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Abstract

This paper proposed a model averaging method, which is called Generalized
Mallows’ Cp model averaging (GC). It works well for heteroskedastic models.
Under some regularity conditions, we show that our GC has asymptotic
optimality as a model averaging method, and also has asymptotic optimality
as a model selection method as well for heteroskedastic model. Some Monte-
Carlo studies are performed to investigate the small sample properties of
GC. The simulation results show that our method works well, gives better
performance than other alternative methods.
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1 Introduction

The methods of model selection help us to choose a single model as the
optimal one from a set of candidate models. In the last two decades, model
averaging methods are proposed as alternative to model selection. A model
averaging estimator is obtained by taking weighted average of estimator from
a set of candidate models. Comparing with model selection, model averag-
ing avoids to select a very poor model, and improve estimate in the aspect of
risk. Model averaging methods can be separated into two groups, Bayesian
and frequentist (non-Bayesian) model averaging. Bayesian model averag-
ing have been advocated by many researchers, see Draper (1995), Hoeting,
Madigan, Raftery, and Volinsky (1999) and Clyde and George (2004). On
the other hand, frequentist model averaging methods have a shorter his-
tory than Bayesian one. In the literature of frequentist model averaging,
Buckland, Burnham, Burnham, and Augustin (1997) proposed a smoothed-
AIC-based and smoothed-BIC-based methods, Hjort and Claeskens (2003)
proposed a frequentist model averaging method and derived the inference for
the estimate based on the likelihood function of models. Recently, Hansen
(Hansen (2007), Hansen (2009), Hansen (2010)) proposed several model av-
eraging methods, which works for linear models, models based on series
expansion, models with structural break and models with a near unit root.

This paper extends Hansen (2007), which proposed a Mallows model av-
erage estimator (MMA) for models with homoskedastic error. The weights
of models for MMA are determined by minimizing a criterion similar to
Mallows’ Cp. Our extension is a generalization of MMA. The new method
denoeted as GC works for both homoskedastic and heteroskedastic errors.
Under some regularity conditions, we show that GC has asymptotic opti-
mality as a model averaging method, and also has asymptotic optimality as
a model selection method as well.

This paper is organized as follows. In section 2, the GC model averaging
is proposed, it’s optimality is argued as well. In section 3, some simulation
studies are performed to check the finite sample properties of GC. Conclusion
remark is stated in section 4. The last section is an appendix on some
technical proofs.

2 Generalized Mallows’ Cp Model Averaging

Hansen (2007) proposed MMA. In his set up, the regressors are assumed to
be ordered, and the candidate regression models are assumed to be nested.
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Wan, Zhang, and Zou (2010) extend the results of Hansen (2007), by remove
the ordered and nested assumption. Our setup follows Wan, Zhang, and Zou
(2010). Following the notation of Wan, Zhang, and Zou (2010), we have
model (1) as follows,

yi = µi + ei, (1)

µi =
∞∑

j=1

θjxij ,

E (ei|xi) = 0,

for i = 1, · · · , n, where yi is a real-valued scalar, xi = (x1i, x2i, · · · ) is an
countably infinite real-valued vector, µi is assumed to be converging in mean
square and Eµ2

i < ∞, and the error term ei is assumed to be independent
and heteroskedastic, that means E

(
e2
i |xi

)
= σ2

i . The matrix form of regres-
sors is X ≡ (x′

1, x
′
2, · · · )′. The matrix form of eq.(1) is y = µ + e. where

µ = (µ1, · · · , µn)′. Our concern is to propose a model averaging method to
estimate µi with small risk (mean squared error, MSE).

Our notations are almost identical to those in Wan, Zhang, and Zou
(2010). The set of candidate models has M models. The mth model has
km > 0 regressors which could be any variables in xi. Notice that, we do
not restrict k1 < k2 < · · · < kM , which means nested models assumed in
Hansen (2007). The mth approximating model of model (1) is

yi =
km∑
j=1

θj(m)xij(m) + bi(m) + ei (2)

for m = 1, 2, · · ·M , where xij(m), for j = 1, · · · , km is regressors in the mth
model, and θj(m) are coefficients. We have a matrix form of eq.(2)

Y = X(m)Θ(m) + b(m) + e.

where Y = (y1, · · · , yn)′, X(m) is the n×km matrix of regressors with ijth en-
try xij(m), it is required to has full column rank, Θ(m) =

(
θ1(m), · · · , θkm(m)

)′,
b(m) =

(
b1(m), · · · , bn(m)

