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Abstract

This paper proposes a model averaging method, the generalized

Mallows’ Cp (GC) method, which works well for heteroskedastic mod-

els. Under some regularity conditions, we provide a feasible form of the

GC method and show that the GC method has asymptotic optimality

not only as a model averaging method but also as a model selection

method for heteroskedastic models. We perform some Monte Carlo

studies to investigate the small sample properties of the GC method.

The simulation results show that our method works well and performs

better than alternative methods.
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1 Introduction

Model selection helps us to choose a single optimal model from a set of candi-

date models. In the last two decades, model averaging has been proposed as

an alternative to model selection. A model averaging estimator is obtained

by taking the weighted average of the estimators obtained from candidate

models. As compared to model selection, model averaging seeks to avoid

selecting a very poor model and to improve the estimate with regard to

risk. Model averaging methods can be separated into two groups: Bayesian

model averaging methods and frequentist (non-Bayesian) model averaging

methods. Bayesian model averaging methods have been advocated by many

researchers (see Draper (1995), Hoeting, Madigan, Raftery, and Volinsky

(1999), and Clyde and George (2004)). On the other hand, frequentist

model averaging methods have a shorter history than their Bayesian coun-

terparts. In the literature on frequentist model averaging methods, Buck-

land, Burnham, Burnham, and Augustin (1997) proposed a smoothed-AIC

(SAIC) based method and a smoothed-BIC (SBIC) based method, and Hjort

and Claeskens (2003) proposed a frequentist model averaging method and

derived the inference for the estimate based on the likelihood function of

the model. Recently, Hansen (Hansen (2007), Hansen (2009), and Hansen

(2010)) proposed several model averaging methods, which work for linear

models, models based on series expansion, models with structural break,

and models with a near unit root.

This paper extends Hansen (2007), which proposed a Mallows model

averaging (MMA) estimator for models with homoskedastic errors. The
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weights of the models for the MMA estimator are determined by minimiz-

ing a criterion similar to Mallows’ Cp (MC). Our extension is a generalization

of the MMA method. The GC method works for both homoskedastic and

heteroskedastic errors not only as a model averaging method but also as

a model selection method. For heteroskedastic situations, Andrews (1991)

showed asymptotic optimality for a model selection criterion based on MC.

However, Andrews (1991) did not provide a feasible form of this criterion,

because of the difficulty associated with the consistent estimation of the co-

variance matrix. We provide a way to avoid the estimate of the covariance

matrix, and are thus able to propose a feasible form of the GC method.

Under some regularity conditions, we show that the GC method has asymp-

totic optimality not only as a model averaging method but also as a model

selection method for models with heteroskedastic errors.

The rest of this paper is organized as follows. In section 2, the GC

method and its feasible form for model averaging and model selection are

proposed, and the optimality of the GC method is discussed. In section 3,

some simulation studies are performed to check the finite sample proper-

ties of the GC method. Section 4 contains some concluding remarks. The

appendix contains some technical proofs.

2 GC Method

Hansen (2007) proposed an MMA estimator. In his setup, the regressors are

assumed to be ordered, and the candidate regression models are assumed

to be nested. Wan, Zhang, and Zou (2010) extended the results of Hansen
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(2007), by removing these assumptions. Our setup is similar to Wan, Zhang,

and Zou (2010). The following is our model:

yi = µi + ei, (1)

µi =

∞∑
j=1

θjxij ,

E (ei|xi) = 0,

for i = 1, · · · , n, where yi is a real-valued scalar, xi = (xi1, xi2, · · · ) is a

countably infinite real-valued vector, µi is assumed to be converging in mean

square, and Eµ2
i < ∞. Our results almost all are condational on xi, for

simplicity, we omit the conditinal expression in some cases hereafter.

The most important difference between our setup and that of Hansen

(2007) and Wan, Zhang, and Zou (2010) is that in their setup, the error term

ei is assumed to be homoskedastic and not heteroskedastic as in our setup.

We assume that ei is independent over i and E
(
e2i |xi

)
= σ2

i . The matrix

form of the regressors is X ≡ (x′1, x
′
2, · · · )

′. The matrix form of eq.(1) is

y = µ+ e, where y = (y1, · · · , yn)′, µ = (µ1, · · · , µn)
′, and e = (e1, · · · , en)′.

We propose the GC method to estimate µi with a small risk (mean squared

error, MSE).

