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TIME DISCOUNT AND CONVEX HIRING COST

Koji Yokota1

When rebargaining on wages is allowed after the worker-firm match is formed,
search equilibrium with multiple hiring does not necessarily exhausts labor resources
when hiring cost is convex. The level of output depends on the time discount factor of
the consumer. Properties of the resulting demand-driven business cycles are studied
using periodic steady state technique with comparison with the productivity cycles.
Wage rate generally exhibits phase shift against marginal productivity for discount
factor fluctuation in contrast to the synchronization of the productivity cycle case.

1. INTRODUCTION

Search models typically assume constant hiring cost per vacancy as a direct
extension of one-to-one production by a firm and a worker in the tradition of
Mortensen and Pissarides. However, Yashiv (2000) and Blatter et al. (2012) show
that the hiring function is empirically highly convex and there is a good reason
that convexity should be assumed in the function. Because of search friction, hir-
ing activities are forced to rely on the internal resources if information needed for
hiring is accessible only by insiders. More vigorous hiring activities cause conges-
tions over the internal resources, therefore it raises the hiring cost in convexity.
Yashiv (2006, 2007) analyzes the dynamics of the economy with capital when hir-
ing cost is convex, which focuses on the most efficient path. However, the convex
hiring cost implies that the dynamic path and the steady state can generically
be different from the one in the Mortensen-Pissarides model, depending on the
time preference of the consumer. In contrast to linear hiring cost, transition is
time-consuming with convex hiring cost, therefore future discounting matters.
Higher discounting by the consumer raises equilibrium interest rate, which in
turn lowers the value of the firm and therefore lowers the steady state output.
The lower value of production coalition makes the firms become unwilling to
expand their sizes.

In this paper, business cycles caused by the fluctuation in intertemporal con-
sumer preference is analyzed, not only the ones caused by the cycles in produc-
tivity. Note that the former source of business cycles becomes possible due to
convex hiring cost which is inevitable requirement under the existence of labor
friction with the reasons mentioned above. The paper also presents useful for-
mulation and tools to analyze business cycles in the economy in which discrete
jumps are regulated.

Otaru University of Commerce, Midori 3 – 5 – 21, Otaru, 047 – 8501, Japan. +81 – (0)134 –
27 – 5324. Email: yokota@res.otaru-uc.ac.jp

1The author appreciates the useful comments by participants of the seminar at Kyoto Uni-
versity, Annual Meeting of Japanese Economic Society and at Summer Workshop on Economic
Theory and various comments made for Yokota (2009) on which this paper is based.

1



2 KOJI YOKOTA

2. THE MODEL

2.1. The firm

We focus on the case in which all existing firms are homogeneous and have
strictly positive employment. Firms are competitive and continuously many with
measure one, each run by an entrepreneur. Their production function is given
by f(l) with property f ′ > 0, f ′′ ≤ 0 where labor l is assumed to be the only
input. The firms face frictions in the labor market and wages are allowed to be
bargained at any moment after workers are employed. Thus, in general, wage
rate is a function of employment in present and future as well as other market
conditions affecting the bargaining power, so we denote it by w(L ) where script
letter L represents function l(·) the domain of which is time period [t,∞). We use
this notation in general: L is a function the value of which as of time t is l(t) and
function R gives value r(t) at time t. A script letter interprets the corresponding
lower letter variable as a function of time. The hiring cost function κ : R+ → R