)′, and e = (e1, s, en)′. The LS estimator of Θ(m)

from the mth model is Θ̂(m) =
(
X ′

(m)X(m)

)−1
X ′

(m)Y . The estimator of µ

is µ̂(m) = X(m)

(
X ′

(m)X
′
(m)

)−1
X ′

(m)Y ≡ P(m)Y and the residuals is ê(m) =
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Y − µ̂(m). The model averaging estimator of µ is defined as

µ̂ (W ) =
M∑
i=1

ω(m)P(m)Y ≡ P (W ) Y,

where W =
(
ω(1), · · · , ω(M)

)′ is a weight vector in

Hn =

{
W ∈ [0, 1]M :

M∑
m=1

ω(m) = 1

}
.

The setup of the weight vector is different from that in Hansen (2007), he
restricts the entries of the weight vector to be nonnegative integers time 1/n
for the optimality of MMA.

Hansen’s MMA can be applied to models with homoskedastic errors.
Although it is hoped to be able to applied to models with heteroskedastic
errors as well, but there is not any theory support for the optimality and
no guaranty for good performance in the heteroskedastic case. In this sec-
tion, we propose a Generalized Mallows Cp model averaging method (GC),
which can be applied to models with heteroskedastic errors. We show the
optimality of GC and will check it’s small sample performance in the next
section.

The model averaging criterion is defined as follows,

GCn = n−1 ∥Y − P (W ) Y ∥2 + 2n−1tr [ΩP (W )] ,

where Ω is a n × n diagonal matrix which ii entry is σ2
i . Then the optimal

weight vector is derived as

ŴGC = arg min
W∈Hn

GCn.

Our destination is to show the optimality of ŴGC under some regularity
conditions. Defining the loss function and risk function respectively as

Ln (W ) = ∥µ̂ (W ) − µ∥2 , (3)

and
Rn (W ) = E (Ln (W ) |X) .

Then optimality means

Ln

(
ŴGCn

)
infW∈Hn Ln (W )

→p 1.
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It is easy to see that the expectation of GCn is the risk function plus a
constant. Hence GCn can be regard as an unbiased estimator of the risk
function plus a constant.

Lemma 1 We have E (GCn (W )) = Rn (W ) +
∑n

i=1 σ2
i .

The following theorem on the optimality of ŴGC is an application of
theorem 2.1∗ of Andrews (1991)Andrews (1991) and theorem 1.’ of Wan,
Zhang, and Zou (2010).

Theorem 2 Under the assumption of Lemma 1, for ξn ≡ infW∈Hn Rn (W ),
if E

(
e4G
i |xi

) ≤ κ < ∞, Mξ−2G
n

∑M
m=1

(
Rn

(
W 0

m

))G → 0, 0 < infi σ2
i ≤

supi σ
2
i < ∞, and infW∈Hn Ln (W ) = o (n), then

Ln(ŴGCn)
infW∈Hn Ln(W ) →p 1.

The following theorem show that under some regularity conditions, if
one replaces the term n−1tr [ΩP (W )] in GCn by n−1

∑n
i=1 ê2

i pii (W ), where
êi is the residual from the model with all the regressors, and pii (W ) is the
ii entry of P (W ), the above theorem will keep to be valid as the following
theorem claims.

Theorem 3 Using n−1
∑n

i=1 ê2
i pii (W ) instead of n−1tr [ΩP (W )], Theorem

1. is valid if limn−1
∑n

i=1 σ2
i = σ2 > 0 exists, µ′µ/n = O (1) , n supW∈Hn

maxii [pii (W )]2 ≤ C2 < ∞, and supi

[
(µ̂i (W ) − µi)

2 |x
]
≤ n−1C3Rn (W ),

where C1, C2 and C3 are positive constants.

It is esay to understand that if we restrct the weight vector to be W ∈
{e1, e2, · · · , eM}, where ei is a vectro with 1 as the ith entry and 0 as others,
then GC works as a model selection procedure which select a single model.
Sicne the above two Theorem work well for this model selection procedure,
this model selection procedure has optimality as well.

