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Abstract

This is a revised version of Iida [5]: We introduce a new type of problem that we shall call
collapsing subset-sum problem, and present an algorithm to solve the problem. The problem
is a special case of the collapsing knapsack problem, and the algorithm based on a depth-first
branch-and-bound strategy, involving some tip, makes it easy to solve the problem.
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1 Introduction
In the classical 0–1 knapsack problem (hereafter KP), given a knapsack of a certain capacity
and items each of which has profit and weight, we pack the items into the knapsack so that
the total profit of packed items is maximised without the total weight of those exceeding the
capacity. In the KP the capacity is a constant while Posner and Guignard [12] introduced a
more complicated one with a nonconstant capacity, called the collapsing 0–1 knapsack problem,
or CKP for short. As the name shows, the knapsack of CKP will collapse according to the
number of packed items. For example, each item is a bottle, and should be wrapped up when
packed. Then, the larger the number of packed items the smaller the capacity of the knapsack
due to the wrapping of each item. For further applications, see [12]. The CKP is formulated as
follows:

(CKP) maximise
∑
j∈N

cjxj ,

subject to
∑
j∈N

ajxj ≤ b

 ∑
j∈N

xj

,
xj ∈ {0, 1}, j ∈ N,

(1)

where N := {1, 2, . . . , n}, and each j ∈ N indicates an item. The coefficients of profit cj

and weight aj associated with any item j are given positive integers, and the b(·) is a given
monotonically nonascending function on the discrete domain N as b(1) ≥ b(2) ≥ · · · ≥ b(n).
Also, the 0–1 variable xj corresponds to the selection of item j as xj = 1(packed)/0(otherwise).
Without loss of generality we assume that aj ≤ b(1) for any j, and

∑
j aj > b(n). Clearly,

CKP is NP-hard as an extension of KP. Incidentally, CKP itself has an extension called the
continuous collapsing knapsack problem, see Posner and Suzuki [13].

Here we introduce several notation: Let J ⊆ N . Then we call the cardinality of J and∑
j∈J aj the length and weight of J , respectively. In addition, let x := (x1, x2, . . . , xn). Then
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we call such an n-vector a solution, and naturally identify a solution x with a subset J as
xj = 1⇔ j ∈ J ; hence, we sometimes call a subset of N a solution.

Now we consider applying an additional constraint to (1) such that cj = aj for all j ∈ N in
the same way as producing the subset-sum problem (SSP) from KP. Then we have the following,
named collapsing subset-sum problem (henceforth referred to as CSSP):

(CSSP) maximise
∑
j∈N

ajxj ,

subject to
∑
j∈N

ajxj ≤ b

 ∑
j∈N

xj

,
xj ∈ {0, 1}, j ∈ N.

This arises by way of example when there is just one kind of item; that is, the profit is directly
proportional to its weight for any item. Indeed, for some k > 0 in the case of cj = kaj for all j,
the objective function of (1) turns out to be k(

∑
j ajxj), and we shall maximise

∑
j ajxj .

Including SSP of NP-hard as a special case, CSSP is still NP-hard. Although well known
that the additional constraint produces a hard instance of KP (see, e.g. Kellerer et al [8, p. 152]),
is CSSP also hard to solve as an instance of CKP? In what follows we will survey studies to date
on CKP, focusing on the case of CSSP.

In the literature several algorithms for CKP have so far been proposed, e.g., fpck90 by
Fayard and Plateau [3]. Since it would seem that the performance of the algorithm depends on
whether profit to weight ratios {cj/aj}j∈N are widely distributed or not, fpck90 appears not
to be so promising enough to solve CSSP. To be more specific, first, three bounds concerning
the cardinality of an optimum solution derived from Propositions 3.1–3.3 will work even for
CSSP whereas Proposition 3.4† (resp. 3.5) shall deliver a trivial upper bound bb(|B|)c (resp.
bb(|B|+ 1)c) for the CSSP of

∑
j xj ≥ |B| (resp.