is a convex function of vacancy post v ≥ 0. It is convex since, under the existence
of friction, any hiring activities must use internal resources. In other words, the
firm is producing two products, the output good and the filled vacancies with
fixed resources. The convexity arises from the decreasing return of the hiring
activities. The function is assumed to have the property κ′ > 0, κ′′ > 0, κ(0) > 0
and that κ′ is unbounded above. The return of the posted vacancies depends on
the tightness of the labor market. Let the vu ratio be denoted by θ := v̂/û where
û and v̂ are unemployed workers and vacancies in the market, respectively. Let g :
R+ → R denote a function which relates the tightness of the labor market θ to the
arrival rate of applicants per posted vacancy. We keep a general representation
of the matching function as far as possible since its functional form is arguable,
however, when specification is necessary, we assume a Lagos (2000) type function
as an underlying matching function. Namely, when matching sessions open n
times per unit of time, we assume that the number of match per session is
given by Φ̄nmin{û,Φn/Φ̄n v̂} where Φ̄n denotes the efficiency of the matching
process and Φn captures that of hiring activities, and they are assumed to hold
Φ̄1,Φ1 ≤ 1. This functional form has a desirable property that match is less
than min{û, v̂} especially in the neighborhood of the origin. The hazard rate
of vacancy is given by φ := Φ∞ = − log(1 − Φ1) if θ ≤ φ̄/φ, whereas that
of unemployment is φ̄ := Φ̄∞ = − log(1 − Φ̄1) for θ ≥ φ̄/φ. Since the latter
translates to φ̄/θ in terms of vacancy hazard rate, the increase of employment
for vacancy post v is given by g(θ)v where

g(θ) :=

{

φ if θ ≤ φ̄/φ

φ̄/θ if θ ≥ φ̄/φ.

On the other hand, employed workers separate from the firm at rate σ and the
firm can potentially fire workers at rate x ∈ [0, x̄] where x̄ is taken sufficiently
large so that we never need to consider the binding case. Then, the change of
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employment of the representative firm is given by

(1) l̇t = g(θt)vt − σtlt − xt.

where subscripts denote the time of variables. The representative firm is risk
neutral. Denoting the interest rate by r, it maximizes intertemporal profits given
below subject to transition equation (1) to obtain the value function J(lt, r):

(2) J(lt,R) = max
v,x

ˆ

∞

t

(

min
{

f(lξ), y
d(R)

}

−w(L ) lξ−κ(vξ)
)

e−
´

ξ

t
rτdτdξ.

where yd(R) is the demand for output. In the first term of the integrand, the
condition that production should not exceed the demand is required to keep
consistency of the model, since a temporary plunge of output demand can lead
to optimal labor hoarding. Instantaneous level of output demand is affected by
interest rate, whereas that of supply is influenced by the value of labor which is
an asset for the firm. Sufficiently short positive shock of discount rate and the
derived fall of output demand will not accompany firing, since subsequent hiring
after the shock becomes too costly compared to the cost of labor hoarding.

2.2. Goods demand by households and equilibrium interest rate

We assume households to have linear utility functions so that their utility value
simply becomes discounted value of their income. This assumption to fit the
tradition of search theory significantly simplifies the following analysis. The in-

tertemporal utility function of consumers then becomes U =
´

∞

t
Etcξ e

−

´

ξ

t
βνdνdξ

with budget constraint ȧt = rtat + yt − ct where c is consumption, β discount
rate, a asset, r interest rate, Et expectation operator with information set as
of time t and subscripts denote the time related. There are three statuses for
consumers: employed, unemployed and entrepreneur. Each earns instantaneous
income y = w, y = 0 and y = f(l) − wl − κ(m), respectively. An entrepreneur
never loses its status so it can be understood as an independent type of con-
sumer. On the other hand, employed and unemployed workers switch their sta-
tus stochastically. An employed worker becomes the unemployed at next mo-
ment with separation rate σ and the flow in the opposite direction occurs with
matching rate µ. Consumers can choose not only the level of consumption at any
instance but also level of β at any moment.1 This is so because future income lev-
els are not data but they are simply the outcome of a game between consumers.
If a consumer expects different β, or different future income schedule, when all
other consumers forecasts unanimously different level, his income will turn out
to be different from his initial expectation and his consumption plan becomes
suboptimal. Note that this game is brought about from the fact that a firm can
grow only continuously when the hiring cost shows convexity. The outcome in

1By doing so, consumers are choosing equilibrium income schedule.
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the case of linear utility is simple: optimal condition requires βt = rt for all t and
for all players where any level of β can be supported as a Nash equilibrium. The
linear utility function together with the above condition implies all consumers
become indifferent between any intertemporal allocation of consumption as far
as expected lifetime consumption equates that of income, thus clearing market.

