1=1}

(
Ni
0

)

∑M
i=0 Ni

∑

ni

∏

{i:ni≥1,n1≥2}

(
Ni
ni

)

(∑M
i=0 Ni−1

∑M
i=0 ni−1

)

=
1

∑M
i=0 Ni

∑

ni

∏

{i:ni≥1,n1≥2}

(
Ni
ni

)

(∑M
i=0 Ni−1

∑M
i=0 ni−1

)

where the right hand side converges to zero asNi → ∞. Therefore,

∑

{S:
∏M

i=0 ni=0}

Γ(S) ≈
∑

{S:n0=0}

Γ(S) =
∑

{S:n0=1}

Γ(S) ≈
∑

{S:
∏M

i=0 ni≥1}

Γ(S) ≈
1
2
.

It shows the coefficient ofv
(

{ŝı( ̂)}
)

dlı̂ in (3.3) converges to 1/2 asN → ∞′. From Proposition 24 in Appendix A,

we obtain

ι
(

si( j)
)

dli =
1
2

v
({

si( j)
})

+
1
2

[

v(Ω) − v
(

Ω \
{

si( j)
})]

for all i, j. �

The above derivation critically depends on the indispensability and the existence assumption of a non-degenerate

player, which enable for the firm to keep discrete influence onpayoffs whereas that of individual workers becomes

negligible asN → ∞′. On the other hand, characterizing bargaining solution as nucleolus requires an additional

assumption that the game should be essentially concave. At the outset, the following lemma shows that core is

non-empty if and only if the production process is more productive for the last marginal worker than unemploy-

ment in terms of value.

Lemma 2. a1
N(v,Ω) has non-empty core if it is zero-additive. So doesa2

N(v,Ω) if and only if

(3.4) v
(

Ω
)

− v
(

Ω \ {si( j)}
)

≥ v
(

{si( j)}
)
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for all i , j. In a3
N(v,Ω), the condition(3.4) is replaced by∂F/∂l i j ≥ Ui .

Proof. We start from the necessary condition ofa1. Consider imputation such that anys ∈ Ω \ S0 is allocated by

ι(s) = v
(

{s}
)

and players0(1) is allocated byι
(

s0(1)
)

= v(Ω) −
∑

s∈Ω\S0
v(s). This is feasible by essentiality of the

game. Obviously, anyS such thats0(1) < S satisfies coalitional rationality since
∑

s∈S ι(s) ≥ v(S) =
∑

s∈S v
(

{s}
)

.

So does any coalitionS such thats0(1) ∈ S since its imputation yields
∑

s∈S ι(s) = v(Ω) −
∑

s<S v(s) ≥ v(S) by

zero-additivity. which implies that this imputation is located in core. If (3.4) holds fora2, zero-additivity holds

from the essential concavity, which shows that (3.4) is a necessary condition fora2. The case fora3 is direct from

this sincea3 is a special case ofa2.

To show (3.4) is a sufficient condition fora2, supposev(Ω) − v
(

Ω \ {si( j)}
)

< v
(

{si( j)}
)

for somei, j. The

individual rationality ofsi( j) requiresι
(

si( j)
)

≥ v
(

{si( j)}
)

. Also, coalition of the rest requires
∑

s∈Ω\{si( j)} ι
(

s
)

≥

v
(

Ω \ {si( j)}
)

, which impliesι
(

si( j)
)

≤ v(Ω) − v
(

Ω \ {si( j)}
)

< v
(

{si( j)}
)

. These two equations are not satisfied

at the same time, thus core is empty. It shows zero-additivity is also sufficient. The result fora3 is derived from

this. �

Following the context of our model in which workers and the firm are all rational in participating in production,

the bargaining solution must be in core. Otherwise, at leastone player will leave the coalition, which implies

that the current coalition is not actually on the optimal path. The above lemma means that the problem can be

restricted to the case of∂F/∂l i j ≥ Ui on the optimal path.

Lemma 3. If game(Ω, v) is essentially concave in which players are partitioned by groups such thatΩ =
⋃M

i=1 Si

and
⋂M

i=1 Si = ∅, then for any S,T ⊆ Ω such that S⊂ T, the following inequality holds.

v(T) − v(T \ S) ≥
n∑

i=1

‖S ∩ Si‖
[

v(T) − v
(

T \ {si( j)}
)]

Proof. See Appendix B. �

This lemma is analogous to the property of an ordinary concave function: f (x1+∆x1, . . . , xn+∆xn) ≤ fx1∆x1+

· · · + fxn∆xn in which each axis corresponds to‖S ∩ Si‖. It is required to derive nucleolus of the game.

Lemma 4. In a2
N (Ω, v) for anyN, the imputation(3.2) is supported by nucleolus.11

Proof. The proof starts from the following lemma.

Lemma 5. Consider a coalitional gamea2
N(Ω, v) for givenN in which v(Ω)− v

(

Ω \
{

si( j)
})

≥ v
({

si( j)
})

holds for

any i, j. Then, in any max-reduced game ofa2
N(Ω, v), the least coreΓ(εn) is characterized by excess

(3.5) εn = −
1
2

[

v (Ωn) − v
(

Ωn \
{

ŝı( j)
})

− v
({

ŝı( j)
})]

whereΩn is a set of players in the n-th reduced game andı̂ = arg mini v (Ωn) − v
(

Ωn \
{

ŝı( j)
})

− v
({

ŝı( j)
})

in which

j can be arbitrary by anonymity.

11This result coincides with Stole and Zwiebel (1996) by extending its result to a case of infinite number of agents.
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Proof of Lemma 5.In then-th reduced game, characteristic function is given by

(3.6) v(S) =






v (Ω \Ωn ∪ S) −
∑

s∈Ω\Ωn
ι(s) if s0(1) ∈ S

∑

s∈S v
(

{s}
)

if s0(1) < S

for anyS ⊆ Ω.

Consider imputation in theε-core for given excessεn. Individual rationality with excessε requiresι
(

si( j)
)

to

be

(3.7) ι
(

si( j)
)

≥ v
(

si( j)
)

− εn

for all i, j. On the other hand, coalitional rationality with excessεn of the complement of the above, i.e.Ωn\
{

si( j)
}

,

requires
∑

s∈Ωn\
{

si ( j)
} ι(s) ≥ v

(

Ωn \
{

si( j)
})

− εn. Since total rationality impliesι
(

si( j)
)

= v(Ωn) −
∑

s∈Ωn\
{

si( j)
} ι(s), it

leads to

(3.8) ι
(

si( j)
)

≤ v(Ωn) − v
(

Ωn \
{

si( j)
})

+ εn

In the payoff space{X ∈ R
∑

i Ni }whereX :=
(

ι
(

s1(1)
)

, . . . , ι
(

sM(NM)
))

, consider a domain which satisfies coalitional

rationality of player setS and its complementΩn \ S on simplex manifold∆ :=
{

X ∈ R
∑

i Ni :
∑

s∈Ωn
ι(s) = v(Ωn)

}

to satisfy total rationality and denote it byB(S, εn). Without loss of generality,s0(1) < S can be assumed by

symmetry. Then,ε-core is obtained by finding out minε{ε :
⋂

S∈2Ωn B(S, εn) , ∅}. Generally,B(S, εn) has the form

(3.9) B(S, εn) =





X ∈ ∆ : v(S) − εn ≤

∑

s∈S

ι(s) ≤ v(Ωn) − v (Ωn \ S) + εn





.

From (3.7) and (3.8),B
({

si( j)
}

, εn

)

becomes

(3.10) B
({

si( j)
}

, εn

)

=
{

X ∈ ∆ : v
(

si( j)
)

− ε ≤ ι
(

si( j)
)

≤ v(Ωn) − v
(

Ωn \
{

si( j)
})

+ ε
}

and therefore

(3.11)
⋂

s∈Ωn

B
({

s
}
, εn

)

=






X ∈ ∆ :
∑

s∈Ωn

v
(
{s}

)
−





M∑

i=1

Ni



 ε ≤
∑

s∈Ωn

ι(s) ≤
∑

s∈Ωn

[
v(Ωn) − v

(
Ωn \ {s}

)]
+





M∑

i=1

Ni



 ε






Since ε forms least core, it is chosen to makeB
({

si( j)
}

, εn

)

non-empty. We are going to show minεn{εn :
⋂

S∈2Ωn B(S, εn) , ∅} = minεn{εn :
⋂

s∈Ωn
B
(

{s}, εn
)

, ∅}.

From Lemma 2,εn ≤ 0. Therefore,

(3.12) v(S) − εn ≤ v(S) −mεn ≤
∑

s∈S

v
(

{s}
)

−mεn

for anym ∈ N. On the other hand, from Lemma 3,

v(Ωn) − v(Ωn \ S) + εn ≥ v(Ωn) − v(Ωn \ S) +mεn
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≥
∑

s∈S

[

v(Ωn) − v(Ωn \
{

si( j)
}

)
]

+mεn(3.13)

holds for anym ∈ N. From (3.12) and (3.13), (3.9) and (3.11) imply, for anyS ∈ 2Ωn, B(S, ε) ⊇
⋂

s∈Ωn
B
(

{s}, εn
)

,

from which minεn{εn :
⋂

S∈2Ωn B(S, εn) , ∅} = minεn{εn :
⋂

s∈Ωn
B
(

{s}, εn
)

, ∅} is derived.

From (3.10), the condition to degenerateι
(
si( j)

)
to a point is given byv

(
si( j)

)
− εn = v(Ωn)−v

(

Ωn \
{
si( j)

})

+ εn

from which we obtain

ε∗n(i, j) = −
1
2

[

v (Ωn) − v
(

Ωn \
{

si( j)
})

− v
({

si( j)
})]

.

If εn becomes smaller thanε∗n(i, j), ι
(

si( j)
)

that satisfies (3.10) becomes empty. Thus, for minεn{εn :
⋂

s∈Ωn
B
(

{s}, εn
)

,

∅} to be obtained, it must be setεn = maxi ε
∗
n(i, j), from which the lemma is derived. �

Continuation of proof of Lemma 4.From Lemma 5, any workers in group ˆı obtain excess (3.5). Therefore, their

payoff ι
(

ŝı( j)
)

becomes

ι
(

ŝı( j)
)

= v
({

ŝı( j)
})

− εn =
1
2

v
({

ŝı( j)
})

+
1
2

[

v (Ωn) − v
(

Ωn \
{

ŝı( j)
})]

.

The (n+ 1)-th reduced game has player setΩn+1 = Ωn \
⋂Nı̂

j=1

{

ŝı( j)
}

, i.e. all players in group ˆı are removed from

the game. Note that players0(1) stays in the new game. According to the definition of max-reduced games, its

characteristic function becomes

v(Ωn+1) = v(Ωn) −
Nı̂∑

j=1

ι
(

ŝı( j)
)

= v(Ω) −
⋃

s∈Ωn+1

ι(s)

and, for anyS ⊂ Ωn+1,

v(S) = max





v(S ∪ Q) −

∑

s∈Q

ι(s) : Q ⊆ Ω \Ωn+1






=






v
(

S ∪ (Ω \Ωn+1
)

−
∑

s∈Ω\S ι(s) if s0(1) ∈ S

∑

s∈S v(s) if s0(1) < S

which confirms that the assumed characteristic function ofΩn is actually correct by induction.

If ∂F/∂l i j ≥ Ui for all Υ, the game is zero-monotone, and the above lexicographic center is nucleolus (?). Since

core is non-empty from Lemma 2, the nucleolus is included in core. �

Theorem 6. In a3
∞′

(Ω, v), the following imputation is supported by Shapley value andnucleolus.

Ei j (n) =
1
2

(

Ui +
∂F
∂l i j

)

Proof. The result follows from Lemma 1 and Lemma 4. For the latter, itis sufficient to show thatF satisfies

essential concavity. From concavity ofF,
∑

i, j

(

∂F(l1)/∂l i j
)

dli j ≤
∑

i, j

(

∂F(l2)/∂l i j
)

dli j . Pick up any type (ˆı, ̂)

and setdli j = 0 for any (i, j) , (ı̂, ̂). Then,
(

∂F(l1)/∂l ı̂ ̂
)

dlı̂ ̂ ≤
(

∂F(l2)/∂l ı̂ ̂
)

dlı̂ ̂ which implies essential concavity

of F, i.e. F(l1 + δl ı̂ ̂) − F(l1) ≤ F(l2 + δl ı̂ ̂) − F(l2) whereδl ı̂ ̂ denotes the measure of type-(ˆı, ̂) labor. �
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We labeledS0 as a set of a firm or an entrepreneur above. However, if there isany player who exerts non-

degenerate influence on productivity or, in other words, those who embodies critical knowledge for production as

rent, this player will receive non-marginal part of coalitional rent. In this section, we derived bargaining solution

in terms of value function. Its distribution is actually done through wage payment. Bargaining outcome in terms

of wages is derived in section 4 and Appendix C.

4. W F

In this section, wage function is derived when there exists someσ̃i ≥ 0 for all i such that ˜σi j = σ̃i for all j.