∑
j xj ≥ |B|+ 1) like the linear programming

relaxation applied to SSP or the multiple-choice subset-sum problem [8, Subsection 11.10.1].
Next, the outer-linearisation involved in fpck90 approximates b(i) as b(i) ≤ ᾱ · i+ β̄ with some
appropriate ᾱ(≤ 0), β̄, and generates an ordinary KP. The KP is utilised not only to obtain
an upper bound analogous to the well-known Dantzig [1]’s upper bound in Proposition 3.7 but
also to try to fix 0–1 variables with bounds analogous to those by Dembo and Hammer [2]
in Proposition 3.8. In short, both the Dantzig’s upper bound and the bounds by Dembo and
Hammer don’t seem so efficient for CSSP, because the resulting KP in the case of CSSP is
identical with the strongly correlated 0–1 knapsack problem (SCKP) of a negative fixed-charge
(i.e. cj = aj + ᾱ). Reflecting the very nature of SCKP, the performance of fpck90 shall depend
on the magnitude of ᾱ. The smaller the better. Indeed, it is well known that SCKP is generally
not so easy to treat (see, e.g. [8, p. 151]).‡ Further, SCKP arises as a result of applying inner-
linearisation to given CSSP, too. A greedy algorithm applied to the SCKP gives a lower bound.

Also, Pferschy et al [10] proposed two algorithms for CKP, called skp and dckp respectively.
The former transforms given CKP into an equivalent KP of 2n items, and solves the equivalent by
†According to Fayard and Plateau [3] their Proposition 3.4 is Theorem 1 in Posner and Guignard [12].
‡Consider the following instance of SCKP with fixed-charge −10 and capacity 130:

j 1 2 3 4 5 6
aj 33 30 28 27 25 20

Here we will try to peg x1 at 1. A solution (1 1 1 1 0 0) of profit sum 78 is greedily gained as
∑4

j=1 aj =
118 ≤ 130 < 118 + min{a5, a6}. Solving a linear programming relaxation problem with x1 = 0, we have
20 + 18 + 17 + 15 + 10 = 80 > 78. Thus we could not fix even item 1 of the largest profit to weight ratio.
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an algorithm for KP; The latter is based on the dynamic programming, involving the reduction
of states. Focusing on the case of CSSP: On skp, in a candidate for optimum packing besides
one item j (> n) we shall select j−n item(s) among n items on each of which the profit is equal
to the weight. Hence the resultant KP is nearly SSP. Further to the transformation of CKP
into KP, even with an alternative [6] the obtained is nearly SCKP§; On dckp, as to the upper
bound u(π, µ) := bπ+ (b(k+ 1)−µ)ci+1/ai+1c proposed in Proposition 4 so as to reduce states,
the ratio ci+1/ai+1 included is always equal to 1, and further it will not be rare for CSSP that
π gets close to µ (π ≤ µ), which makes the upper bound close to bb(k + 1)c quite natural as
produced under

∑
j xj ≥ k + 1. Moreover, in the case of CSSP, any order of items has fulfilled

the assumption of c1/a1 ≥ c2/a2 ≥ · · · ≥ cn/an. Therefore, the performance of the reduction
of states by Proposition 5 shall depend on the order of items; however, there is no extra rule
stated explicitly such as when cj/aj = cj+1/aj+1 the heavier precedes the other.

Furthermore, another algorithm for CKP was proposed by Wu and Srikanthan [15]. The
algorithm would also seem to depend on the variety of profit to weight ratios. For example,
both upper bounds uk and ur presented therein deliver the capacity bb(j)c of no use for CSSP
(The 2nd term in the definition of ur [15, p. 1744] will be not −

∑r
i=s+1 pi but −

∑r
i=s pi). In

addition, the proposed algorithm solves subproblems, in each of which a cardinality constraint is
given, in nonascending order of the profit sum of their break solution; however, without sorting
the subproblems, it will be sufficient for CSSP to solve the subproblems in ascending order of
cardinality in the same way as an algorithm to be proposed in Section 2.