2.3. Labor value

Total labor force in the economy is fixed at W . Workers are in either state,
employed or unemployed. An unemployed worker receives non-transferential in-
stantaneous unemployment benefit bt at time t. An employed worker will be paid
instantaneous wage wt. The value of unemployment as of time t is denoted by
Ut and the value of employment as of time t is denote by Et. Matching ses-
sions between job-seekers and vacancies open at any moment. Since matching
probability of an unemployed worker in one shot is min{Φ̄n,Φnθ}, the matching
hazard rate is given by

µ(θ) :=

{

φθ if θ ≤ φ̄/φ

φ̄ if θ ≥ φ̄/φ.

When an unemployed worker is successfully matched, he shifts to the employment
status and receives capital gain Et−Ut. The Bellman equation for unemployment
status is

(3) rt Ut = bt + µ(θt) [Et − Ut] + U̇t

where r is interest rate. Similarly, the employment value is given by

(4) rt Et = wt − σ̃t [Et − Ut] + Ėt

where σ̃t := σt + xt/lt is an instantaneous separation probability of a worker.

3. WAGE BARGAINING

When there exists friction in the labor market, pseudo-rent arises in an existing
firm-workers group. The rent comes from the fact that any firms or workers who
have not formed a group yet must enter a costly process of search. We allow the
existing firm-worker group to bargain over the rent. The bargaining is made in
each moment after the firm has undertaken an optimal policy. This assumption
on timing can potentially affect wage rate when x is strictly positive. If the firm
can decide x after bargaining is made, it can threat workers to swap with the
planned dismissed. Although this alternative assumption is also plausible, we
adopt the former since the alternative complicates the bargaining process and
also makes wage rate formulation depend on future history. Coalition of a firm
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and continuum of workers with measure l will get intertemporal payoff F which
is the value of

(5) F (lt) =

ˆ

∞

t

(

min
{

f
(

l∗ξ
)

, ydξ (R)
}

− κ
(

v∗ξ
)

)

e−
´

ξ

t
rνdνdξ

where l∗ and v∗ are on the optimal choice by the firm reflecting the fact that the
decision of hiring is at its discretion. Our model corresponds to game a3

∞
(Ω, v)

defined in Appendix A, and we obtain the following result:

Theorem 1 In a
3
∞

(Ω, v), the imputation

(6) E =
1

2

(

U +
∂F

∂l−

)

is supported by Shapley value and nucleolus where ∂F/∂l− is a derivative from

left.

Proof: See Appendix A. Q.E.D.

As the required assumptions show to obtain the theorem, this result is expected
to hold in fairly general environments.2 Equation (6) is Shapley value at the limit
if the bargaining game between the firm and workers satisfies the properties of 1)
essentiality, 2) anonymity, 3) indispensability and 4) existence of non-degenerate
player. See Appendix A for the definition of these properties. With additional
property of 5) essential concavity which requires concavity only for coalitions
with more than two players, equation (6) is also nucleolus at the limit.

This approximate result is obtained by making number of workers go infinity
while measure of a worker goes infinitesimally small so that total measure of
labor input is fixed. On the other hand, the firm, or the entrepreneur, has massive
influence on coalitional payoff in the sense that production will not be undertaken
without him. The property that workers get only partial contribution depends
on the assumption that the entrepreneur does not degenerate, rather than the
particular value assumption that the number of entrepreneurs is one. Solving the
value function, wage bargaining outcome is given by the next theorem.

2We require a singleton solution to proceed with the model. Pissarides (1985) assumed that,
in the case that production is undertaken by a pair of a firm and a worker, they divide the rent
by a Nash bargaining solution. There would have been an option to generalize it by adopting
n-player Nash equilibrium. However, since the present model contains significant asymmetry
between a firm and workers, it seems more natural to take coalitional rationality into account.