This is the case, for example, if there are multiple declarable types, the natural separation rate is common for all

those types and potential demand constraint is unbinding. The condition is obviously satisfied with one kind of

labor. The wage function in general cases is more complicated than presented in this section and it is derived in

Appendix C.12

By definingzi j := Ei j −Ui for all (i, j) ∈ Υ in Bellman equations (2.4) and (2.5), the dimension of the dynamics

is reduced by one:

(4.1) żi(t) = Ai(t) zi(t) −ωi(t)

wherezi(t) :=





zi1(t)

zi2(t)
...

ziM i (t)





, Ai(t) :=





r(t) + σ̃i(t) + gi1µi(t) gi2µi(t) · · · giM iµi(t)

gi1µi(t) r(t) + σ̃i(t) + gi2µi(t) giM iµi(t)
...

. . .
...

gi1µi(t) gi2µi(t) · · · r(t) + σ̃i(t) + giM iµi(t)





andω(t) :=





w11(t) − b1(t)

w12(t) − b1(t)
...

wLML (t) − bL(t)





. Note thatA(t) has eigenvaluesr(t) + σ̃i(t) with multiplicity (M − 1) andr(t) +

σ̃i(t) + µ(t) with multiplicity one.13 It can be confirmed that the following provides the elementary matrixΦ(t, s):

Φi(t, s) := e
∫ t

s
Ai(q)dq = e

∫ t

s
(r(q)+σ̃i (q))dq

[

I +
(

e
∫ t

s
µi (q) dq − 1

)

G
]

whereI is an identity matrix andGi is an “expectation matrix”

Gi =





gi1 gi2 · · · giM i

...
...

...

gi1 gi2 · · · giM i





.

12The arguments below follows the traditional derivation of wages for comparison purpose. However, it would be more straightforward to use
“integral version” of Bellman equations as in Appendix C outof steady state.
13To obtain this simple result, common separation rate among all undeclarable types of workers is critical.
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Namely, zi(t) = Φi(t, s) c for any c ∈ R2 solves the accompanying homogeneous equation to (4.1). Then, the

solution to (4.1) is given byz(t) = Φ(t, 0)[z0 −
∫ t

0
Φ(s, 0)−1

ω(s) ds] = e
∫ t

0 A(q)dq[ z0 −
∫ t

0
e−

∫ s

0 A(q)dq
ω(s) ds] for any

initial value z(0) = z0 = (z10, . . . , zL0). Note thatΦ(t, s)−1 = e−
∫ t

s
A(q)dq. For the no-Ponzi game condition to hold,

the initial value must be set atz0 =
∫ ∞

0
Φ(s, 0)−1

ω(s) dsin which integration is bounded. For such an initial value,

z(t) =
∫ ∞

t
Φ(s, t)−1

ω(s) ds=
∫ ∞

t
e−

∫ s

t
A(q)dq

ω(s) ds. Using the fact that [I + (α − 1)G]−1 = I +
(

α−1 − 1
)

G for any

scholarα, it is found that

Φi (s, t)−1 = e−
∫ s

t
(r+σ̃i )

[

I +
(

e−
∫ s

t
µi − 1

)

Gi

]

.

Namely,

(4.2) zi j (t) =
∫ ∞

t
e−

∫ s

t
(r+σ̃i )

[(

wi j − bi

)

− E j

(

wi j − bi

)]

ds+
∫ ∞

t
e−

∫ s

t
(r+σ̃i+µi)E j

(

w j − bi

)

ds

where expectationE is taken over all possible undeclarable worker types. Solving differential equation (2.4) for

Ui using (4.2),

Ui(t) =
∫ ∞

t
e−

∫ s

t
r

[

bi(s) + µi(s)
∫ ∞

s
E j

(

wi j (ξ) − bi(ξ)
)

e−
∫ ξ

s
(r+σ̃i+µi )dξ

]

ds(4.3)

Similarly, we obtain the value function of employment for each type.

Ei j (t) =
∫ ∞

t
e−

∫ s

t
rwi j (s)ds(4.4)

+

∫ ∞

t
ds

∫ ∞

s
e−

∫ s

t
r σ̃i(s) · e−

∫ ξ

s
(r+σ̃i )

[

E j

(

wi j (ξ) − bi(ξ)
)

−
(

wi j − bi

)]

dξ

−

∫ ∞

t
ds

∫ ∞

s
e−

∫ s

t
r σ̃i(s) · e−

∫ ξ

s
(r+σ̃i+µi )E j

(

wi j (ξ) − bi(ξ)
)

dξ

The unemployment value is the discounted series of unemployment benefit and capital gain arising from matching.

The employment value is the discounted series of wage rate, expected change of capital gain in new jobs and capital

gain (loss) of dismissal.

Proposition 7. Wage rate at time t is given by

(4.5) wi j (t) = bi(t) +

(

EhFih(t) −
bi(t)

2

)

+
1
2

(

EhFih(t) − Fi j (t)
)

+

(

σ̃i(t) +
µ(t)
2

) ∫ ∞

t

(

EhFih(ξ) −
bi(ξ)

2

)

e−
∫ ξ

t
(r+µi/2)dξ +

1
2
σ̃i(t)

∫ ∞

t

(

EhFih(ξ) − Fi j (ξ)
)

e−
∫ ξ

t
rdξ

whereFi is capital gain of marginal value of production, i.e.Fi j := r∂F/∂l i j − ∂2F/∂t∂l i j .

Proof. Theorem 6 implies∂2F/∂t ∂l i = 2Ėi − U̇. Applying (2.4), (2.5), (4.3) and (4.4),

∂2F(t)
∂t∂l i j

= r(t)
∂F(t)
∂l i j

−
(

2wi j (t) − bi(t)
)

+ 2σ̃i(t) zi j (t) − µi(t)
∫ ∞

t
Eh (wih − bi) e−

∫ ξ

t
(r+µ+σ̃i )dξ(4.6)
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Taking difference of (4.6) for anyi and j , i, we obtain a Volterra integral equation of the second kind concerning

wih andwi j .14

(4.7)
(

wi j (t) − wih(t)
)

− σ̃i(t)
∫ ∞

t

(

wi j (ξ) − wih(ξ)
)

e−
∫ ξ

t
(r+σ̃i )dξ =

1
2

[

r(t)

(

∂F(t)
∂l i j

−
∂F(t)
∂l ih

)

−

(

∂2F(t)
∂t∂l i j

−
∂2F(t)
∂t∂l ih

)]

On the other hand, taking expectation of (4.6) yields

(4.8) Eh (wih(t) − bi(t)) −

(

σ̃i(t) −
µi(t)

2

) ∫ ∞

t
Eih (wih(ξ) − bi(ξ)) e−

∫ ξ

t
(r+σ̃i+µi )dξ

=
1
2

Eh

(

r(t)
∂F(t)
∂l ih

−
∂2F(t)
∂t∂l ih

− bi(t)

)

The above results suggest that it is beneficial to define new variablesYi j (t) ( j = 1, 2, . . . ,Mi) as follows.

(4.9)





Yi1(t)

Yi2(t)

Yi3(t)
...

YiM i (t)





:=





gi1 gi2 gi3 · · · giM i

1 −1 0 · · · 0

1 0 −1 · · · 0
...

...
...

. . .
...

1 0 0 · · · −1









wi1(t) − bi(t)

wi2(t) − bi(t)

wi3(t) − bi(t)
...

wiM i (t) − bi(t)





Observe that the above conversion matrix is the same as the eigenvector matrix ofAi(t). By this change of

variables, we can “diagonalize” the simultaneous integralequations concerningwi j ’s, (4.7) and (4.8). Namely,





Yi1(t)
...

YiM i (t)





−

∫ ∞

t





Ki1(t, ξ) O

. . .

O KiM i (t, ξ)









Yi1(ξ)
...

YiM i (ξ)





dξ =
1
2





hi1

...

hiM





where

Ki1(t, ξ) :=

(

σ̃i(t) −
µi(t)

2

)

e−
∫ ξ

t
(r+σi+µi)

Ki j (t, ξ) := σ̃i(t) e−
∫ ξ

t
(r+σ̃i ) (for all j = 2, . . . ,Mi)

hi1(t) := Eh

(

r(t)
∂F(t)
∂l ih

−
∂2F(t)
∂t∂l ih

− bi(t)

)

hi j (t) := r(t)

(

∂F(t)
∂l i j

−
∂F(t)
∂l1 j

)

−

(

∂2F(t)
∂t∂l i j

−
∂2F(t)
∂t∂l1 j

)

(for all j = 2, . . . ,M)

and the integration is applied element-wise. Then, the solution to this equation is given by





Yi1(t)
...

YiM i (t)





=
1
2





hi1(t)
...

hiM i (t)





−
1
2

∫ ∞

t





Gi1(t, ξ) O

. . .

O GiM i (t, ξ)









hi1(ξ)
...

hiM i (ξ)





dξ

14Note that it is impossible to obtain a differential equation by taking time derivative of this equation sincet resides inside of the integration.
It is a general consequence of non-stationarity.
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where Gi j (t, ξ) := −
∑∞
ζ=1

∗

Kζ

i j (t, ξ) for j = 1, 2, . . . ,Mi . Iterated kernel
∗

Kn is defined by
∗

Kn := K ∗ K ∗ · · · ∗ K
︸             ︷︷             ︸

n

and

K ∗ L denotes the composition of the first kind defined byK(t, ξ) ∗ L(t, ξ) =
∫ ξ

t
K(t, τ) L(τ, ξ) dτ (see e.g. Yokota

(2006) and other literature on integral equations). Since

∗

Kn
i1(t, ξ) =

(

σ̃i(t) +
µi

2
(t)

)

e−
∫ ξ

t
(r+σi+µi )

[
∫ ξ

t

(

σ̃i(s) +
µi (s)

2

)

ds
]n−1

(n− 1)!

∗

Kn
i j (t, ξ) = σ̃i(t)e−

∫ ξ

t
(r+σi )

[
∫ ξ

t
σ̃i(s) ds

]n−1

(n− 1)!
(for all j = 2, . . . ,M),

we obtain

Gi
11(t, ξ) = −

(

σ̃i(t) +
µi(t)

2

)

e−
∫ ξ

t
(r+µi/2)

Gi
j j (t, ξ) = −σ̃i(t) e−

∫ ξ

t
r (for all j = 2, . . . ,M)

and the solution forYi j (t):

Yi1(t) =
1
2

hi1(t) +
1
2

(

σ̃i(t) +
µi(t)

2

) ∫ ∞

t
e−

∫ ξ

t
(r+µi/2)hi1(ξ) dξ

Yi j (t) =
1
2

hi j (t) +
1
2
σ̃i(t)

∫ ∞

t
e−

∫ ξ

t
rhi j (ξ) dξ (for all j = 2, . . . ,M).

Inverting back towi j (t) using the inverse function of (4.9), i.e.





wi1(t) − bi(t)

wi2(t) − bi(t)
...

wiM (t) − bi(t)





=









1 gi2 · · · giM i

1 gi2 · · · giM i

...
...

...

1 gi2 · · · giM i





−





0 0 · · · 0

0 1 O
...

. . .

0 O 1













Yi1(t)

Yi2(t)
...

YiM i (t)





,

the result of the proposition is derived. �

Note that, whereas wage rate responds immediately to the change of separation rate,its response to the change

of matching rate or marginal production value accompanies time-lag. It is caused by the fact that, while the

adjustment of workforce through dismissal is achieved promptly, the matching process is time-consuming. To see

the latter fact, suppose that there is only one kind of labor.Matching rateµ fluctuates according toµ(t) = 1+ sint

and other unrelated variables are fixed. Then, from equation(4.5), wage rate is given by

w(t) = C0 +C1

(

C2 +
µ(t)
2

) ∫ ∞

t
exp

[

−

∫ ξ

t

(

C3 +
µ(s)

2

)

ds

]

dξ

= C0 +C1 (C2 + sint) e−(cost−C3t)/2
∫ ∞

t
e(cosξ−C3ξ)/2dξ

whereCi (i = 1, 2, 3) are indeterminate constants. The functional form is drawn in the first graph of Figure 4.1.

The second graph shows the response of wages against the change in marginal productivity. Note that marginal
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(1) Response of wagesw to matching rateµ

-7.5 -5 -2.5 0 2.5 5 7.5
time

wHtL
ΜHtL

(2) Response of wagesw to marginal value of production∂ f /∂l

-7.5 -5 -2.5 0 2.5 5 7.5
time

wHtL
¶f�¶lHtL

Both show reaction ofw to the forced oscillation in matching rate and in marginal productivity, respectively, where

µ(t) = ∂ f /∂l = 1+ sint is assumed. Vertical constants are arbitrarily adjusted sothat the phase shift is easily visible.

Used parameters are:b = 1, σ̃ = 1, r = 0.05, F = 1 for the first graph andb = 1, µ = 1, r = 0.05, te = 20 for the

second wherete is the entering time to the bounded surface.