The set of candidate models contains M models. The mth model has

km > 0 regressors that can be any variables in xi. Note that we do not

restrict k1 < k2 < · · · < kM , as is the case with the nested models assumed
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in Hansen (2007). The mth approximating model of model (1) is

yi =

km∑
j=1

θj(m)xij(m) + bi(m) + ei, (2)

for m = 1, 2, · · ·M , where xij(m) for j = 1, · · · , km denotes the regressors in

the mth model, and θj(m) denotes the coefficients. We thus have a matrix

form of eq.(2):

Y = X(m)Θ(m) + b(m) + e, (3)

where Y = (y1, · · · , yn)′, X(m) is an n × km matrix of the regressors with

ij element xij(m) and with full column rank, Θ(m) =
(
θ1(m), · · · , θkm(m)

)′
,

b(m) =
(
b1(m), · · · , bn(m)

)′
, and e = (e1, · · · , en)′. The LS estimator of Θ(m)

as derived from the mth model is Θ̂(m) =
(
X ′

(m)X(m)

)−1
X ′

(m)Y . The esti-

mator of µ is

µ̂(m) = X(m)

(
X ′

(m)X(m)

)−1
X ′

(m)Y ≡ P(m)Y (4)

and the residual is ê(m) = Y − µ̂(m). The model averaging estimator of µ is

defined as

µ̂ (W ) =

M∑
m=1

ω(m)P(m)Y ≡ P (W )Y, (5)

where W =
(
ω(1), · · · , ω(M)

)′
is a weight vector in

Hn =

{
W ∈ [0, 1]M :

M∑
m=1

ω(m) = 1

}
. (6)

The setup of the weight vector is different from that in Hansen (2007) who
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restricts the elements of the weight vector to be a/n, where a is some non-

negative integers less than n, for the optimality of MMA.

Hansen’s MMA was designed for models with homoskedastic errors. Al-

though it is hoped that it can also be applied to models with heteroskedastic

errors, there does not exist any theoretical support for optimality and good

performance in the heteroskedastic case. In this section, we propose the GC

method for the heteroskedastic error case. We will show the optimality of

this method and check its small sample performance in the next section.

The model averaging criterion is defined as follows:

GCn = ∥Y − P (W )Y ∥2 + 2tr [ΩP (W )] , (7)

where Ω is an n× n diagonal matrix with Ωii = σ2
i . Then, the estimator of

the optimal weight vector is denoted as

ŴGC = arg min
W∈Hn

GCn. (8)

Our aim is to show the optimality of ŴGC under some regularity condi-

tions. We define the loss function and the risk function as

Ln (W ) = ∥µ̂ (W )− µ∥2 (9)

and

Rn (W ) = E (Ln (W ) |X) , (10)
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respectively. Then, optimality implies

Ln

(
ŴGCn

)
infW∈Hn Ln (W )

→p 1. (11)

It can be easily seen that the expectation of GCn is the sum of the risk func-

tion and a constant. Hence, GCn can be regarded as an unbiased estimator

of the risk function plus a constant.

Lemma 1 E (GCn (W )) = Rn (W ) +
∑n

i=1 σ
2
i .

The following theorem on the optimality of ŴGC is an application of

theorem 2.1* of Andrews (1991) and theorem 1’ of Wan, Zhang, and Zou

(2010).

Theorem 2 For ξn ≡ infW∈Hn Rn (W ) and some integer 1 ≤ G < ∞, if

E
(
e4Gi |xi

)
≤ κ < ∞, (12)

Mξ−2G
n

M∑
m=1

(
Rn

(
W 0

m

))G → 0, (13)

and 0 < infi σ
2
i ≤ supi σ

2
i < ∞, then

Ln(ŴGCn)
infW∈Hn Ln(W )

p→ 1, where W 0
m is a

vector whose mth element is one and all other elements are zeros.

Andrews (1991) showed the asymptotic optimality for a model selection

method based on MC, but he did not propose a feasible criterion. The

difficulty in providing a feasible criterion arises from the fact that without

additional restrictions, one cannot expect to obtain a consistent estimator

of the covariance matrix Ω; since for heteroskedastic errors, Ω has at least
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n parameters and we have only n observations. To solve this problem, our

idea is to estimate not Ω but the scalar tr [ΩP (W )]. Using this approach,

we propose the following feasible criterion for model averaging:

ĜCn ≡ ∥Y − P (W )Y ∥2 + 2

n∑
i=1

ê2i pii (W ) , (14)

where êi is the residual from the largest model with the most number of

regressors, and pii (W ) is the ith diagonal element of P (W ). Let ē ≡

(ẽ1, · · · , ẽM ) with ẽm to be the n × 1 residual vector from the mth model,

let Ω̂ ≡ diag
(
ê2i , · · · , ê2n

)
, and let Ξ ≡ (tr(Ω̂P(1)), · · · , tr(Ω̂P(M)))