Also, we seek for the limit of the sequence of bargaining solutions and do not pursue uni-
formity as in the solution concept of uniform approximate core by Wooders (1992). Indeed,
the pregame which generates the game presented here does not satisfy uniform inessentiality
of large groups.
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Theorem 2 Let H1 := {t : ydt (R) < f(l∗t )}. Wage rate at time t is given by

wt = bt +
MPt −MCt

2
+
(

σ̃t +
µt
2

)

ˆ

∞

t

MPξ −MCξ
2

e−
´

ξ

t
(r+µ/2)dξ

where

MPξ =

{

f ′(l∗ξ ) if ξ /∈ H1

0 if ξ ∈ H1,

MCt = κ′(v∗ξ )dv
∗

ξ/dlt < 0 shows the change of hiring cost when l hypothetically

moves to a neighboring optimal path and v∗ and l∗ are along the optimal path.

Proof: See Appendix B. Q.E.D.

Wage rate is the sum of unemployment benefit and half of the discounted cost
which arises when a worker quits. The above theorem implies that in general
wage rate shows discontinuity at transition points ∂H̄1. Note that MCt is the
change of hiring cost when a worker hypothetically quits from the optimal path
and actually does not.

Corollary 3 At steady states, the wage rate w is given by

w − b =
1

2
k(r, µ, σ)

(

∂f

∂l
−

dκ

dl

)

where k(r, µ, σ) := 1 + (σ + µ/2)/(r + µ/2).

Proof: Directly derived from the theorem noting that MP = 0 and x > 0 are
impossible at steady states. Q.E.D.

Corollary 4 Suppose xt = 0 for all t. If f ′(l)− b and r+ µ/2 share common

cycle T , wage rate at time t is given by

wt = bt +
MPt −MCt

2
+
(

σ̃t +
µt
2

)

(

g(t) +
e−
´

T

t
(r+µ/2)

1− e−
´

T

0
(r+µ/2)

g(0)

)

.

where g(t) :=
´ T

t
MPξ−MCξ

2 e−
´

ξ

t
(r+µ/2)dξ.

Note that the separation is assumed to be exogenous both for the firm and
for workers, and both sides are not responsible for the separation. Thus, the risk
of the separation is taken into account in the wage bargaining, and it will be
compensated by the firm. Corollary 3 shows that higher steady state output is
achieved through lower real wage rate.
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4. OPTIMAL POLICY OF FIRM

The optimization problem for the firm is given by equations (1) and (2)
and Theorem 2. Suppose that the firm is about to make decision at time t.
Wage rate derived in Theorem 2 is translated into a state variable by intro-
ducing a new variable “accumulated turnover of labor” L defined by Lξ :=
´ ξ

t
(σ̃τ + µτ/2) lτe

−

´

ξ

τ

µ
2 dτ, the transition of which is given by

(7) L̇ξ =
(

σξ +
µξ
2

)

lξ −
µξ
2
Lξ + xξ

and Lt = 0. Then, integration of w(L ) can be expressed in terms of l and L so
that the discounted wage payment is given by

ˆ

∞

t

w(L ) le−
´

r =

ˆ

∞

t

[(

b+X(l, v)
)

l +X(l, v)L
]

e−
´

r

applying Dirichlet transform to Theorem 2 where we denoteX(lξ, vξ) :=
(

MP(lξ)−

MC(lξ, vξ)
)

/2. On the other hand, indifferentiability of equation (2) is dissolved
by introducing actual working labor m as a control variable, allowing for labor
hoarding:

J(lt, r) = max
v,m,x

ˆ

∞

t

[

f(mξ)− (bξ +X(lξ, vξ)) lξ(2’)

−X(lξ, vξ)Lξ − κ(vξ)
]

e−
´

ξ

t
rνdνdξ

s.t. f(m) ≤ yd(R), m ≤ l, x ≥ 0.

Transition of l and L is given by equations (1) and (7).3 Then, the optimal
condition is given by

v

{

solves κ′(v) = g(θ)λ1 −Xv(l + L) (if λ1 > 0)

= 0 (if λ1 = 0)
(8)

x

{

= 0 (if λ1 > λ2)

≥ 0 (if λ1 = λ2)
(9)

m =

{

l if ξ 6∈ H1

f−1(yd) if ξ ∈ H1

(10)

λ̇1 = (r + σ) λ1−
(

σ +
µ

2

)

λ2+b+X+Xl(l + L)−MP(l)(11)

λ̇2 = (r + µ/2)λ2 +X(12)