Figure 4.1: Response of wage rate to forced oscillation

productivity is a decreasing function ofy. It will be shown that, when a firm is operating below the demand

surface, the marginal production value is given by∂F/∂l =
∫ te

t
∂ f /∂l e−

∫ ξ

t
(r+σ̃)dξ wherete is the entering time to

the demand surface. It assumes∂ f /∂l = 1+ sint,15 which impliesF = psint − qcos for somep andq, therefore

the wage function becomes

w(t) = C0 + F +C1

∫ ∞

t
(C2 + F) e−C3(ξ−t)dξ

= C0 +
r sint − cost

2
+C1eC3t

∫ ∞

t

(

C2 +
r sinξ − cosξ

2

)

e−C3ξdξ

These effects of matching rate and marginal productivity would show more or less synchronized behavior in the

actual economy, since they are countercyclical from each other. The lagged response shown above is not limited

to a special case where intertemporal fluctuation ofµ or ∂ f /∂l is represented by a sine curve. As far as they are

absolutely integrable in terms of time, similar propertieswould be shown via Fourier transformation.

The above effect distorts the share between entrepreneurs and workers over business cycles. It can have real

effects when the aggregate demand is a function of the relative distribution between these two groups. Such

examples include the case where entrepreneurs have different saving ratio from workers, and the case where the

investment decision of firms is a positive function of profits.

Corollary 8. At steady state with one kind of labor, the wage rate w satisfies the following relation

(4.10)
∂F
∂l
=

(

1−
σ̃

r + µ + σ̃

)

w
r
+

σ̃

r + µ + σ̃
b
r
+

r
r + µ + σ̃

(

w
r
−

b
r

)

.

15The case of binding demand constraint can be derived in a similar way where the only difference is that a cyclical component is introduced
in the discount factor. On the other hand, if the economy is about to leave the demand constraint,∂F/∂l is not a simple integration of marginal
productivity.
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Furthermore, if w> b, then
∂F
∂l

>
w

r + σ̃

holds.

Proof. Equation (4.10) is obtained by settingL = 1, M1 = 1 and all related variables to be at steady state. For the

latter half, we see that∂F/∂l > w/(r + σ̃) is equivalent to (r2 + σ̃r + µσ̃)w > (r2 − σ̃2)b using equation (4.10). If

w > b, then (r2 + σ̃r + µσ̃)w > r2w > r2b > (r2 − σ̃2)b, which shows that this proposition is true. �

The steady state mentioned in the corollary can be either unbounded or bounded steady states. It shows that, as

far as work is more preferable than staying unemployed for workers,the firm is willing to employ more workers

once there arises additional demand for output. Furthermore, it should be observed that if output increases, the

marginal productivity of labor, i.e. the left-hand side in equation (4.10), decreases. Thus,increase of output

is achieved through the decrease of real wage rate in the wagebargaining, ceteris paribus. This result largely

depends on our setup assumptions that labor intensity is constant, that workers are not allowed to do overtime

work and that profits are not redistributed to workers, say, to provide incentives for efforts.

Now, we can present some general properties on wages. First,the expected present value of wages is gener-

ally greater than that of unemployment benefits as far as there remains production opportunities. Second, if the

marginal contribution to the value of production is decreasing over time, wage rate is greater than unemployment

benefit.

Proposition 9. If ∂F/∂l i j > Ui for all (i, j), then
∫ ∞

t
E jwi j (s)e−

∫

(r+σ̃i+µi )ds>
∫ ∞

t
bi(s) e−

∫

(r+σ̃i+µi)ds.

Proof. From Lemma 1, the condition∂F/∂l i j > Ui implieszi j = (∂F/∂l i j − Ui)/2 > 0. Namely,

zi j =

∫ ∞

t
Eh [wih − bi ] e−

∫

(r+σ̃i+µi )ds−
∫ ∞

t

{

Eh [wih − bi ] −
(

wi j − bi

)}

e−
∫

(r+σ̃i+µi )ds> 0

must hold for all (i, j) from (4.2), which yields

∫ ∞

t
Eh [wih − bi ] e−

∫

(r+σ̃i+µi )ds> max
j

∫ ∞

t

{

Eh [wih − bi] −
(

wi j − bi

)}

e−
∫

(r+σ̃i+µi)ds ≥ 0

to obtain the result. �

Proposition 10. If ∂2F/∂t∂l i j − U̇i ≤ 0, then wi j (t) > bi(t) for all (i, j) ∈ Υ and t.

Proof. From Theorem 6,

(4.11) Ėi j (t) =
1
2

(

U̇i(t) +
∂2F
∂t∂l i j

(t)

)

which yields

Ėi j (t) − U̇i(t) =
1
2

(

∂2F
∂t∂l i j

(t) − U̇i(t)

)

≤ 0
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From (2.4) and (2.5)

wi j − bi = (r + σ̃i)
(

Ei j − Ui

)

+ µEh [Eih − Ui ] −
(

Ėi j − U̇i

)

> 0.

�

The condition of Proposition 10 obviously holds at a steady state either when the demand constraint is binding

or unbinding. On the other hand, whenb is expected to rise only for a sufficiently short period of time from now

on, it can happen that wage rate becomes temporarily smallerthan unemployment benefit whereasEi > U still

holds and thus workers do not willing to quit the current jobs.

5. P P

The results of the previous section show that the wage rate isa function of employment. Based on rational

expectation on wage schedulew(l), the firm determines optimal policy on vacancy post and dismissal. The optimal

problem for the firm is given by

J (l, y) = max
m,x

∫ ∞

t



 f (l) − w(l) · l −
L∑

i=1

κi(mi)



 exp

[

−

∫ ξ

t
r(τ)dτ

]

dξ(P)

subject to

l̇ i j = gi jψ(θi) mi − σi j l i j − xi j , ∀i = 1, . . . , L; j = 1, . . . ,Mi(2.1)

0 ≤ xi j ≤ X ∀i, j(5.1)

mi ≥ 0 ∀i(5.2)

f (l) ≤ y(5.3)

l i j ≥ 0 ∀i, j(5.4)

l i j (0),∀i, j given.

where parametersy, g, θ, σ are generally time-dependent andX is an arbitrarily large number.X is assumed to

be large enough so that a firm can accommodate any negative change ofy. r is bounded andr(t) 9 0 ast → ∞.

Also, y(t) ∈ C2 as of the time of planning. It can showex postindifferentiability as a result of unexpected shift

of y. It will be proven that labor market constantly shows the state of long-run excess demand below unbounded

steady states. Namely, if the firm can employ additional workers due to the increase ofy, then it can increase

profits. Walras Law implies that the goods market is always inthe state of excess supplyregardless the relative

price between output goods and labor. On the other hand, the presence of a convex vacancy cost function prohibits

discrete increase of employment, which implies that aggregate production and income can grow only continuously

from the current level, and thus the excess supply in the goods market will not be resolved.
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Denote the costate variables corresponding to each transition equation ofl i j by λi j . An augmented Hamiltonian

H is defined by

H (ξ) := f (l) − w (l) · l −
L∑

i=1

κi(mi) +
∑

i, j

λi j

(

φi j mi − σi j l i j − xi j

)

(5.5)

+ µ0




ẏ−

∑

i=i j

∂ f
∂l i j

l̇ i j




+

∑

i, j

µ1
i j xi j +

∑

i, j

µ2
i j

(

X − xi j

)

+
∑

i

γimi

whereR(t, ξ) :=
∫ ξ

t
r(τ) dτ andµ0, µ

n
i j ≥ 0 for ∀i, j, n andγi ≥ 0 for ∀i are Lagrange multipliers such that any

terms including them are zero. From maximization of Hamiltonian function, optimal conditions formi are given

by

κ′i (mi) =
∑

j

φi j

(

λi j − µ0 fi j
)

+ γi(5.6)

γimi = 0(5.7)

λi j − µ0 fi j = µ1
i j − µ

2
i j(5.8)

where fi j := ∂ f /∂l i j , and costate dynamics is given by

λ̇i j =
(

r + σi j

)

λi j + µ0

(

ḟi j − σi j fi j
)

−
(

fi j − ci j

)

∀i, j(5.9)

where ḟi j :=
∑

a,b(∂2 f /∂l i j∂lab) l̇ab, µ0 > 0 when the demand constraint is binding andµ0 = 0 when not.

5.1. Optimal control.

(a) Off demand constraints.If the demand condition (5.3) is not binding, we haveµ0 = 0. Then, the optimal

condition forx is given by

(5.10) xi j =






0 if λi j > 0

X if λi j < 0

∀i, j

Proposition 11. When f(l) < y, if
∑

j φi jλi j > 0, then mi > 0. If
∑

j φi jλi j ≤ 0, then mi = 0.

Proof. If
∑

j φiλi > 0, the right-hand side of equation (5.6) is strictly positive, which impliesmi > 0. If
∑

j φi jλi j <

0, thenγi > 0 since the left-hand side of equation (5.6) must be non-negative. From equation (5.7), it implies

mi = 0. If
∑

j φi jλi j = 0, then equation (5.6) becomesκ′ (mi) e−R(t,ξ) = γi . If we assumeγi > 0, equation (5.6)

impliesmi > 0, contradicting equation (5.7). Thus,γi = mi = 0. �

Corollary 12. If f (l) < y and mi > 0, then xi j = 0 for all j.

Figure 5.1 shows the case ofMi = 2.
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λi1

λi2

O

xi1 = 0xi1 = X

xi2 = 0

xi2 = X

mi > 0

−φi1

φi2
mi = 0

(a) Off demand constraints

λ̂1

λ̂2

x1 = 0
x2 > 0

x1 > 0
x2 = 0

(m> 0 for all λ̂1 andλ̂2)

f1

f2
gradm

gradm

λ̂2 =
f2
f1
λ̂1

x1 = x2 = 0
m is constant for allλ’s in this region.

x1 = X
x2 = 0

x1 = 0
x2 = X

O

λ̂2 =
f2
f1
λ̂1 +

1
φ2
κ′

(
σ1 f1l1+σ2 f2l2
φ1 f1+φ2 f2

)

λ̂2 =
f2
f1
λ̂1 +

1
φ2
κ′

(
σ1 f1l1+σ2 f2l2+ f1X

φ1 f1+φ2 f2

)

λ̂2 =
f2
f1
λ̂1 −

f2
φ1 f1

κ′
(
σ1 f1l1+σ2 f2l2+ f2X

φ1 f1+φ2 f2

)

λ̂2 =
f2
f1
λ̂1 −

f2
φ1 f1

κ′
(
σ1 f1l1+σ2 f2l2
φ1 f1+φ2 f2

)

A

B

C

D

A
B

C

D

(b) On demand constraints

Figure 5.1: Optimal control

(b) On demand constraints.When the demand constraint (5.3) is binding, it imposes restrictions on controls in

the form of
∑

i, j fi j l̇ i j = ẏ, or

(5.11)
∑

i





∑

j

φi j fi j




mi = ẏ+

∑

i, j

(

σi j l i j + xi j

)

.

Since (5.11) is constraint expressed in differential form, the initial condition must be provided at theconjunction

time. However, given that the path is on the constraint surface in the neighborhood of the present time, (5.11)

suffices.

Proposition 13. Define kiab(λa, λb; l) := λia/ fia − λib/ fib.

(1) If
∑

a φia fiaki
a j ≤ κ

′
i (m̄i) for all i and j wherem̄i is a solution to

ẏ =
∑

i





∑

j

φi j fi j




m̄i −

∑

i

∑

j

σi j fi j l i j

∑

a φiaλia − κ
′
i (m̄i)

∑

a φia fia
=

∑

a φi′aλi′a − κ
′
i′ (m̄i′ )

∑

a φi′a fi′a
, ∀i, i′,

then m∗i = m̄i and xi j = 0 for all i and j.

(2) If set S := {(i, j) :
∑

a φia fiaki
a j > κ

′
i (m̄i)} is non-empty, then mi is determined by

κ′i′ (mi′ ) =
∑

a

φi′a fi′a

(

λi′a

fi′a
−
λi′ j

fi′ j

)

> κ′i′ (m̄i′) ∀i′ ∈ S

∑

a φiaλia − κ
′
i (m̄i)

∑

a φia fia
=

∑

a φi′aλi′a − κ
′
i′(m̄i′ )

∑

a φi′a fi′a
, ∀i < S.
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On the other hand, xi j = 0 for all (i, j) < S and xi′ j′ for all (i′, j′) ∈ S is given by

∑

(i′ , j′)∈S

fi′ j′ xi′ j′ =
∑

i





∑

j

φi j fi j




m̄i −

∑

i

∑

j

σi j fi j l i j − ẏ

and distribution among xi′ j′ ’s is indeterminate.