′ . Then

we have the following expression

ĜCn = W ′ē′ēW + 2Ξ′W (15)

The corresponding estimator of the optimal weight vector is

Ŵ
ĜCn

≡ arg min
W∈Hn

ĜCn. (16)

The following theorem shows that under some regularity conditions, if one

replaces the term tr [ΩP (W )] in GCn with
∑n

i=1 ê
2
i pii (W ) as in eq.(14),

Theorem 2 still holds as the following theorem claims.

Theorem 3 When
∑n

i=1 ê
2
i pii (W ) is used instead of tr [ΩP (W )], Theorem

2 is valid if

0 < limn−1
n∑

i=1

σ2
i = σ2 < ∞, (17)

µ′µ/n = O (1) , (18)
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max
1≤m≤M

max
1≤i≤n

pm,ii = O
(
n−1/2

)
, (19)

p̃e′e

ξn

p→ 0, (20)

limλmax (n) = ∞, (21)

log (λmax (n)) = O
(
n1/2

)
, (22)

where p̃ ≡ supW∈Hn
max1≤i≤n (pii (W )), λmax (n) is the maximum eigen-

value of X̃ ′X̃ with X̃ denoting the matrix of the regressors of the largest

model, and pm,ii is the ith diagonal element of P(m).

In Li (1987), Andrews (1991), and Hansen and Racine (2010), there are

some restrictions similar to (19), such as max1≤m≤M max1≤i≤n pm,ii → 0.

Using some properties of P(m), which is an idempotent matrix, one can

show that such restrictions are reasonable, they exclude only extremely un-

balanced models. If such restrictions do not hold, the variances of some µ̂is,

i.e., some elements of the estimate µ̂ based on an unbalanced single model,

will be extremely large, and as such, µ̂is will be much less accurate.

It can be easily seen that if we restrict the weight vector to be W ∈

{i1, i2, · · · , iM}, where ii is a vector whose ith element is one and other ele-

ments are zeros, then the GC method works as a model selection procedure

to select a single model. The above two theorems are valid for this model

selection procedure; further, this model selection procedure has optimality.

The criterion for model selection can be expressed as follows:

ĜCn (m) ≡ ∥Y − PmY ∥2 + 2

n∑
i=1

ê2i pm,ii. (23)
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The estimator of the indicator of the optimal model can be obtained as

follows:

m̂ ≡ arg min
1≤m<M

GCn (m) . (24)

3 Monte Carlo Studies

To investigate the finite sample performance of our method, we conduct

two Monte Carlo simulations. The number of replications is 1000 for both

simulations. For comparison, not only the results of the GC method but

also the results of the GCV (Liu (2010)), MMA (Hansen (2007)), SAIC

and SBIC (Buckland, Burnham, Burnham, and Augustin (1997)), and AIC

(Akaike (1973)) methods are shown. The GCV method is a model averaging

method proposed by Liu (2010) in an unpublished paper, and is defined as

GCVn (W ) =
∥Y − µ̂ (W )∥2

(n− trP (W ))2
. (25)

The optimal weight vector selected by the GCV method is defined as

ŴGCV = arg min
W∈Hn

GCVn (W ) . (26)

We have the DGP as

yi =
∞∑
j=1

θjxij + ei. (27)

We cut off the infinite order at j = 30. The parameters are determined as in

Hansen (2007): θj = c
√
2αj−α−1/2. We set the values as c = 0.2, 0.4, 0.6, · · · , 2
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and α = 0.5. The parameter c affects the population R2 of eq.(27): R2 in-

creases with c. The sample size is n = 150, the number of models is M = 10,

and the biggest model has 10 regressors. For simplicity, in the simulations,

we employ a nested setting: the (k + 1)th model is nested in the kth model.

xijs are independent over j, j = 1, · · · ,m, and set to be i.i.d. N (0, 1) over

i. The first simulation is with homoskedastic errors; we set ei to be i.i.d.

N
(
0, σ2

)
, where σ = 1. In the second simulation study, we set ei to be

independent and heteroskedastic N
(
0, σ2

i

)
, where σi = x2i2. Since the argu-

ments in the above sections are restricted in the situation conditional on X,

we first generate X and then fix the data of X through all the replications.