3Halkin (1964) provides the proofs for the case where the transition equation and the inte-
grand of the evaluation function are once continuously differentiable in state variables, contin-
uous in control variables and piecewise continuous in time.
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where λ1, λ2 are the Hamiltonian conjugates for l and L respectively. The labor
hoarding occurs when negative shock in yd(R) is sufficiently large so that re-
ducing v to zero cannot catch up the move and still the value of labor is greater
than λ2 reflecting good conditions in future. Suppose the plunge of yd(R) is suf-
ficiently large in size and expected to continue only for a short period so that its
effect on the value of labor is negligible and kept above λ2. From the production
function, we have ẏ = f ′(l)

(

g(θ)v − σl
)

where v is determined by (8). Note that
x = 0 due to λ1 > λ2. For ẏ < 0 sufficiently large in absolute value, the right
hand side of the equation cannot match the decrease on the left side since the
optimal control is v∗(λ1) > 0 and x = 0 from equations (8) and (9). This fact
requests the model to incorporate possible discrepancy between labor and actual
working labor. By doing so, we acquire an additional control variable to match
the right hand side of the equation to meet the change of y. The argument also
shows that the length of recession matters for unemployment. If the recession
is expected to be short enough, firms do not fire workers and its effect remains
only in income and will not propagate to unemployment. It raises the growth
rate of the value of labor as shown in equation (11), since the aim of the labor
hoarding policy is to preserve the value of labor. Contrarily, a long recession
raises unemployment due to reduced value of labor. Note that x̄ is assumed to
be sufficiently large, so firing/rejection occurs with λ1 = λ2.

The optimal path derived from equation (11) implies that λ1 = ∂J/∂lt is
positive and decreasing in time as far as the initial labor is lower than the steady
state. Namely, ∂J/∂l > 0 and ∂2J/∂l∂t < 0 along the optimal path. It implies
that the value of firm J is greater for incumbent firms compared to possible
entrants. This is due to the fact that new entrants must pay higher wage rate
due to higher marginal productivity. The no-entrance condition J(0, r) ≤ 0 is
satisfied even when the incumbent firms are willing to hire, i.e. J(l, r) > 0 for
some l > 0. It justifies the assumption of fixed measure of firms in the model
for sufficiently small fluctuations around the steady state. It also suggests that,
when the economy is extended to allow for heterogeneous firms in size, downward
swing of interest rate or rise of productivity in boom sufficiently large to make
J(0, r) > 0 is the only chance to enter. Note that the current model only applies
to the economy in which firms already have some size even if small. It does not
mention how the universe has been created.

5. STATIC STEADY STATES

Suppose that parameters are stationary. From now on, the steady state with
stationary parameters is called a static steady state when it needs to be clearly
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distinguished from a periodic steady state. Eliminating λ2, it is characterized by

l =
g(θ̄)v

σ
=

{

[φ̄/(φ̄+ σ)]W if θ̄ ≥ φ̄/φ

(φ/σ)v otherwise
(1’)

v̄ solves

{

v̄
(

κ′(v̄)− µ+σ
µ l dvdl κ

′′(v̄)
)

= φ̄(W − l)λ̄1 if θ̄ ≥ φ̄/φ

κ′(v̄)− µ+σ
µ l dvdl κ

′′(v̄) = φλ̄1 otherwise
(8’)

λ̄1 = h(r, v̄, l̄) :=
V (r, v̄, l̄)

r + σ
(11’)

r = β(13)

where

V (r, v̄, l̄) := f ′(l̄)− b− k
(

r, µ(θ̄), σ
)

X(l̄, v̄)−
σ + µ(θ̄)

µ(θ̄)/2
Xl(l̄, v̄) l̄

and the variables with a bar denote the solution at the static steady state. First
three equations are derived from firm’s problem and the last comes from that
of consumers and at the same time it is an equilibrium condition. Equation (1’)
is the Beveridge curve showing negative relationship between u and v at static
steady states. Equation (8’) implies that v̄ is an increasing function of λ̄1 as far
as the neighboring path effect is not pathologically large. From equations (8),
(11’) and (13), we obtain a relation

(14) v̄ = v(l̄;β)

with ∂v/∂l < 0 and ∂v/∂β < 0. It is drawn as curve (b) in Figure 1. On the other
hand, as far as θ̄ ≤ φ̄/φ holds, equation (1’) is drawn as an upward sloping curve
(a). Then, an equilibrium is given by its intersection with curve (b). The rise of β
appears as the downward shift of (b), which pushes the equilibrium employment
downward. Note that this happens with a flexible intertemporal relative price r.