Proof. DefineAi j := λi j − µ0 fi j . From (5.8),

xi j =






0 if Ai j > 0

[0,X] if Ai j = 0

X if Ai j < 0

SinceX is sufficiently large, the conditionx ≤ X is never binding, which implies thatAi j ≥ 0 for all i, j and thus
∑

a φiaAia ≥ 0 for all i. Then, sinceγi = 0 for all i, κ′i (mi) =
∑

a φiaAia. Solving this obtains

(5.12) µ0 =

∑

a φiaλia − κ
′
i (mi)

∑

a φia fia

for all i. First, supposexi j = 0 for all i and j. (5.11) and (5.12) together withxi j = 0 determinesmi which is

common for all range ofxi j = 0 for all i, j for given l. Let us denote it by ¯mi . Then, fromAi j ≥ 0, the condition

xi j = 0 for all i, j is equivalent to domain
∑

a φia fiaki
a j ≤ κ

′
i (m̄i) for all i and j. Next, suppose that there exist some

i′ and j′ such thatxi′ j′ > 0. Then, fromµ0 = λi′ j′/ fi′ j′ ,

κ′i′ (mi′ ) =
∑

a

φi′a fi′a

(

λi′a

fi′a
−
λi′ j′

fi′ j′

)

From the demand constraint (5.11),
∑

i
(∑

a φia fia
)
(mi − m̄i) > 0. On the other hand, from (5.12), ifmi R m̄i for

somei, thenmj R m̄j for any j. These leads tomi > m̄i for all i. �

Optimal control for eachλ for the case of two undeclarable types is shown in Figure 5.1.|ki
ab| can be interpreted

as pressure that represents the necessity of structural change in employment composition between typea andb. If

the pressure is relatively weak, the structural change is achieved solely through the adjustment of new employment

and natural separation. As the pressure grows, the firm is compelled to adopt dismissal. The bandwidth of the

no-dismissal domainx1 = x2 = 0 positively depends onl’s. The linear structure of the optimal control on the

demand constraint shown in Figure 5.1 (b) is a direct consequence of the presence of the demand constraint.

If there exists infinitesimal transformation that preserves Hamiltonian, the first integral exists and it is actually

demand constraint. The following two theorems are related to our problem.

Theorem 14. The necessary and sufficient condition for function G to be the first integral of Hamiltonian dynamics

with Hamiltonian H is{G,H} = 0.

Theorem 15 (Noether’s Theorem). For function H defined on a simply-connected domain, the following two

statements are equivalent.
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λ1

λ2

f1

f2
gradm

gradm

λ2 =
f2
f1
λ1

O

A

B

C

D

A
B

C

D

The Hamiltonian of this vector field becomes the first integral in the

Hamiltonian field in the configuration space.

Figure 5.2: Vector field in the conjugate space brought by thedemand constraint

(1) There exists a function G such that

(a) G is not a constant function and

(b) G satisfies{G,H} = 0.

(2) There exists a one-parameter group of transformation with parameter s,ϕs, such that

(a) ϕs is a canonical transformation,

(b) ϕs satisfies H◦ ϕs = H and

(c) ϕs is not an identity transformation.

Obviously, the demand constraintG = f (l) − y = 0 is constant over time, so it is one of the first integrals.

Theorems 14 and 15 guarantee that we should be able to findϕs that satisfies condition (2) in Theorem 15 from

which we can construct change of variables to facilitate dynamics on manifolds. To find suchϕs, the key findings

is that its projection on the conjugate subspace need to satisfy the following relationship:

(5.13)





Λ11

...

ΛLML





=





λ11

...

λLML





+





f11

...

fLML





s=: ϕs|λ

where (Λ11, . . . ,ΛLML ) is the costate vector after transformation,s is an arbitrary parameter andϕs|λ denotes

the projection of transformationλ on subspace (λ11, . . . , λLML ). This is the transformation of variables along

contours shown in Figure 5.1 (b). Since the optimal control is invariant under this transformation, it also preserves

Hamiltonian.ϕs constructed in this way is obviously not an identity transformation. Therefore, remaining task is

to adjustϕs|l to makeϕs a canonical transformation. This will be done in the next section. Another view is to look

at the vector fieldXG which equation (5.13) generates (see Figure 5.2). The vector field XG can be obtained by
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the infinitesimal transformation of this group which is

dϕs

ds

∣
∣
∣
∣
∣
s=0
=

∑

i, j

fi j
∂

∂λi j

where∂/∂λi j is the basis of the tangent space. Then, it turns out that HamiltonianG of the vector fieldXG is

actuallyG = f (l) − y.

5.2. Costate dynamics out of constraint surface.λ is an influence function which shows the impact of the

marginal change of the initial state valuel on the present value of profitsJ. The properties ofλ out of demand

surface is closely related to the presuppositions imposed on wage bargaining. When the demand constraint is

unbinding, it equals the discounted series of marginal profits of labor where discount rate is the sum of interest

rate and separation rate.

Proposition 16. Let te ∈ Te is the first entering time after t. Costate variables when thestate constraint is not

binding is given by

(5.14) λi j (t) =
∫ te

t





∂ f
∂l i j
−

L∑

k=1

∂cik

∂l i j



 e−
∫

(r+σi )dξ +Ci j (te)

for all i , j where te = ∞ if T e = ∅.

Proof. Equations (5.9) withµ0 = 0 yields equation (5.14) withCi undetermined. �

5.3. Costate dynamics on the constraint surface.Costate dynamics on the effective demand constraint can be

solved by focusing on “pressure to change employment structure” ki
ab. As mentioned above, this fact is no more

than the other side of the coin that the model has a demand constraint in the configuration space. Please observe

the symmetricity between canonically conjugate coordinates. The key is to apply the following transformation

Φ : Ω → ω to the model whereΩ = t(L1, . . . , LL,Λ1, . . . ,ΛL), ω = t(l1, . . . , lL, λ1, . . . , λL), Li =
t(Li1, . . . , LiM i ),

Λi =
t(Λi1, . . . ,ΛiM i ), li = t(l i1, . . . , l iM i ) and λi =

t(λi1, . . . , λiM i ). Note that one can choosej∗(i) to make
∑

a φia fiaki
a j∗(i) ≥ 0 for all i by taking j∗(i) = arg minj λi j/ fi j for giveni:

Φ :





l i1
...

l i, j∗(i)
...

l iM i





=





Li1

...

g(t, L)
...

LiM i





and





λi1

...

λi2

...

λiM i





=





Λi, j∗(i) + fi, j∗(i)Λi1

...

fi, j∗(i)Λi, j∗(i)

...

Λi, j∗(i) + fi, j∗(i)ΛiM i





for all i.

whereg : R+ × · · ·×R+ → R+ is a function that satisfiesy(t)− f (. . . , Li, j∗(i)−1, g(t, L), Li, j∗(i)−1, . . .) = Li, j∗(i). Notice

that this transformation belongs to the class of point transformation and therefore is a special case of canonical

transformation.Canonical transformationis defined to be the one the pull-back of which maps a second order
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differential form to itself and is known to preserve the Hamiltonian function.16 Point transformationis one of

canonical transformation in which the configuration subspace is transformed to itself.

The construction ofΦ is easily observed by the following arguments. Supposeλi1/ fi1 = mina λia/ fia for given

i without loss of generality. We construct a point transformationΦ : (L;Λ)→ (l; λ) = (ϕ(L); λ) such that

ϕ−1 :





Li1

Li2

...

LiM i





=





y(t) − f (l)

l i2
...

l iM i





or equivalently ϕ :





l i1

l i2
...

l iM i





=





g(t, L)

Li2

...

LiM i





.

For it to be a point transformation, Hamiltonian must be invariant except for the “time-variant” term. Therefore,





Λi1

Λi2

...

ΛiM i





= tϕL





λi1

λi2

...

λiM i





=





− 1
f1

0 · · · 0

−
f2
f1

1 O
...

. . .

−
fMi
f1

O 1









λi1

λi2

...

λiM i





=





−
λ1
f1

λ2 −
f2
f1
λ1

...

λMi −
fMi

f1
λ1





must hold, which implies




λi1

λi2

...

λiM i





=





− f1Λ1

Λ2 + f2Λ1

...

ΛMi + fMiΛ1





.

Note that, with this choice ofj∗(i), it becomes possible to make
∑

a φiaΛia ≥ 0 so that the transformation does not

conflict with the limitation ofκ′−1(·) that is defined only on domainR+. The HamiltonianK on the new coordinates

is given by

K(t, L,Λ) = H(t,Φ(t, L,Λ)) −
〈

ϕt,
(
tϕL

)−1
Λ

〉

which simplifies to

(5.15) K = f
(

. . . , Li, j∗−1, g(t, L), Li, j∗+1, . . .

)

− c
(

. . . , Li, j∗−1, g(t, L), Li, j∗+1, . . .

)

−
∑

i

κi




mi





∑

a, j∗
φiaΛia








+

∑

i

∑

a, j∗
Λia




φiam





∑

b, j∗
φibΛib




− σiaLia

)




wherem(·) := κ′−1(·). The equation does not containΛ j∗ , showing thatL j∗ is cyclic coordinate. Also, this consists

of an energy surface on which a path is restricted. With two kinds of undeclarable types, it fully characterizes

the solution. Note thatλ j∗ is indeterminant on the demand surface without specifying by the leaving point or a

bounded steady state.

5.4. Costate discontinuity on junction points.

16For analytical mechanics, see e.g. Arnol’d (1989) and Ito (1998).
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Entering condition to the demand constraint.Let C ⊂ RM be a configuration space. Define anentering time

te ∈ R to a state constraint surfaceB ⊂ C such that the Lagrange variableµ0 adjoint to the state constraintB yields

µ0(te) = µ0(te−ε) = 0 andµ0(te+ε) > 0 for any arbitrarily smallε > 0. Letz(t) : R→ C be a path, i.e. a trajectory

projected onto the configuration space. Definez(te) as anentering point. Similarly, leaving time tl ∈ R from a

state constraintB is defined to beµ0(tl) = µ0(tl + ε) = 0 andµ0(tl − ε) > 0 for any arbitrarily smallε > 0. z(tl)

is called aleaving point. Denote a set of all entering time byTe and a set of all leaving time byT l . We also call

t j ∈ Te ∩ T l a junction time andz(t j) a junction point. In general, costate variables can show time-discontinuity

either at entering or leaving points (see e.g. Bryson et al. (1963)). This is due to the fact that, over time, the state

constraint separates the normal of intertemporal transformation of the neighborhood of the optimal trajectory on

the limiting surface at entering or leaving time from the normal of the limiting surface itself. Despite tha fact, for

the current problem, it turns out that costate variables areactually continuous both at entering and leaving time.

This is due to the one-way property of the path, i.e. as far as no external force is added ony, the path permanently

stays on the demand surface. At conjunction timet ∈ Te∪ T l ,

λ−ia = λ
+
ia + ρ fia(5.16)

H− = H+ + ρẏ(5.17)

must hold whereρ is a Lagrange variable adjoint to the state constraintf (l) − y = 0 and, for any variableA, we

denoteA− := lim t↑tJ A, A+ := lim t↓tJ A. From (5.16),

ρ =
λ−ia − λ

+
ia

fia

for all i anda, which implies

(5.18) ∆ki
ab =

∆λia

fia
−
∆λib

fib
= 0

for all i, a andb such thata , b. It implies that costate variables jump at entering points along contour lines ofm

as shown in Figure 5.1 so thatki
ab does not change. From (5.17),

∑

i, j

λ−i j

(

φi j m
−
i − σi j l i j − x−i j

)

−
∑

i

κi
(

m−i
)

=
∑

i, j

λ+i j

(

φi j m
+
i − σi j l i j − x+i j

)

−
∑

i

κi
(

m+i
)

+ ρẏ

Using (5.16), it turns out

∑

i

κi
(

m+i
)

−
∑

i

κi
(

m−i
)

−
∑

i, j

(

φi jλ
−
i j

) (

m+i −m−i
)

+
∑

i, j

(

x+i j − x−i j
)

λ−i j =






0 if t ∈ Te

ρ
(

ẏ− f1l̇+1 − f2l̇+2
)

if t ∈ T l

(5.19)
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Or, the same relation can be expressed as

∑

i

κ
(

m−
)

−
∑

i

κ
(

m+
)

−
∑

i, j

(

φi jλ
−
i j

) (

m− −m+
)

+
∑

i, j

(

x−i j − x+i j
)

λ−i j =






ρ
(

ẏ− f1l̇−1 − f2l̇−2
)

if t ∈ Te

0 if t ∈ T l

(5.19’)

Proposition 17. At both entering and leaving points, mi andλi j are continuous at mi = m̄i and atλi j ≥ 0. xi j is

continuous at xi j = 0 both at entering and leaving points whenẏ ≥ −
∑

i, j σi j l i j . If ẏ < −
∑

i, j σi j l i j , x+i j > 0 for

some(i, j) showing discontinuity at entering points. Also, entering time is characterized by

(5.20) κ′
(

m̄i(t
e)
)

=
∑

j

φi jλ
−
i j (t

e)

where te ∈ Te.