We define the sample MSE as MSE = 1/1000
∑1000

i=1 (µ̂− µ)2, and calculate

the MSE ratios (the ratios of the MSEs of the aforementioned methods and

the MSE of the GC method). The MSE ratios are plotted in Figures I and

II for homoskedastic and heteroskedastic errors, respectively.

We can see that the AIC method is dominated by the SAIC method

for almost all values of c (R2) in both simulations. The performance of the

SBIC method is the worst in the homoskedastic case, but is better than some

other methods for small values of c in the heteroskedastic case. The AIC

method and the MC method perform moderately, and the GCV method and

the MMA method are better than them in both cases.

The most important results are on the comparisons between the GC

method and the GCV method and between the GC method and the MMA

method. The GCV method is a perfect alternative to the MMA method;

both have almost the same MSE ratios. In the homoskedastic case, these

three methods have similar MSEs: the GC method performs slightly worse
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than the GCV method and the MMA method when c < 0.4 but slightly bet-

ter when c (R2) is bigger. In the heteroskedastic case, the situation is much

different. The GC method performs the best, and is particularly better than

the GCV method and the MMA method when c is small. From these re-

sults, we get that the GC method works well for models with heteroskedastic

errors.

4 Conclusion

We proposed a model averaging method for heteroskedastic models. We ar-

gued the optimality of this method, and performed Monte Carlo simulations

to investigate its small sample properties. The results of these simulations

show that the proposed method works well, particularly for models with

heteroskedastic errors.

5 Appendix

Proof of Theorem 2. The proof of optimality in Wan, Zhang, and Zou

(2010) is an application of Theorem 2 of Whittle (1960). Since Theorem 2

of Whittle (1960) holds even with heteroskedastic errors, when σ2trP (W )

is replaced with trΩP (W ) and σ2trP 2 (W ) is replaced with trΩP 2 (W ), the

proof of Theorem 2 is almost the same as the proof of Theorem 1’ in Wan,

Zhang, and Zou (2010).

Proof of Theorem 3. We denote the projection matrix of the largest

model as P ∗, and the ith diagonal element of P ∗ as p∗ii. We define P̄ (W )

as a diagonal matrix which ith diagonal elemnt is pii (W ).
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Condition (19) implies that p̃ = O
(
n−1/2

)
and the number of regres-

sors in the largest model k∗ = O
(
n1/2

)
; condition (13) implies that ξn →

∞. From the properties of an idempotence matrix, we have trP̄ 2
(
W 0

m

)
≤

trP 2
(
W 0

m

)
and 0 ≤ pii (W ) ≤ 1. We use C to denote some constant which

could take different values in the following proof.

Since

ĜC ≡ (Y − µ̂ (W ))′ (Y − µ̂ (W )) + 2

n∑
i=1

ê2i pii (W )

= GC + 2

(
n∑

i=1

ê2i pii (W )− tr [ΩP (W )]

)
, (28)

to prove Theorem 3, we only need to show that

sup
W∈Hn

{∣∣∣∣∣
n∑

i=1

ê2i pii (W )− tr [ΩP (W )]

∣∣∣∣∣
/

Rn (W )

}
p→ 0. (29)
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It can be easily seen that

sup
W∈Hn

{∣∣∣∣∣
n∑

i=1

ê2i pii (W )− tr [ΩP (W )]

∣∣∣∣∣
/

Rn (W )

}

≤ sup
W∈Hn

∣∣ê′P̄ (W ) ê−E
(
e′P̄ (W ) e

)∣∣/ ξn
≤ sup

W∈Hn

{∣∣ê′P̄ (W ) ê− e′P̄ (W ) e|+ |e′P̄ (W ) e−E
(
e′P̄ (W ) e

)∣∣} /ξn
≤ sup

W∈Hn

{
|ê′P̄ (W ) ê|+ |e′P̄ (W ) e|+ |e′P̄ (W ) e− E

(
e′P̄ (W ) e

)
|
}
/ξn

≤ p̃
{
ê′ê+ e′e

}
/ξn + sup

W∈Hn

|e′P̄ (W ) e− E
(
e′P̄ (W ) e

)
|/ξn

= p̃
{
(µ+ e)′ (I − P ∗) (µ+ e) + e′e

}
/ξn

+ sup
W∈Hn

|e′P̄ (W ) e− E
(
e′P̄ (W ) e

)
|/ξn

= p̃
{
µ′ (I − P ∗)µ+ 2µ′ (I − P ∗) e+ e′ (I − P ∗) e+ e′e

}
/ξn

+ sup
W∈Hn

|e′P̄ (W ) e− E
(
e′P̄ (W ) e

)
|/ξn

≤ p̃
{
µ′ (I − P ∗)µ+ 2|µ′ (I − P ∗) e|+ e′P ∗e+ 2e′e

}
/ξn

+ sup
W∈Hn

|e′P̄ (W ) e− E
(
e′P̄ (W ) e

)
|/ξn. (30)