As observed in Pisinger [11] it seems that the direction of current study on KP is to develop
a robust algorithm applicable to even an instance of various structures such as SSP, SCKP,
and so on. Although challenging certainly, it will be rather down to earth for now to employ
a tailored algorithm when a given problem has a special structure and there is an efficient
algorithm exploiting the special structure. Indeed, both SSP and SCKP with huge coefficients
are not yet tractable even for state-of-the-art methods for KP as seen in Tables 5.7–5.9 in [8]
where the upper data ranges of those examined are 105, 106 and 107 (A single exception is the
case where one based on a branch-and-bound strategy is applied to SSP. This fact is actually
highly correlated with an algorithm that we are going to propose herein) whereas two algorithms
specialised for SCKP, namely lsscor due to Pandit and Ravi Kumar [9] and xisc in [4], can
manage instances with n = 500 and coefficients of value up to 2 · 106 as demonstrated in [4].

In the light of this it will be worthwhile to develop an algorithm specialised for CSSP. In
the rest, Section 2 illustrates an algorithm for CSSP, and Section 3 presents brief computational
experiments. The last section is devoted to conclusions.

2 An algorithm for CSSP
In fact, our algorithm is the aforementioned xisc with a minor modification. The xisc transforms
given SCKP into equivalent SSPs with an additional constraint in the same way as lsscor:

maximise
∑
j∈N

cjxj ,

subject to
∑
j∈N

cjxj ≤ MCL(β) := b+ βk, β =
∑
j∈N

xj ,

xj ∈ {0, 1}, j ∈ N,

(2)

§Albeit not elaborated here there is yet another transformation from CKP to KP by Wu et al [14], in which the
capacity of KP yielded is 2(n+2)b(1) according to its summary whilst that of [6] can be estimated at (2n+1)b(1).
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where cj = aj +k for all j ∈ N , and the b is a constant capacity. If the fixed-charge k is negative,
MCL(β) is a monotonically descending function as to β. This means that (2) can be regarded
as a special case of CSSP. Conversely, xisc in which MCL(β) is replaced with b(β) is applicable
to CSSP, because xisc does not depend on the linearity of MCL(β). Then a rough algorithmic
sketch of xisc that we are going to propose for solving CSSP is as follows:

Sort all weights so that an ≥ an−1 ≥ · · · ≥ a1 ;
LB := max{i |

∑n
j=n−i+1 aj ≤ b(i)} ; /∗ LB≥ 1 ∗ /

z∗ :=
∑n

j=n−LB+1 aj ; /∗ initial incumbent value ∗/
i := LB + 1 ;
while i ≤ n and z∗ < b(i) do /∗ main loop ∗/

Discard any aj , provided aj > b(i)−
∑i−1

l=1 al ;
Enumerate all subsets of N with length i,

updating z∗ with an improved one (if found);
i := i+ 1 ;

done.

Eventually, the final z∗ is optimal. In the sketch, LB is a lower bound on the length of the
subsets of N , and {n, n − 1, . . . , n − LB + 1} gives maximum weight among any subset whose
length is LB or less. Note that the loop starts at not i = n but i = LB+1, because the smaller i
the more promising for optimality due to nonascending b(i). A point is that if we found a subset
of weight b(i) while enumerating those of length i, then we could terminate the processing to
optimality forthwith as labelled exit in a pseudo-code presented later. This is the crucial benefit
of a branch-and-bound strategy as stated at the end of Subsection 5.5.2 in Kellerer et al [8].