Proof. When t ∈ Te, λ−i j ≥ 0 for ∀i, j. If λ−i j < 0 for somei and j, thenx−i j = X, which implies
∑

i, j fi j l̇−i j ≪ ẏ,

violating the entering condition
∑

i, j fi j l̇−i j > ẏ. First, supposeλ−i j > 0 for somei and j. Then, (5.19) becomes

∑

i

κi
(

m+i
)

=
∑

i

κi
(

m−i
)

+
∑

i

κ′i
(

m−
) (

m+i −m−i
)

−
∑

i, j

x+i jλ
−
i j

whent ∈ Te. However, sinceκi is a convex function andx ≥ 0, the above relation is only possible whenm+i = m−i

andx+i j = 0 for all i and j. On the other hand, ifλ−i j = 0 for all i and j, (5.19) yields
∑

i κi(m+i ) =
∑

i κi(m−i ) = 0

and againmi is continuous at zero for alli. In this case,ki
ab(t

e) = λ+ia/ fia − λ+ib/ fib = λ−ia/ fia − λ−ib/ fib = 0 for all

i, a, b which impliesxi j = 0 for all i, j as far as ˙y ≥ −
∑

i, j σi j l i j by Proposition 13. If ˙y < −
∑

i, j σi j l i j , some ofxi j

are strictly positive according to (2) of Proposition 13. Setting m+i = m−i andx+i j = x−i j = 0 in (5.19’) givesρ = 0

which implies thatλi j is continuous for alli, j atλi j = λ
−
i j ≥ 0 from (5.16). At leaving points, (5.19’) becomes

∑

i

κi
(

m−i
)

=
∑

i

κi
(

m+i
)

+
∑

i

κ′i
(

m+i
) (

m−i −m+i
)

−
∑

i, j

x−i jλ
+
i j

when t ∈ T l , and sinceκ is a convex function andx ≥ 0, the above relation is only possible whenm+i = m−i

andx−i j = 0 for all i and j. Putting these results in (5.19) gives usρ = 0 which implies continuity ofλi j for all

i, j at leaving time. (5.21) comes from the fact thatκ′i

(

m−i (te)
)

=
∑

j φi jλ
−
i j (t

e) from (5.6),m+i (te) = m̄i(te) from

Proposition 13 andm−i (te) = m+i (te) from the above results. �

From Proposition 17, entering points locate in domain
∑

a φia fiaki
a j ≤ κ

′
i (m̄i). It implies that the entering to the

demand constraint must be “smooth” in the configuration space if ẏ ≥ −
∑

i, j σi j l i j . Namely, growth of labor must

slow down as employment approaches to the demand constraint.

Leaving condition from the demand constraint.Leaving points exist in theinterior of
∑

a φia fiaki
a j ≤ κ

′
i (m̄i). Note

that leaving from the demand constraint never occurs so far as ẏ ≤ 0. Leaving occurs when catchup to the growth

of demand becomes too costly in terms of accompanying vacancy cost. As ẏ becomes too large, it becomes

suboptimal to stick to the surface of the demand constraint.What happens is that as ˙y grows, the bandB ≥ k ≥ C
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(
∑

a φia fiaki
a j ≤ κ

′
i (m̄i)) in Figure 5.1 widens while the width of other bands are keptconstant. It implies that for

givenk, it becomes more likely to fall in the domainB ≥ k ≥ C. Unless the value of ˙y is such that corresponding

optimal control keeps the state variablesexactlyon the surface of the demand constraint, as soon ask falls in the

domainB ≥ k ≥ C, the state variables leaves the demand constraint. The leaving is more likely to happen if|k| is

small.

Proposition 18. Leaving time is characterized by

(5.21) κ′
(

m̄i(tl)
)

=
∑

j

φi jλ
+
i j (t

l)

where tl ∈ T l . Leaving points satisfy the condition
∑

a φia fiaki
a j < κ

′
i (m̄i).

Proof. From Proposition 18 and ˙y(tl) > 0, mandx are continuous attl andxi j (tl) = 0 for all i, j, from which (5.21)

is derived. From Proposition 18,
∑

a φia fiaki
a j ≤ κ

′
i (m̄i) must hold att = tl . Also, from (5.6) and ˙y(tl) > 0, λ+i j > 0

must hold for somei, j. Suppose
∑

a φia fiaki
a j = κ

′
i (m̄i). Then, for anyi, j,

∑

a φia fia
(

λia/ fia − λi j/ fi j
)

=
∑

a φiaλia

holds which impliesλi j = 0 for anyi, j. This is a contradiction. �

6. R W F

λ is an influence function ofl on J which is the value of the optimand in the maximization problem for a firm.

To derive the wage function in Section 3 and 4, however, we need to know the marginal impact of change inl on

F(l) =
∫ ∞

t



 f −
∑

i

κi



 e−Rdξ

instead ofJ, when l follows the optimal employment path for a firm. Actually, it can be shown that a new

“influence” function ofl on F can be constructed based on the derivation ofλ. Denote the new influence function

by λ∗. The above equation can be rewritten as

(6.1) F(l) =
∫ ∞

t

(

H + c+ λ̇
∗
· l

)

e−Rdξ − λ∗(∞) · l(∞) + λ∗(t) · l(t) +
∑

t∈Te∪T l

ρ (y− f )

using the new costate variableλ∗. Taking total derivative,

δF =
∫ ∞

t

[(

∂H
∂l
+
∂c
∂l
+ λ̇
∗

)

δl(ξ) +
∂H
∂u

δu(ξ)

]

d−R dξ − λ∗(∞) · δl(∞) + λ∗(t) · δl(t)

holds at allt whereu = (m, x). We want to setλ∗ so that we can neglect the effect ofδl(ξ) (t < ξ < ∞) on δF.

Then, dynamics ofλ∗ should be given by

(6.2) λ̇
∗
= −

∂H
∂l
−
∂c
∂l
= λ̇ −

∂c
∂l
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both on and off the demand surface. The newλ∗(t) which follows the above dynamics is the “influence” ofl upon

the payoff of the total coalition, sinceλ∗(t) = δF/δl(t). It implies that, off the demand surface,

(6.3) λ∗i j =

∫ te

t
fi j e−

∫

(r+σi j )ds+C

fromµ0 = 0 in equation (5.9). In the wage bargaining, marginal impactof thedecreasein the number of coalitional

members matters. Note that when an agent leaves the coalition, demand constraint becomes unbinding even if it

was initially binding. Therefore, regardless whether demand constraint is binding, (6.3) shows marginal impact of

dli j < 0.

Theorem 19. F is increasing and concave in domain{(l̃11, . . . , l̃LML ) : 0 ≤ l̃ i j ≤ l i j }.

Proof. We only need to considerδl i j < 0 which leads the state constraint unbinding. Increasing property results

from the following facts: 1)λi j (t) ≥ 0 for anyt when it is on the demand constraint, sinceλi j < 0 makesxi j = X

and resultinġl i j makes the path detached from the surface. 2) Moreover, sinceλi j is continuous on junction points,

Ci j (te) ≥ 0 holds in equation (5.14). Therefore,λi j ≥ 0. 3) From (5.9) and (6.2),∂F/∂l i j = λ∗i j ≥ λi j ≥ 0.

Along the optimal path,dλ/dt < 0 and thusdm/dt < 0. Together with transition equation (2.1), they imply

dli j (τ) ≤ e−
∫ τ

t
σdli j (t) for all τ > t around the optimal path. Then, from equation (6.3),

∑

i, j

∂F
∂l i j (t)

dli j (t) =
∑

i, j

λ∗i j dli j (t)

=
∑

i, j

(∫ te

t

∂ f
∂l(τ)

e−
∫

(r+σ)dτ +C

)

dli j (t)

≥
∑

i, j

(∫ te

t

∂ f
∂l(τ)

e−
∫

rdτ +C

)

dli j (t)

=

∫ te

t
d f e−

∫

rdτ +C

≥ dF

whereC ≥ 0 is constant and this shows concavity ofF. �

Theorem 19 shows thatF satisfies the condition ofa3 in section 3. Namely, the bargaining game assumed in

section 3 is actually consistent with the whole model. The next theorem completes the argument that there will

be excess demand for labor if the demand constraint is unbinding which is the source of the (modified) principle

of effective demand. Since increase of labor always amplifies profit of firm, it is always willing to accommodate

additional potential demand as far as it is smaller than the unbounded steady state level.

Theorem 20. If the demand constraint is unbinding andl is smaller than the unbounded steady state, dJ/dl > 0.

Moreover, if∂F/∂t∂l i j − U̇i ≤ 0, then wi j (t) < ∂ f (t)/∂l i j for all (i, j) ∈ Υ and t.

Proof. The first statement is obvious from the fact thatλi j > 0 for all i, j when the demand constraint is unbinding

andl is smaller than the unbounded steady state. The second statement comes from the following. From∂F/∂l i =
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λ∗i , λ̇
∗
i j = − fi j + (r + σi j )λ∗i j . Equation (4.6) yields

fi j − wi j =
(

wi j − bi

)

+ σiλ
∗
i j + µi

∫ ∞

t
Eh [wih − bi ] e−

∫

αds− 2σi(Ei j − Ui)

=
(

wi j − bi

)

+ µi

∫ ∞

t
Eh [wih − bi ] e−

∫

αi ds+ σiUi

> 0

where the second line is obtained usingEi j − Ui = (λ∗i j − Ui)/2 and the last inequality comes from Proposition 9

and Proposition 10. �

7. S S   D S

The model allows for analysis of a perpetually moving economy by truncating the economy in sufficiently

distant future. However, to settle down the endpoint of costate variables, it is sometimes convenient to analyze the

steady state. The previous analyses showed that unless there is coordinated expectation among economic agents

which persists for infinite length of time, the economy will not reach to the unbounded steady state. On the other

hand, the economy can be settled in a steady state on the stationary demand constraint. Suppose ˙y = 0 in this

section. Then, we find out strictly positive amount of rejection of job application at steady state “almost surely”.

A bounded steady state maximizes profits obtainable when initial state of labor can be directly chosen. Consider

the following static problem.

(P’) max
l,m,x





f (l) − w (l) · l −

L∑

i=1

κi(mi)






subject to

φi j mi = (r + σi j )l i j + xi j , ∀i, j(2.1’)

y = f (l)(5.3’)

Theorem 21. Steady-state solution of problem (P) is equivalent to the solution of (P’).

Proof. The optimality condition of the problem (P’) is given by

κ′i (mi) =
∑

j

φi j λ̂i j(5.6’)

λ̂i j =
fi j − ci j

r + σi j
− µ̂0

fi j
r + σi j

(5.9’)

xi j =






0 if λ̂i j > 0

X if λ̂i j < 0

(5.10’)



PRODUCTION THEORY WITH CONVEX LABOR FRICTION 31

and the constraints whereλ̂i j andµ̂0 are costate variables adjoint to equations (2.1’) and (5.3’), respectively. From

(5.6’) and (5.9’),

(7.1) µ̂0 =

∑

j
φi j

r+σi j
( fi j − ci j ) − κ′i (mi)
∑

j
φi j

r+σi j
fi j

SinceX is arbitrarily large and therefore the steady state condition for l i j does not hold whenxi j = X, λ̂i j < 0 is

impossible for alli. Thus,λ̂i j > 0 or λ̂i j = 0. If there exist (i, j) such that̂λi j = 0, then for such (i, j)’s

(7.2) µ̂0 =
fi j − ci j

fi j
∀(i, j), λ̂i j = 0

and for other (i, j)’s such that̂λi j > 0,

(7.3) xi j = 0 ∀(i, j), λ̂i j > 0

holds. Then, the solution is completely characterized by (2.1’), (5.3’), (7.1), (7.2) and (7.3).

On the other hand, the bounded steady state solution to the original problem (P) is given by imposing steady

state conditioṅl = λ̇ = ḟi j = 0 to each optimal condition. Imposing it on (2.1) and (5.3) obtains the same condition

as (2.1’) and (5.3’). From (5.9) and the steady state conditions,

(5.9”) λi j =
fi j − ci j

r + σi j
+ µ0

σi j fi j
r + σi j

.

Substituting this to (5.6) derives

(7.1’) µ0 =

∑

j
φi j

r+σi j
( fi j − ci j ) − κ′i (mi)

r
∑

j
φi j

r+σi j
fi j

,

which is equivalent to (7.1) if we define ˆµ0 = rµ0. From (5.9’) and (5.9”),λi j = λ̂i j + µ0 fi j , which results in

equivalence relation between

xi j =






0 if Ai j > 0

[0,X] if Ai j = 0

in problem (P) ⇐⇒ xi j =






0 if λ̂i j > 0

[0,X] if λ̂i j = 0

in problem (P’).

All of the above equivalences show that problem (P’) is equivalent to problem (P). �

The next theorem shows that, in general, the point in which long-run profit is maximized does not coincide with

the point in which a bounded steady state is achieved with no-firing. It means that either dismissal or rejection of

job application will occur at a bounded steady state.

Theorem 22. If maxi Mi ≥ 2, the set of parameters(φ, σ) that brings xi j = 0 for all (i, j) at steady state has

measure zero in the parameter space for given f andκ.
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Proof. From Theorem 21, the proposition can be proved via problem (P’). x which appears in (P’) can be viewed

as a slack variable substituting equality of equation (2.1’) with inequality. Namely, it is equivalent to the following

problem:

(P”) min
l,m





w(l) · l +

L∑

i=1

κi(mi)






subject to

φi j mi ≥
(

r + σi j

)

l i j , ∀i, j(2.1”)

y = f (l)(5.3’)

Obviously,mi maximizes the maximand when it is set tomi = min j{(r +σi j )l i j/φi j } in equation (2.1”). Maximiza-

tion on l with this condition completely determines solution forl. However, in general,

r + σi j

φi j
l i j ,

r + σi j ′

φi j ′
l i j ′

for any j′ , j, makingxi j ′ > 0 for any j′ such thatj′ , arg minj{(r + σi j )l i j/φi j }. Even when the condition

(7.4)
r + σi j

φi j
l i j =

r + σi j ′

φi j ′
l i j ′

for all j, j′, i holds, it fails to hold once any small perturbation is added on one ofr,σ orφ keeping other parameters.