From conditions (13), (18), (19), and Rn (W ) ≥ µ′ (I − P (W ))µ, we have

p̃
µ′ (I − P ∗)µ

ξn
≤
(
p̃2

µ′ (I − P ∗)µ

ξ2n
µ′µ

)1/2

≤
(
p̃2

Rn (W
∗
0 )

ξ2n
µ′µ

)1/2

=
√

O (n−1) o (1)O (n) → 0, (31)

where W ∗
0 is the weight vector giving weight 1 to the largest model.
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Moreover, using similar techniques as in Wan, Zhang, and Zou (2010),

i.e., by applying Chebyshev’s inequality, Theorem 2 of Whittle (1960) and

Rn (W ) ≥ µ′ (I − P (W ))µ, denoting the ith element of µ′ (I − P ∗) as ηi,

for any δ > 0, we have

P

{
2p̃

|µ′ (I − P ∗) e|
ξn

> δ

}
≤ E (µ′ (I − P ∗) e)2 4p̃2

ξ2nδ
2

≤ C

[
n∑

i=1

η2i σ
2
i

]1/2
p̃2

ξ2nδ
2

≤ C
p̃2

ξ2nδ
2

sup
1≤i≤n

σ2
i µ

′ (I − P ∗)µ

≤ C
p̃2

ξ2nδ
2
Rn (W

∗
0 ) → 0, (32)

hence

2p̃
|µ′ (I − P ∗) e|

ξn

p→ 0. (33)

Moreover according to Lemma 1 of Lai and Wei (1982) and assumptions

(21) and (22), we have

p̃
∣∣e′P ∗e

∣∣ /ξn
= O

(
n−1/2

)
O (log λmax (n)) o (1) a.s.

= O
(
n−1/2

)
O
(
n1/2

)
o (1) a.s. (34)

a.s.→ 0. (35)

Furthermore, using Chebyshev’s inequality, Theorem 2 of Whittle (1960),
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and Cm, m = 1, · · · ,M , denoting some constant, for any δ > 0, we have,

P

{
sup

W∈Hn

∣∣(e′P̄ (W ) e
)
− E

(
e′P̄ (W ) e

)∣∣ /ξn > δ

}

≤
M∑

m=1

P
{∣∣(e′P̄ (W 0

m

)
e
)
− E

(
e′P̄

(
W 0

m

)
e
)∣∣ > δξn

}
≤

M∑
m=1

E

{[(
e′P̄

(
W 0

m

)
e
)
− E

(
e′P̄

(
W 0

m

)
e
)]2G

δ2Gξ2Gn

}

≤ δ−2Gξ−2G
n

M∑
m=1

Cm

{
n∑

i=1

p2ii
(
W 0

m

) [
E
(
e4Gi
)]1/G}G

≤ max
1≤m≤M

(Cm) max
1≤i≤n

([
E
(
e4Gi
)]1/G)

δ−2Gξ−2G
n

M∑
m=1

{
n∑

i=1

p2ii
(
W 0

m

)}G

= Cδ−2Gξ−2G
n

M∑
m=1

[
trP̄ 2

(
W 0

m

)]G
≤ Cδ−2Gξ−2G

n

M∑
m=1

[
trP 2

(
W 0

m

)]G
= Cδ−2Gξ−2G

n

(
inf

1≤i≤n
σ2
i

)−G M∑
m=1

[
tr

{
inf

1≤i≤n
σ2
i IP

2
(
W 0

m

)}]G
≤ Cδ−2Gξ−2G

n

(
inf

1≤i≤n
σ2
i

)−G M∑
m=1

[
tr
{
ΩP 2

(
W 0

m

)}]G
≤ Cδ−2Gξ−2G

n

M∑
m=1

[
Rn

(
W 0

m

)]G → 0, (36)

where I is a n×n identity matrix. Therefore, we have supW∈Hn
|
(
e′P̄ (W ) e

)
−

E
(
e′P̄ (W ) e

)
|}/ξn

p→ 0. From the above results and eq.(20) we have

eq.(29). The proof of Theorem 3 is complete.
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Figure 1. MSE ratios of models with homoskedastic errors.
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Figure 2. MSE ratios of models with heteroskedastic errors.
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