On the other hand, if θ̄ ≥ φ̄/φ holds, equation (1’) implies that l̄ becomes
constant at l̄ = φ̄W/(φ̄ + σ) regardless of v. It now turns out to be a vertical
line (c) in Figure 1. Since the firm cannot increase employment further, it can
be interpreted as the state of natural unemployment. It holds for β ≤ β̄ where
the threshold β̄ solves

κ′
(

σ

φ

φ̄

φ̄+ σ
W

)

−
µ+ σ

µ

φ̄

φ̄+ σ
W

dv

dl
κ′′
(

σ

φ

φ̄

φ̄+ σ
W

)

= φh

(

β̄,
σ

φ

φ̄

φ̄+ σ
W,

φ̄

φ̄+ σ
W

)

.

When the matching function is Lagos type, steady state natural unemployment
rate is strictly positive whereas it is not the case for Cobb-Douglas matching
function.
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O

v̄
(a) σl̄ = φv̄

l̄

rise of β

l̄0l̄1

(b) v̄ = v(l̄;β)

φ̄
φ̄+σ

W

natural unemployment
case (for β ≤ β̄)

(c) l̄ = φ̄W/(φ̄+ σ)

Figure 1: The effect of the change in β

Equation (14) or curve (b) represents the firm’s demand for labor, which
equates the expected value of additional vacancy post to its marginal cost. Bear-
ish view for future good prices by consumers is represented by a higher discount
rate. Resulting higher equilibrium interest rate reduces attractiveness of labor
since hiring activity is time consuming. Thus, it shifts curve (b) down reducing
hiring and employment. This process can be interpreted as a source of the ef-
fective demand principle, a variant represented in our model. Viewed as a whole
intertemporal system, everything is in equilibrium. However, if it is cut out at
a given moment abstracting the cost of vacancy posting, the goods market is in
excess supply in the sense that the marginal productivity exceeds the marginal
cost, and the same holds for the labor market in excess demand. The degree of
the hiring cost anchors this divergent force determining where to stop. Note that,
with a traditional linear hiring cost function, equation (14) becomes free from
determining v. Since the initial jump of employment to the static steady state
level is weakly optimum in that specification, v exceeds the natural employment
level so that θ ≥ φ̄/φ to hold. Note that our results obtained here does not de-
pend on the particular specification of the matching function. As far as equation
(14) determines the optimal vacancy posting, the effective demand principle is
derived.

There has been a controversy on the effectiveness of minimum wage policy since
Card and Krueger (1994). Its outcome has been mixed. Studying the impact of
the change of minimum wage in New Jersey in 1992 on the regional employ-
ment, Card and Krueger concluded that there is no indication that the rise in
minimum wage reduced employment. However, reexamination by Neumark and
Wascher (2000) using payroll data derives an opposite conclusion to them. With
newer data, Dube et al. (2007) studied the minimum wage policy change in San
Francisco in 2000’s and found that its negative impact on employment can be
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rejected with greater confidence. Our model suggests that when data includes
different markets or periods, the effect can vary depending on whether the mar-
ket is in the state of natural employment or not. The minimum wage policy can
be incorporated by setting the outside option b for the worker to minimum wages
in our model. Comparing its effects at steady states, sufficiently small change in
minimum wages at natural employment has no impacts on other variables than
wages. However, a rise of b in underemployment does lower the value of labor via
equation (11’), causing the leftward shift of curve (b) in Figure 1. It implies that
measurement of minimum wage policy requires distinction between the states of
natural employment and underemployment. Note that when external forces are
present, the natural employment level is not fixed but generally fluctuates.