Namely, a set of parameters which satisfies (7.4) does not contain inner points, which implies that it has zero

measure in the parameter space when
∑L

i=1 Mi ≥ 2. �

The above theorem shows that dismissal or rejection of applicationgenericallyoccurs at least in one of the

labor types not only in transition on the demand constraint surface but also at steady state, when there exist more

than two labor types in the economy.

Figure 7.1 shows typical dynamics toward steady state whenL = 1 andM1 = 2. Paths starting from initial

pointsA1 andA2 converge to a steady stateC via entering pointsB1 andB2, respectively, when steady state demand

level isy1. If the demand shifts up unexpectedly toy = y2 in neighborhood ofC, the path starts to move toward

the new demand surface and after counterclockwise entering, it continues with zero dismissal until it crosses a line

which passes through the origin. After crossing over the line, it starts to dismiss type 1 workers and converges to

the new bounded steady stateD.

8. A N  D W C   R  I

One of characteristics peculiar to search models is that firms are required to put “advances”. Especially, when

l = 0, they must find a way to finance those advances, as the classics used to assume. Let us assume firms demand

for working capital for this reason. Sinceλ is higher whenl is low, the demand for lending is higher for a smaller

firm with unbounded demand. On the other hand, at a bounded steady state, requiredm and therefore necessary
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l1

l2

O

Iso-profit curves

(Unbounded steady state)Iso-quant curves

A1 B1

C

D

y = y1

y = y2

A2

B2

ẏ = 0 is assumed in the above graph.

Figure 7.1: Typical trajectories and effect of unexpected shift of demand constraint

working capitalκ(m) are higher wheny is higher. This observation provides two contradicting tendencies de-

pending on whether or not the demand constraint is binding. Suppose that firms are homogeneous and supply

of working capital is constant. If the demand constraint is unbinding in the economy, interest rate gradually de-

creases as the economy grows. On the other hand, comparing two economies staying at bounded steady states

with different level ofy, the rate of interest is higher for the developed economy than the other. This fact may

explain so-called allocation paradox (Lucas (1990); Gourinchas and Jeanne (2007)). Even though our model did

not introduce physical capital, if capital should be interpreted as a fund to cover the set-up cost, the same logic can

be applied in an extended model.17 Under the presence of friction, the state of coordinated expectation critically

affects the equilibrium rate of interest.

9. C R

This paper showed that if there is search friction representable by a convex vacancy cost function ——however

small for a given amount of hiring——, the economy obeys the effective demand principle. Wage rate is always

smaller than marginal productivity, and a direct attempt tolower wage rate will not remove unemployment, as the

old Keynesian arguments suggest. It should be noted that anykinds of sticky price is not assumed in this model.

The existence of convex vacancy cost prohibits convergenceto an unbounded steady state, or anequilibrium in the

long run, without persistent coordination of expectation. Wage rate is flexible reflecting redundant resources in

the labor market. One of the important consequences of the search theory is that, when search friction is present,

Keynes’s first postulate of classicals —the wage is equal to the marginal product of labour— must be abandoned

on a rational basis. This paper showed that, together with convex vacancy cost, it also rejects the second postulate

in a literal sense: the utility of wages when a given volume oflabour is employed is equal to the marginal disutility

of that amount of employment. Instead, the second postulateis maintained in a broader sense that workers follow

17If there is no genuine working capital, those financial and physical capitals coincide.
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their optimal choice,on a boundary. Workers’ optimal behavior is to work more below unbounded steady states,

but such behavior is bounded by limited working opportunities. Anyway, this partial rejection of the second

postulate enables involuntary unemployment — not by secular interpretation, but in the original definition:men

are involuntarily unemployed if, in the event of a small risein the price of wage-goods relatively to the money-

wage, both the aggregate supply of labour willing to work forthe current money-wage and the aggregate demand

for it at that wage would be greater than the existing volume of employment(Keynes (1936, p.15)). Since wage

bargaining is based on rational expectation on both sides, there is no built-in mechanism which brings the economy

back to a natural level of output nor natural rate of unemployment. If there is a tendency toward full employment,

it must be pursued in exogenous factors from the model presented here. One of important factors excluded from

our model is the possibility for workers to escape to autarky. This can affect long-run unemployment rate and can

be a source of poverty trap.

In search models, profit of a firm is strictly positive even when the commodity market is competitive. The fact

that an entrepreneur earns non-zero profit and that he has massive power in bargaining as suggested in this paper

raises a fundamental question that who really is the “entrepreneur”. The question cannot be neglected when one

undertakes explicit specification of demand side because itaffects the distribution of income and potentially the

level of investment. There can be two most straightforward but extreme ways of extension: one is to assume that

income level has no impact on pattern of consumption and investment. The other is to assume that there are two

classes, workers and entrepreneurs in a Kaldorian way. The latter literally assumes that the entrepreneur (and

his successor) embodies all the knowledge needed to manage firm and it will never be transferred to workers.

However, as many examples show, even family successors mustlearn management as workers before he succeeds

the company. This fact shows that much complicated internalforces are working in firms’ organization.

A A. D  C  (3.3)

Proposition 23. Let (ζ1, . . . , ζN) ∈ NN be a vector of parameters. For any yi ∈ N such that0 ≤ yi ≤ ζi , define

(A.1) Υ(y1, . . . , yN; ζ1, . . . , ζN) :=
1

1+
∑N

i=1 ζi

∏M
i=1

(
ζi
yi

)

(∑M
i=1 ζi

∑M
i=1 yi

)

Then, equation(A.1) is a probability mass function.

Proof. Υ ≥ 0 is obvious. If we sum it up for allxi , it becomes

∑

Υ =
1

1+
∑N

i=1 ζi

ζ1∑

y1=0

· · ·

ζM∑

yM=0

∏N
i=1

(
ζi
yi

)

(∑N
i=1 ζi

∑N
i=1 yi

)

=
1

1+
∑N

i=1 ζi

∑
ζi∑

k=0

∑

{yi :
∑N

i=1 yi=k}

∏N
i=1

(
ζi
yi

)

(∑N
i=1 ζi

k

)

=
1

1+
∑N

i=1 ζi

∑
ζi∑

k=0

∑

∑

yi=k

Mult.Hypg.(y1, . . . , yN; k; ζ1, . . . , ζN)
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= 1

where Mult.Hypg.(y1, . . . , yN; k; ζ1, . . . , ζN) is a multivariate hypergeometricdistribution with parameter (k; ζ1, . . . , ζN).

It sums up to one if allni ’s are summed up keeping
∑

ni = k. �

Proposition 24. Define a density functioñΥ : RN → R characterized byΥ such that

(A.2) Υ̃(x1, . . . , xN) dl1 · · ·dlN = Υ(y1, . . . , yN)

where xi = yidli and0 ≤ xi ≤ l i where li is fixed for anyζi and dli keeping li = ζidli (i = 1, . . . ,N). Then, the

functional form ofΥ̃ is given by

Υ̃(x1, . . . , xN) = δ

(

1−
x1

l1
, . . . , 1−

xN

lN

)

asζi → ∞ for all i whereδ denotes Dirac’s delta, i.e.

δ(z1, . . . , zN) =






∞ if ∀i, zi = 0

0 otherwise

and

(A.3)
∫ 1

0
· · ·

∫ 1

0
δ(z1, . . . , zN) dz1 · · ·dzN = 1.

Proof. From Proposition 23,
ζ1∑

y1=1

· · ·

ζN∑

yN=1

Υ (y1, . . . , yN) = 1.

Using (A.2), it means
l1∑

x1=dl1

· · ·

lN∑

xN=dlN

Υ̃ (x1, . . . , xN) dl1 · · ·dlN = 1

which leads to show̃Υ satisfies property (A.3) asζi → ∞, i.e. dli → 0, for all i. Note that





M∏

i=1

ζi









M∏

i=1

(

ζi

yi

)

 = o





(∑M
i=1 ζi

∑M
i=1 yi

)



if there existsi such thatyi < ζi . Then, (A.2) becomes

Υ̃(l1, . . . , lN) =
1

1+
∑N

i=1 ζi

∏M
i=1

(
ζi
yi

)

(∑M
i=1 ζi

∑M
i=1 yi

)

1
dl1 · · ·dlN

=
1

∏N
i=1 l i

1

1+
∑N

i=1 ζi

(∏N
i=1 ζi

) (∏M
i=1

(
ζi
yi

))

(∑M
i=1 ζi

∑M
i=1 yi

) → 0

asζi → ∞ for all i if there existsi such thatyi < ζi . On the other hand, ifyi = ζi for all i, we have
∏M

i=1

(
ζi
yi

)

= 1

and thus

Υ(ζ1, . . . , ζN) =
1

1+
∑N

i=1 ζi

.
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Then, from (A.2),

Υ̃(l1, . . . , lN) =
1

1+
∑N

i=1 ζi

1
dl1 · · ·dlN

=
1

∏N
i=1 l i

∏N
i=1 ζi

1+
∑N

i=1 ζi

.

The second fraction diverges asζi ’s become large, thereforẽΥ(l1, . . . , lN)→ ∞ asζi → ∞ for all i. �

A B. A P  E C G

Below is the proof of Lemma 3 in section 3.

Lemma 25 (Lemma 3). If game(Ω, v) is concave or essentially concave in which players are partitioned by

groups such thatΩ =
⋃M

i=1 Si and
⋂M

i=1 Si = ∅, then for any S,T ⊆ Ω such that S⊂ T, the following inequality

holds.

v(T) − v(T \ S) ≥
n∑

i=1

‖S ∩ Si‖
[

v(T) − v
(

T \ {si( j)}
)]

Proof. We use the fact thatv(T) − v(T \ S) has common value regardless of how players ofS are removed

from T. DefineSi1i2···im(ni1, . . . , nim) :=
⋂

k={1,...,m:nik,0}
⋂nik

j=1

{

sik( j)
}

where 1≤ m ≤ M and 1≤ ni ≤ Ni . When

nik = 0 for all k, defineSi1i2···im(0 · · ·0) = ∅ for convenience. Then, sinceT \ Si1···im(N1, . . . ,NM−1) ⊃ T \

Si1···im(N1, . . . , ,NM−1, nm), from concavity,

v(T) − v(T \ S)

=

Nk∑

nk=1

[

v
(

T \Sk(nk − 1)
)

− v
(

T \Sk(nk)
)]

+

Ni2∑

ni2=1

[

v
(

T \S1i2(N1, ni2 − 1)
)

− v
(

T \S1i2(N1, ni2)
)]

+ · · · +

NiM∑

niM=1

[

v
(

T \S1i2···iM (N1, . . . ,NiM−1niM − 1)
)

− v
(

T \S1i2···iM (N1, . . . ,NiM−1, niM )
)]

≥ M
Nk∑

nk=1

[

v
(

T \Sk(nk − 1)
)

− v
(

T \Sk(nk)
)]

Summing up the above inequality for allk = 1, . . . ,M,

v(T) − v(T \ S) ≥

M∑

k=1

Nk∑

nk=1

[

v
(

T \Sk(nk − 1)
)

− v
(

T \Sk(nk)
)]

≥

M∑

k=1

‖S ∩ Sk‖
[

v(T) − v
(

T \
{

sk( j)
})]

for any j = 1, . . . ,Nk sinceT \Si1···im(N1, . . . ,Nm−1, nm− 1) ⊃ T \ Si1···im(N1, . . . ,Nm−1, nm). �

A C. W F   G 

In this section, the case is handled in which worker separation rates are not common for all type of workers. The

following approach can be used not only to obtain an explicitfunctional form but also for numerical calculations.
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The Bellman equations (2.4) and (2.5) are equivalent to

Ui(t) = Eξ

[∫ ξ

t
bi(τ) e−

∫ τ

t
r dτ + E jEi j (ξ) e−

∫ ξ

t
r

]

Ei j (t) = Eξ

[∫ ξ

t
wi j (τ) e−

∫ τ

t
r dτ + Ui(ξ) e−

∫ ξ

t
r

]

in integral forms, whereEξ is an expectation operator onξ. Using partial integration, they simplify to

Ui(t) =

∫ ∞

t

(

bi(ξ) + µi(ξ)E jEi j (ξ)
)

e−
∫ ξ

t
(r+µi ) dξ(C.1)

Ei j (t) =

∫ ∞

t

(

wi j (ξ) + σi j (ξ)U(ξ)
)

e−
∫ ξ

t
(r+σi j ) dξ(C.2)

whereσi j (ξ) 9 0 andy(ξ) 9 0 asξ → +∞ are assumed. Ifσi j 9 0 andy9 0, thenµ 9 0, since replacement

demand for labor does not vanish. We leaver arbitrary but only assumed to be integrable. They guaranteeexistence

of U andE. (C.1) and (C.2) are singular Volterra integral equations of the second kind and have a structure of

Vi(t) −
∫ ∞

t
Ki(t, ξ) Vi(ξ) dξ = hi(t)(C.3)

whereVi(t) = t(Ui(t), Ei1(t), . . . ,EiM i (t)), theintegral kernel Ki is given by

Ki =





Ki00 Ki01 · · · Ki0Mi

Ki10 Ki11 · · · Ki1Mi

...
...