In the following we show a pseudo-code of the main loop in the sketch. As seen in the
pseudo-code, xisc is based on a depth-first search, and the root node of a binary search-tree
corresponds to a subproblem in which xn, xn−1, . . . , xpos+1 are all fixed at 0. We first explore a
subtree arising by fixing xpos = 1, then explore the other with xpos = 0. For efficiency an array
F is provided as F [i] :=

∑i
j=1 aj (1 ≤ i < n).

while (i ≤ n and z∗ < b(i)) {
Clear x1, x2, . . . , xn;
pos := max{i,max{j | aj + F [i− 1] ≤ b(i)}} ; /∗ pos ≥ i ∗/
j := pos; /∗ ‘j’ holds the latest selected item’s index ∗/
xj := 1; sum := aj ; rst := i− 1; /∗ rst +

∑
j xj = i ∗/

eval: while (true) {
if (j − 1 = rst) { /∗ no more room for consideration ∗/

j := 1; Assign 1 to x1, x2, . . . , xrst; sum := sum + F [rst]; rst := 0;
if (sum > b(i)) { skc := 1; goto backward; }
if (sum > z∗) {

z∗ := sum;
if (z∗ = b(i)) exit;

}
skc := 2; goto backward; /∗ skip ∗/

} else if (sum+F [rst] > b(i)) {
; /∗ forward movement ∗/

} else if (sum + F [j − 1]− F [j − 1− rst] ≤ z∗) { /∗ j − 1 > rst ∗/
skc := 2; goto backward;

} else if (rst = 1) { /∗ select the last item ∗/
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S := max1≤k<j{k | sum + ak ≤ b(i)}; /∗ NB. sum+a1 ≤ b(i) ∗/
if (sum + aS > z∗) {

z∗ := sum + aS ;
if (z∗ = b(i)) exit;

}
if (j − S ≤ 2) { skc := 3− (j − S); goto backward; } /∗ skip ∗/

} else { /∗ rst > 1 ∗/
j := j − 1; xj := 1; sum := sum + aj ; rst := rst− 1; goto eval;

}
forward: xj := 0; j := j − 1; xj := 1; sum := sum− aj+1 + aj ;

}
backward: while (j ≤ pos and skc > 0) {

skc := skc− (1− xj);
if (xj = 1) { xj := 0; sum := sum− aj ; rst := rst + 1; }
j := j + 1;

}
Find the smallest k ∈ [j,pos] for which xk = 1; /∗ impossible if j > pos ∗/
if (found such k) { j := k; goto forward; }
i := i+ 1;

}

Here we shall describe how ‘skip’ works. Note that when a solution of length i and weight
less than b(i) is obtained, we invoke skip. To take an example, consider an instance of CSSP
with n = 8, and the processing is at i = 4. Recall that if our choice is represented by a bit
pattern (x8x7 · · ·x1)2 then we enumerate subsets of length 4 from (11110000)2 to (00001111)2
in principle. Assume that we are now addressing a solution J := {7, 6, 4, 2} of weight less than
b(4), so we would like to proceed as far as a place where we will obtain a solution heavier than
J . At first glance, it may appear sufficient that we move to the root node of a subtree arising by
fixing x4 = 0; however, {7, 6, 3, 2} is not heavier than J . In this case we should at least move to
the root node of a subtree arising by fixing x6 = 0. In another view, considering again that our
choice is represented by a bit pattern, we attempt to find first ‘1’ after skipping over two or more
‘0’s to the left from a position indicating the latest selected item, then we replace the found ‘1’
with ‘0’, and leave all other bits to the right free; that is, we traverse the tree from (01101010)2
to (010xxxxx)2, where the symbol x stands for xj free—not yet fixed. Consequently, {7, 5, 4, 3}
may satisfy our demand. In short, to attain a solution heavier than a current one we have to skip
over more than one ‘0’ in a bit pattern corresponding to the current solution. To take another
example under the same situation, if we invoke skip at {7, 6, 5, 2}—that is, (01110010)2—then
we move to (0110xxxx)2; thus, {7, 6, 4, 3} may be heavier than {7, 6, 5, 2}.