3 Monte-Carlo Studies

In order to investigate the finite sample performance of our method, we
carry out two Monte-Carlo simulations. The number of replications is 1000
for both simulations. For comparison, not only the results of GC but also
the results of GCV (Liu 2010 Liu (2010)), MMA (Hansen 2007), Smoothed-
AIC Buckland, Burnham, Burnham, and Augustin (1997), Smoothed-BIC
Buckland, Burnham, Burnham, and Augustin (1997) and AIC (Akaike 1973)
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Akaike (1973) are shown. GCV is a model averaging method proposed by
Liu (2010) in an unpublished paper. The GCV is defined as

GCVn (W ) =
n−1 ∥Y − µ̂∥2

(1 − n−1k (W ))2

and the optimal weight vector selected by GCV is defined as

ŴGCV = arg min
W∈Hn

GCVn (W ) .

Following the setting in Hansen (2007), we have DGP as

yi =
∞∑

j=1

θjxij + ei. (4)

We cut off the infinite-order at j = 30. The parameters are determined
by the same rule of Hansen (2007) θj = c

√
2αj−α−1/2, we take the values

c = 0.2, 0.4, 0.6, · · · , 2, and α = 0.5. The parameter c affects the population
R2 of eq.(4), bigger c brings bigger R2. The sample size n = 150, the
number of models M = 10 and the biggest model has 10 regressors. In
the simulations just for simplicity, we employ nested setting, that means
the (k + 1)th model is nested in the kth. xji are independent over j, j =
1, · · · , m, and set to be i.i.d. N (0, 1) with respect to i. The first one is
a simulation with homoskedastic errors, by setting ei to be i.i.d. N

(
0, σ2

)
with σ = 1. In the second simulation study, we set ei to be independent and
heteroskedastic, follow N

(
0, σ2

i

)
with σi = x2

2i. Since all the arguments in
above sections are restricted in the situation conditional on X, we generate
X once, then fixed the data of X through all replications. Defining MSE as
MSE = 1/1000

∑1000
i=1 (µ̂ − µ)2, after performing simulations, we calculate

MSE ratios which are MSEs of all methods aforementioned divided by MSE
of GC. The MSE ratios are plotted in Figures I and II for homoskedastic
and heteroskedastic errors respectively.

We can see that, AIC is dominated by Smoothed-AIC(de noted as SAIC
in the figures) with respect of almost all different values of c, different values
of population R2, in both simulations. The performance of SBIC is the
poorest in the homoskedastic case, but is better than some others with
small c in the heteroskedastic case. AIC and Mallows Cp (denoted as MC
in the figures) have moderate performances, and GCV and MMA are better
than them in both cases.

The most important result is on the comparison between GC and the
pair, GCV and MMA. GCV is totally an alternative of MMA, they get
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almost same MSE ratios. In the homoskedastic case, those three method get
similar MSEs, our method GC works a little poorer than GCV and MMA,
when c < 0.4, but a bit better than them with bigger c (bigger population
R2). In the heteroskedastic case, the situation is much different. Our GC
has the best performance, particularly, GC works much better than GCV
and MMA when c is small, and even for big values of c, GC is better than
all the others. From these results, we know that our GC method works well
for models with heteroskedastic errors.

4 Conclusion

We proposed a model averaging method for heteroskedastic models. We ar-
gued the optimalities of this method, and performed Monte-Carlo studies to
investigate its small sample properties. The results of Monte-Carlo studies
show that our method works well, particularly for models with heteroskedas-
tic errors.

5 Appendix

Proof of Theorem 2. After replace σ2trP (W ) by trΩP (W ) and σ2trP 2 (W )
by trΩP 2 (W ), the proof of Theorem 1 is almost the same as Wan, Zhang,
and Zou (2010) proof of Theorem 1’.
Proof of Theorem 3. It is easy to see that

sup
W∈Hn

{∣∣∣∣∣
n∑

i=1

ê2
i pii (W ) − tr [ΩP (W )]

∣∣∣∣∣
/

Rn (W )

}

≤ sup
W∈Hn

∣∣∣∣∣
n∑

i=1

ê2
i pii (W ) −

n∑
i=1

σ2
i pii (W )

∣∣∣∣∣
/

ξn

≤ sup
W∈Hn

max
ii

(pii (W ))

∣∣∣∣∣
n∑

i=1

(
ê2
i − σ2

i

)∣∣∣∣∣
/

ξn

= sup
W∈Hn

max
ii

(pii (W ))

∣∣∣∣∣
n∑

i=1

(
ê2
i − σ2

n

)∣∣∣∣∣
/

ξn.

Then the rest of the proof is straightforward using the technique in the proof
of the Theorem 2 of Wan, Zhang, and Zou (2010).
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Figure 1. MSE ratios of models with homoscedastic errors.
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Figure 2. MSE ratios of models with heteroscedastic errors.
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