. . .
...

KiM i 0 KiM i 1 · · · KiM i Mi





=





0 g1µi(ξ) e−
∫ ξ

t
µi · · · gMiµi(ξ) e−

∫ ξ

t
µi

σ̃i1(ξ) e−
∫ ξ

t
σ̃i1

... O

σ̃iM i (ξ) e−
∫ ξ

t
σ̃iMi





e−
∫ ξ

t
r

and theexceptional part his given by18

hi =





hi0

hi1

...

hiM i





=





∫ ∞

t
bi(ξ) e−

∫ ξ

t
(r+µi ) dξ

∫ ∞

t
wi1(ξ) e−

∫ ξ

t
(r+σi1) dξ

...
∫ ∞

t
wiM i (ξ) e−

∫ ξ

t
(r+σiMi ) dξ





The following proposition can be derived.

Proposition 26. The solution to the simultaneous equations(C.3) is given by

Vi(t) = hi(t) +
∫ ∞

t
Gi(t, ξ) hi(ξ) dξ

where Gi is a Neumann series matrix in which Gipq(t, ξ) :=
∑∞
ζ=1

∗

K
ζ

ipq(t, ξ) (p, q = 1, . . . ,Mi), provided that

Gipq(t, ξ) uniformly converges.

18Subscripti is sometimes omitted below when obvious.
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The composition of (0, 0)-kernel is given by

∗

K2
00(t, ξ) =

Mi∑

ζ=0

(

K0ζ ∗ Kζ0

)

(t, ξ) =
Mi∑

ζ=1

(

K0ζ ∗ Kζ0

)

(t, ξ)

= e−
∫ ξ

t
r
∫ ξ

t
µ(τ) e−

∫ τ

t
µi





Mi∑

ζ=1

giζσ̃iζ(ξ) e−
∫ ξ

τ
σ̃iζ




dτ

The integral part equals the expected probability that an unemployed worker as of timet is employed afterwards

and separates again exactly at timeξ where expectation is taken for possible undeclarable types. Other cross-

compositions are given by

∗

K2
0ζ(t, ξ) =

∗

K2
ζ0 = 0, ∀ζ = 1, . . . ,Mi

∗

K2
pq(t, ξ) =

∫ ξ

t
Kp0K0q = Kp0 ∗ K0q ∀{(p, q) | p ≥ 1∨ q ≥ 1}

The iterated kernels alternate between zero and strictly positive numbers depending on whether the multiplicity of

the iteration is odd or even. That is





∗

K2n
00 · · ·

∗

K2n
0Mi

...
. . .

...
∗

K2n
Mi 0

· · ·
∗

K2n
Mi Mi





=





∗

K2n
00 0 · · · 0

0
...

... · · · Kp0 ∗
∗

K2n
00 ∗ K0q · · ·

0
...





and





∗

K2n−1
00 · · ·

∗

K2n−1
0Mi

...
. . .

...
∗

K2n−1
Mi 0

· · ·
∗

K2n−1
Mi Mi





=





0
∗

K2(n−1)
00 ∗

∗

K01 · · ·

∗

K2(n−1)
00 ∗

∗

K0Mi

K10 ∗

∗

K2(n−1)
00
... O

KMi 0 ∗

∗

K2(n−1)
00





for n = 1, 2, . . .
∗

K2n
00 comprises of the core part of iteration in each element and

∗

K2n
00(t, ξ) = e−

∫ ξ

t
r
∫ ξ

t
dτn−1

∫ τn−1

t
dτn−2 · · ·

∫ τ2

t

(∫ τ1

t
A

) (∫ τ2

τ1

A

)

· · ·

(∫ ξ

τn−1

A

)

dτ1

whereA := e
∫ ξ

t
r
∗

K2
00. The above can be interpreted as the expected discounted probability that an unemployed

worker as of timet repeats the cycle of employment and separationn-times in the period of (t, ξ] and the last

separation occurs exactly at timeξ. Summing up the above results for alln, we obtain Neumann seriesGi j =
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∑∞
n=1

∗

K
n

i j :

G =





∑

n

∗

K2n
00

∑

n

∗

K2(n−1)
00 ∗

∗

K01 · · ·
∑

n

∗

K2(n−1)
00 ∗

∗

K0Mi

∑

n K01 ∗

∗

K2(n−1)
00

...

... · · · Kp0 ∗
∑

n

∗

K2n
00 ∗ K0q · · ·

∑

n KMi 0 ∗

∗

K2(n−1)
00

...





.

Using these results, the explicit form of wage rate functionis given by the following proposition.

Proposition 27. The wage rate of type-(i, j) worker as of time t is given by

wi j (t) = ωi j (t) +
Mi∑

k=1

∫ ∞

t





∞∑

n=1

∗

A
n

jk(t, ξ)



 e−
∫

(r+σi j )ωk(ξ) dξ

where

Ai j (t, ξ) := µ(t)
Mi∑

k=1

gk

∫ ξ

t

(

Gk j(t, τ) −G0 j(t, τ)
)

dτ − σi j (t)
∫ ξ

t
G0 j(t, τ)dτ

ωi j (t) :=
∂F(t)/∂l i j + bi(t)

2
−
µi(t) − σi j (t)

2

∫ ∞

t
b(ξ) e−

∫

(r+µi )dξ

+
1
2

∫ ∞

t
A j0(t, ξ) b(ξ) e−

∫

(r+µi )dξ

for all i , j.

Proof. From Lemma 1,Ėi j =
[

U̇i + ∂
2F/(∂t ∂l i j )

]

/2. Substituting each value function by the time-derivativeof

the result of Proposition 26, we get

wi j (t) =
∂F/∂l i j (t) + bi(t)

2
−
µi(t) − σi j (t)

2
h1 +

1
2

∫ ∞

t
A j0(t, ξ) bi(ξ) e−

∫

(r+µi ) dξ(C.4)

+
1
2

Mi∑

k=1

∫ ∞

t
A jk(t, ξ) wk(ξ) e−

∫

(r+σi j )dξ

for all i, j. Solving simultaneous equation (C.4) obtains the result. �
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d e r s c h s i s c h e n S t a a t s a r c h i v O s n a b r c k ( m i t S c h w e r p u n k tä ü
: V e r f a s s u n g , H l t i n g , S i e d l u n g u n d K o n f l i k t e n i m 1 7 . u n dö
1 8 . J a h r h u n d e r t )

5 1 . E q u i t y a n d C o n t i n u i t y w i t h a C o n t i n u u m o f G e n e r a t i o n s T o m o i c h i S h i n o t s u k a D e c . 1 9 9 8

5 2 . P u b l i c R e s o u r c e s A l l o c a t i o n a n d E l e c t i o n S y s t e m A k i h i k o K a w a u r a M a r . 1 9 9 9

D i s c u s s i o n P a p e r S e r i e s
C e n t e r f o r B u s i n e s s C r e a t i o n
O t a r u U n i v e r s i t y o f C o m m e r c e

5 3 . 消 費 者 の 価 格 ﾌﾟ ﾛ ﾓ ｰ ｼ ｮ ﾝ反 応 へ の 影 響 を 考 慮 し た 広 告 効 果 測 定 結 果 奥 瀬 喜 之 Jun . 1 9 9 9
ﾓ ﾃ ﾞ ﾙの 構 築

54 . 地 域 型 ﾍﾞ ﾝ ﾁ ｬ ｰ支 援 ｼｽ ﾃ ﾑの 研 究 Ⅱ -地 域 型 ﾍﾞ ﾝ ﾁ ｬ ｰ ･ ｲ ﾝ ｷ ｭ ﾍ ﾞ ｰ ｼ ｮ ﾝの 設 計 - 小 樽 商 科 大 学 ﾋﾞ ｼ ﾞ ﾈ ｽ創 造 Ju l . 1 9 9 9
ｾ ﾝ ﾀ ｰ & 日 本 開 発 銀 行 札
幌 支 店

55 . ｻ ﾊ ﾘ ﾝ石 油 ・ ｶﾞ ｽ開 発 ﾌﾟ ﾛ ｼ ﾞ ｪ ｸ ﾄと 北 海 道 経 済 の 活 性 化 第 2号 北 東 ｱｼﾞ ｱ - ｻ ﾊ ﾘ ﾝ研 究 会 Ma y 1 9 9 9

5 6 . D e c . 1 9 9 9石 鹸 洗 剤 ﾒｰｶ ｰに お け る ﾏｰｹ ﾃ ｨ ﾝ ｸ ﾞ ･ ﾁ ｬ ﾈ ﾙ行 動 の 変 遷 高 宮 城 朝 則

57 . D e c . 1 9 9 9長 期 的 取 引 関 係 に お け る 資 源 蓄 積 と 展 開 近 藤 公 彦 &坂 川 裕 司

58 . K o S u m i n o D e c . 1 9 9 9E x e r n a l i t i e s : A P i g o v i a n T a x v s . A L a b o r T a x

5 9 . A N e w D i m e n s i o n o f S e r v i c e Q u a l i t y : A n E m p i r i c a l S t u d y i n J a p a n . M a k o t o M a t s u o D e c . 1 9 9 9
& C a r o l u s P r a e t
& Y o s h i y u k i O k u s e

6 0 . A f t e r m a t h o f t h e F l i n t S i t - D o w n S t r i k e : G r a s s - R o o t s U n i o n i s m S a t o s h i T a k a t a M a r . 2 0 0 0
a n d A f r i c a n - A m e r i c a n W o r k e r s , 1 9 3 7 - 1 9 3 9

6 1 . T a r i f f i n d u c e d d u m p i n g i n t h e i n t e r m e d i a t e - g o o d m a r k e t C h i s a t o S h i b a y a m a A p r . 2 0 0 0

6 2 . D e r e g u l a t i o n , M o n i t o r i n g a n d O w n e r s h i p s t r u c t u r e : A C a s e A k i h i k o K a w a u r a A p r . 2 0 0 0
S t u d y o f J a p a n e s e B a n k s

6 3 . ｻ ﾊ ﾘ ﾝ石 油 ・ ｶﾞ ｽ開 発 ﾌﾟ ﾛ ｼ ﾞ ｪ ｸ ﾄと 北 海 道 経 済 の 活 性 化 第 3号 北 東 ｱｼﾞ ｱ - ｻ ﾊ ﾘ ﾝ研 究 会 Ap r . 2 0 0 0

6 4 . A C o o p e r a t i v e a n d C o m p e t i t i v e O r g a n i z a t i o n a l C u l t u r e , M a k o t o M a t s u o M a y 2 0 0 0
I n n o v a t i o n , a n d P e r f o r m a n c e : A n E m p i r i c a l S t u d y o f J a p a n e s e
S a l e s D e p a r t m e n t s

6 5 . F o r e i g n E x c h a n g e M a r k e t M a k e r ' s O p t i m a l S p r e a d w i t h R y o s u k e W a d a J u n . 2 0 0 0
H e t e r o g e n e o u s E x p e c t a t i o n s

6 6 . ダ ン ピ ン グ と ダ ン ピ ン グ 防 止 法 の 起 源 柴 山 千 里 Oct . 2 0 0 0
歴 史 的 文 脈 に お け る 「 不 公 正 貿 易 」 概 念 の 成 立

67 . T h e O r g a n i z a t i o n a l L e a r n i n g P r o c e s s : A R e v i e w M a k o t o M a t s u o D e c . 2 0 0 0



6 8 . T h e W e a k C o r e o f S i m p l e G a m e s w i t h O r d i n a l P r e f e r e n c e s : T o m o i c h i S h i n o t s u k a J a n . 2 0 0 1
I m p l e m e n t a t i o n i n N a s h E q u i l i b r i u m & K o j i T a k a m i y a

6 9 . 業 態 開 発 に お け る イ ノ ベ ー シ ョ ン と 競 争 － ビ ブ レ の ケ ー ス － 近 藤 公 彦 Jan . 2 0 0 1

7 0 . B u d g e t D i s t r i b u t i o n P r o b l e m T o m o i c h i S h i n o t s u k a F e b . 2 0 0 1

7 1 . 小 売 バ イ ヤ ー 組 織 の 機 能 と 顧 客 対 応 伊 藤 一 May 2 0 0 1

7 2 . T h e E f f e c t o f I n t r a - O r g a n i z a t i o n a l C o m p e t i t i o n o n K n o w l e d g e M a k o t o M a t s u o M a y 2 0 0 1
C r e a t i o n : C a s e S t u d y o f a J a p a n e s e F i n a n c i a l C o m p a n y

7 3 . ｻ ﾊ ﾘ ﾝ石 油 ・ ｶﾞ ｽ開 発 ﾌﾟ ﾛ ｼ ﾞ ｪ ｸ ﾄと 北 海 道 経 済 の 活 性 化 第 4号 北 東 ｱｼﾞ ｱ - ｻ ﾊ ﾘ ﾝ研 究 会 Ma r . 2 0 0 1