3 Computational experiments
This section presents brief computational experiments. Provided data instances are the same
as those of Tables 3 and 4 in Pferschy et al [10] (corresponding to Tables 5 and 6 in Fayard
and Plateau [3]) except needless profits randomly generated in the range of [1, 300]. In Table 1,
the pair of columns for b′ and m is a basis to produce capacities: We randomly generate m
integers in [1, b′], and assign them to b(1) through b(m) in nonascending order. For all i > m
we set b(i) := 0. Weights are randomly generated in [1, 1000] for all cases except that, when
b(1) ≤ 1000, another range [1, b(1)− 1] is used instead (This exceptional treatment to generate
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weights is by ourselves only). Here, we did not adopt data instances in Wu and Srikanthan [15]
although produced along the same lines as [3, 10] because all b′ in Tables 3 and 4 thereof is
1000 equal to the upper data range of weights generated, which leads to that a few items have
constructed an optimum solution to CSSP in most cases, which we ascertained by preliminary
experiments, and such a situation is too favourable for xisc.

We implemented xisc in C, and did experiments on PowerBook with PowerPC G4 1.33 GHz
and 512 Mb main memory. The xisc implemented has, within one millisecond, solved an instance
determined by any triplet (n, b′,m) in the left half of Table 1. Also, the columns for skp and
dckp in Table 1 were quoted from Pferschy et al [10] as is for reference, where each entry
represents average computing time of ten instances generated, or is —, indicating at least one
instance among ten could not be solved within a space limit of 32 Mb on Digital AlphaServer
2000 5/250 referred therein. The last column of Table 1 is from Wu and Srikanthan [15] as is
too (expckp is the name of an algorithm proposed in [15]) where only an entry whose data type
exists in Table 1 was cited, and the reference machine is one equipped with Celeron 300A.

Table 1: Examined data types and average computing time of ten instances by skp, dckp and
expckp, expressed in seconds

n b′ m skp dckp expckp
100 1000 10 0.05 < 0.01 0.00

30 0.64 < 0.01
50 1.84 < 0.01
70 3.30 < 0.01 0.00
100 4.57 < 0.01 0.00

5000 10 0.05 < 0.01 0.11
30 0.60 < 0.01
50 1.67 < 0.01
70 2.94 < 0.01 0.65
100 3.15 < 0.01 1.14

10000 10 0.05 < 0.01
30 0.53 0.01
50 1.46 0.01
70 2.69 0.01
100 2.47 0.01

1000 1000 100 3353.47 0.03 1378.78
500 — 0.03

10000 100 1387.76 0.97
500 — 0.95

50000 100 938.18 16.10
500 — 39.94

It might seem not to be so meaningful to compare xisc with skp, dckp or expckp directly,
because xisc merely solves a special case of CKP while the others solve general CKP. However,
as pointed out in Section 1, skp, dckp and expckp appear to include some disadvantageous
points on CSSP; therefore, when applied to CSSP they will not perform a lot better than the
times shown in Table 1. Moreover, roughly speaking, our reference machine of a little bit
outdated ought not to perform a thousand times faster than that of Pferschy et al [10] or Wu
and Srikanthan [15].
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Finally we would like to add that our experiments of (n, b′,m) = (1000, 10000, 500) showed
that in most cases we had an optimum solution of, for some i, length i and weight b(i). However,
computing times for instances of n = 1000 are nearly the same irrespective of b′ and m, which
can also be found out in Table 1 of Iida [5, p. 145]. This will imply that, besides the benefit of
a branch-and-bound strategy as stated before in relation to exit, the condition z∗ < b(i) at the
top of the main loop works. As for our experiments of b′ = 1000 in Table 1, indeed, an optimum
solution often consists of an only, provided not an < b(2). In the case of an ≥ b(2), the main
loop starting at i := LB + 1 (= 2) shall not be executed.

4 Conclusions
This paper has introduced the collapsing subset-sum problem, and—so as to solve it—has pre-
sented an algorithm based on an orthodox branch-and-bound strategy but involving a ‘skip’
facility, which has also been incorporated into algorithms for other knapsack-type problems,
namely SSP [7] and SCKP [4]. The facility makes the implementation of a depth-first search
light, because it does not require any calculation concerning weights for determining an appro-
priate position (node) to which we should move in a binary search-tree.
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