7 4 . T h e W e a k C o r e o f S i m p l e G a m e s w i t h O r d i n a l P r e f e r e n c e s : T o m o i c h i S h i n o t s u k a O c t . 2 0 0 1
I m p l e m e n t a t i o n i n N a s h E q u i l i b r i u m & K o j i T a k a m i y a

7 5 . 環 境 保 全 型 河 川 計 画 と 景 観 構 築 に 係 る 計 画 技 術 の 研 究 地 域 環 境 問 題 研 究 会 Oct . 2 0 0 1
（ 代 表 八 木 宏 樹 ）

76 . A d d i t i v i t y , B o u n d s , a n d C o n t i n u i t y i n B u d g e t D i s t r i b u t i o n T o m o i c h i S h i n o t s u k a D e c . 2 0 0 1
P r o b l e m

7 7 . M o n e t a r y P o l i c y i n B h u t a n : I m p l i c a t i o n s o f I n d i a n R u p e e A k i h i k o K a w a u r a D e c . 2 0 0 1

C i r c u l a t i o n

7 8 . O p t i m a l M u l t i o b j e c t A u c t i o n s w i t h C o r r e l a t e d T y p e s T o m o i c h i S h i n o t s u k a F e b . 2 0 0 2
& S i m o n W i l k i e

7 9 . ｻ ﾊ ﾘ ﾝ石 油 ・ ｶﾞ ｽ開 発 ﾌﾟ ﾛ ｼ ﾞ ｪ ｸ ﾄと 北 海 道 経 済 の 活 性 化 第 5号 北 東 ｱｼﾞ ｱ - ｻ ﾊ ﾘ ﾝ研 究 会 Ma r . 2 0 0 2
8 0 . T h e C a s e S t u d y o f R e t a i l B u y i n g O r g a n i z a t i o n H a j i m e I t o h M a r . 2 0 0 2

i n J a p a n e s e C o n t e x t

8 1 . 宿 泊 業 の サ ー ビ ス の サ ー ビ ス 構 成 要 素 に 関 す る 重 要 度 調 査 法 に 稲 葉 由 之 &沈 潔 如 &伊 藤 一 Feb . 2 0 0 3
関 し て の 一 考 察 北 海 道 へ の 台 湾 人 観 光 客 の 事 例 を 中 心 に

82 . ブ テ ィ ッ ク 経 営 に お け る 販 売 要 素 の 分 析 -AH Pに よ る 経 営 者 ・ 伊 藤 一 &橋 詰 敦 樹 Mar . 2 0 0 3
販 売 員 間 に お け る 重 要 度 認 識 比 較 に 関 す る 一 考 察 -

83 . 温 泉 地 に 対 す る イ メ ー ジ ギ ャ ッ プ に 関 す る 調 査 伊 藤 一 Mar . 2 0 0 3

8 4 . L i t e r a t u r e R e v i e w o n R e t a i l B u y e r f r o m R e s e a r c h H a j i m e I t o h
o n I n d u s t r i a l P u r c h a s i n g

8 5 . T h e C o m p a r i s o n S t u d y o n R e t a i l B u y e r B e h a v i o u r b e t w e e n U K , H a j i m e I t o h
A u s t r a l i a a n d J a p a n

8 6 . 社 会 科 学 研 究 の 基 礎 － 大 学 院 生 の た め の 研 究 法 － ダ ン ・ レ メ ニ イ 他 著 Mar . 2 0 0 2
抄 訳 稲 葉 由 之 &奥 瀬 善 之
&近 藤 公 彦 ＆ 玉 井 健 一
&高 宮 城 朝 則 &松 尾 睦

87 . マ ー ケ テ ィ ン グ 行 為 か ら み た 小 売 業 に よ る 需 要 創 造 坂 川 裕 司 May 2 0 0 2
－ 明 治 期 呉 服 店 の 経 営 行 為 を 考 察 対 象 と し て －

88 . I n t e r d e p e n d e n t U t i l i t y F u n c t i o n s i n a n I n t e r g e n e r a t i o n a l T o m o i c h i S h i n o t s u k a M a y 2 0 0 2
C o n t e x t

8 9 . I n t e r n a l a n d E x t e r n a l V i e w s o f t h e C o r p o r a t e R e p u t a t i o n H a j i m e I t o h F e b . 2 0 0 3
i n t h e J a p a n e s e H o t e l I n d u s t r y

9 0 . ｻ ﾊ ﾘ ﾝ石 油 ・ ｶﾞ ｽ開 発 ﾌﾟ ﾛ ｼ ﾞ ｪ ｸ ﾄと 北 海 道 経 済 の 活 性 化 第 6号 北 東 ｱｼﾞ ｱ - ｻ ﾊ ﾘ ﾝ研 究 会 Ma r . 2 0 0 3

小 売 購 買 行 動 研 究 に 関 す る 展 望91 .
坂 川 裕 司 May 2 0 0 3－ 「 買 い 手 視 角 」 で の 小 売 購 買 行 動 研 究 に 向 け て －

購 買 に お け る 「 情 報 シ ス テ ム の 逆 機 能 」92 .商 品
坂 川 裕 司 Sep . 2 0 0 3－ リ ス ク 回 避 的 バ イ ヤ ー に み る 合 理 性 と そ の 弊 害 －

93 . A n E x p e r i m e n t o f R o u n d - R o b i n T o u r n a m e n t b y E x c e l ' s M a c r o M a s a r u U z a w a A p r . 2 0 0 4
- U s i n g 1 6 0 S t u d e n t s ' D a t a f r o m C o u r n o t D u o p o l y G a m e -

9 4 . E a r n i n g s M a n a g e m e n t t h r o u g h D e f e r r e d T a x A s e e t s H i r o s h i O n u m a J u n . 2 0 0 4
- I n C a s e o f B a n k i n g C o m p a n y -

9 7 . C o m p e t i t i o n b e t w e e n M a t c h i n g M a r k e t s K o j i Y o k o t a M a y 2 0 0 5

9 8 . O n t h e r o l e o f a s y m m e t r i c i n f o r m a t i o n i n t h e a g g r e g a t e m a t c h i n g K o j i Y o k o t a A p r . 2 0 0 6
f u n c t i o n

9 9 . A n o t e o n O p t i m a l T a x a t i o n i n t h e P r e s e n c e o f E x t e r n a l i t i e s T o m o i c h i S h i n o t s u k a F e b . 2 0 0 5
& K o S u m i n o

1 0 0 . A N o t e o n J o n e s ' M o d e l o f G r o w t h M u t s u h i r o K a t o M a r . 2 0 0 5

1 0 1 . 整 数 ナ ッ プ サ ッ ク 問 題 が 多 項 式 時 間 で 解 け る 特 殊 な 場 合 を 飯 田 浩 志 Jul . 2 0 0 5
定 め る 条 件 に つ い て

10 2 . Ｉ Ｔ 技 術 者 の 熟 達 化 と 経 験 学 習 松 尾 睦 Sep . 2 0 0 5

1 0 3 . P r o d u c t D e - l i s t i n g b y R e t a i l B u y e r s : R e l a t i o n a l G a r y D a v i e s D e c . 2 0 0 5
A n t e c e d e n t s a n d C o n s e q u e n c e s & H a j i m e I t o h

1 0 4 . 米 国 地 域 経 営 史 に お け る 多 文 化 主 義 的 発 展 － １ ９ ３ ０ 年 代 ミ シ ガ ン 州 高 田 聡 May 2 0 0 6
フ リ ン ト に お け る ア フ リ カ 系 コ ミ ュ ニ テ ィ の 起 業 基 盤 を 中 心 に －

10 5 . 環 境 便 益 を 反 映 さ せ た 環 境 指 標 の 開 発 Dev e l o p i n g 山 本 充 Ap r . 2 0 0 6
a n e n v i r o n m e n t a l i n d i c a t o r i n c l u d i n g e n v i r o n m e n t a l b e n e f i t s



1 0 6 . A C r i t i c a l I n v e s t i g a t i o n o f L o n g - r u n P r o p e r t i e s o f E n d o g e n o u s M u t s u h i r o K a t o M a y 2 0 0 6
G r o w t h M o d e l s

1 0 7 . W h a t i s N a t i o n a l I n c o m e i n J o n e s ' M o d e l o f G r o w t h ? M u t s u h i r o K a t o J u n . 2 0 0 6
: A n E x p o s i t o r y A n n o t a t i o n

1 0 8 . A F u r t h e r A n a l y s i s o f t h e C o n s u m e r B e h a v i o r i n J o n e s ' M u t s u h i r o K a t o A u g . 2 0 0 6
R & D - B a s e d M o d e l o f E c o n o m i c G r o w t h

1 0 9． 看 護 師 の 経 験 学 習 プ ロ セ ス 松 尾 睦 Feb . 2 0 0 7
& 正 岡 経 子 & 吉 田 真 奈 美
& 丸 山 知 子 & 荒 木 奈 緒

11 0 . C o m m e n t s o n k n a p s a c k p r o b l e m s w i t h a p e n a l t y I i d a H i r o s h i M a r . 2 0 0 7

1 1 1 . 看 護 師 の 経 験 学 習 に 関 す る 記 述 的 分 析 松 尾 睦 Jul . 2 0 0 7
& 正 岡 経 子 & 吉 田 真 奈 美
& 丸 山 知 子 & 荒 木 奈 緒

11 2 . 頂 点 被 覆 へ の リ ス ト 減 少 法 の 解 析 に 関 す る 一 考 察 飯 田 浩 志 Dec . 2 0 0 7

1 1 3 . 小 中 学 校 に お け る 校 長 の 経 営 観 － 探 索 的 分 析 － 松 尾 睦 Dec . 2 0 0 7

1 1 4 . イ ン タ ビ ュ ー 調 査 ： 戦 後 復 興 期 大 阪 に お け る 自 転 車 部 品 製 造 業 者 ・ 田 中 幹 大 Apr . 2 0 0 8
問 屋 の 経 営 活 動

11 5 . P a r t i t i o nの あ る 風 景 飯 田 浩 志 Jun . 2 0 0 8

1 1 6 . M u l t i p r o d u c t F i r m s a n d D u m p i n g C h i s a t o S h i b a y a m a J u l . 2 0 0 8
& Y a s u n o r i I s h i i

1 1 7 . モ ス ク ワ の 低 層 住 宅 団 地 開 発 ― 2つ の ケ ー ス － 小 田 福 男 Mar . 2 0 0 9

1 1 8 . 整 数 ナ ッ プ サ ッ ク の 周 期 性 に つ い て 飯 田 浩 志 Mar . 2 0 0 9

1 1 9 . D i s c u s s i o n p a p e r s e r i e s n o . 1 1 8へ の 補 遺 飯 田 浩 志 Jul . 2 0 0 9

1 2 0 . 環 境 フ ィ ー ド バ ッ ク 効 果 を 考 慮 し た San d m oモ デ ル に よ る 二 重 配 当 角 野 浩 Jul . 2 0 0 9
仮 説 の 再 考 察

12 1 . 部 分 線 形 モ デ ル の 差 分 推 定 量 の 漸 近 理 論 劉 慶 豊 Oct . 2 0 0 9

1 2 2 . モ デ ル 平 均 理 論 の 新 展 開 劉 慶 豊 Oct . 2 0 0 9

1 2 3 . P r o d u c t i o n T h e o r y w i t h C o n v e x L a b o r F r i c t i o n : K o j i Y o k o t a D e c . 2 0 0 9
F o u n d a t i o n o f a n O p t i m a l N o n - m a r k e t - c l e a r i n g E c o n o m y

D i s c u s s i o n P a p e r S e r i e s D e p a r t m e n t o f E c o n o m i c s , O t a r u U n i v e r s i t y o f C o m m e r c e

N o . 1 - 1 6 F e b . 1 9 8 5 - O c t . 1 9 9 1

D i s c u s s i o n P a p e r S e r i e s D e p a r t m e n t o f C o m m e r c e , O t a r u U n i v e r s i t y o f C o m m e r c e

N o . 1 - 2 A p r . 1 9 8 5 - M a y 1 9 8 9

C e n t e r f o r B u s i n e s s C r e a t i o n , N a t i o n a l U n i v e r s i t y C o r p o r a t i o n O t a r u U n i v e r s i t y o f C o m m e r c e
3 - 5 - 2 1 , M i d o r i , O t a r u , H o k k a i d o 0 4 7 - 8 5 0 1 , J a p a n T e l + 8 1 - 1 3 4 - 2 7 - 5 2 9 0 F a x + 8 1 - 1 3 4 - 2 7 - 5 2 9 3
E - m a i l : c b c j i m u @ o f f i c e . o t a r u - u c . a c . j p

国 立 大 学 法 人 小 樽 商 科 大 学 ビ ジ ネ ス 創 造 セ ン タ ー
〒 047 - 8 5 0 1 北 海 道 小 樽 市 緑 ３ 丁 目 ５ 番 ２ １ 号 Te l 0 1 3 4 - 2 7 - 5 2 9 0 F a x 0 1 3 4 - 2 7 - 5 2 9 3
E - m a i l : c b c j i m u @ o f f i c e . o t a r u - u c . a c . j p