6. IMPACT OF THE CHANGE IN PRODUCTIVITY AND THE DISCOUNT FACTOR

Steady state solutions in Section 5 suggest that difference in the discount fac-
tor brings different level of output. This is still true out of static steady states.
It means that there are two different sources of business cycles possible in our
model: change in productivity and that in the discount factor. The former is the
supply side cycle and the latter is the one on the demand side. Since a change in
business cycles sources propagates with time lag due to lagged response of wage
rates, we are inclined to analyze the response of the economy to forced oscillation
in these sources. This approach fits our model better than the traditional shock
analysis. A persistent change in external forces in future needs to be expected ex

ante to have real upward effects on employment, since any unexpected instan-
taneous shocks upward are completely absorbed by the change of interest rate
due to convex hiring cost. Only expected and persistent shocks can have real
positive effects. In other words, for an unexpected positive shock to have real
effects, it must accompany coordinated change of expectation after it becomes
apparent. The shock must be persuasive enough to make people believe that the
source of the shock will continue to have impacts at least for some time. An
exception is the case of downward panic. Firms are allowed to dismiss workers
with no cost. To mimic the traditional shock analysis in our framework, a pulse
shock with a short period can be used, which is easily incorporated using Fourier
approximation.

Our approach seeks for periodic steady states brought by forced oscillation.
This bears in mind the application for general non-periodic inputs. A sufficiently
long cycle in inputs should provide a good approximation for them since distant
future is exponentially discounted. The approach may seem to remove the “tran-
sition” effect when the initial value is out of the periodic steady states. However,
since any level of output is supported as an equilibrium by a corresponding dis-
count factor and even after an unexpected shock, new coordinated expectation
needs to be formed, it is not the case as a tool for a researcher. Advantage of
this approach is, after linearizing the model around a static steady state, any
oscillation can be approximated by sine and cosine curves. As far as we have a
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knowledge on the behavior of the system in reaction to those basis functions, its
response to a general external force can be easily composed by the superposition
principle.

Now, we modify the original model to be able to see the implication of policies
on wages as well as linearization. Let the production function explicitly depend on
the technological parameter α such that f(l, α) andX(l, L, λ1, α). From Theorem
2, dynamics of wage rate is given by

ẇ =

(

Xl(l, L, λ1, α) +
φθ

2(W − l)
C

)

l̇ +
φ2

2(W − l)κ′′(v(l, L, λ1, α)
Cλ̇1

+
[(

r +
µ

2

)(

σ̃ +
µ

2

)

+ ẋ
]

C −
(

σ̃ +
µ

2

)

X(l, L, λ1, α)

where C := (w − b −X(l, L, λ1, α))/(σ̃ + µ/2). Then, the dynamics of the opti-
mal path is described by ż = F (z, ζ) using the equation above and the transition
equations of state variables, where z = t(l, L, λ1, λ2, w) and ζ = t(1, α, β). Al-
though w is redundant for the dynamics of the whole system, its inclusion makes
feasible the stability analysis of economic policies on wages. Since wages are
dynamically determined and thus depend on state variables, if one wants to em-
ploy eigenvalue analysis, this sort of specification is necessary. Let the variables
of researcher’s interest be denoted by q which is generally a function of z and ζ:
q = H(z, ζ), so that the economy becomes an element having input vector ζ and
output vector q. Let q = t(y, w) pro tempore. The specification is only tentative
and can be arranged to fit the purpose of analysis. The linearized system around
the steady state is expressed by

ż = DzF (z̄, ζ̄)z +DζF (z̄, ζ̄)ζ(15)

q = DzH(z̄, ζ̄)z +DζH(z̄, ζ̄)ζ(16)

where

DzF =















−σ 0 φ dv
dλ1

0 0

σ + µ
2
W−L
W−l −µ

2 φ dv
dλ1

W
2(W−l) (l − L) 0 0

a31(α) Xl β+σ+φ dv
dλ1

W
2(W−l)λ2 σ+ µ

2 0
µ
2

1
W−lλ2+Xl 0 −φ dv

dλ1

W
2(W−l)λ2 β+ µ

2 0

omit. omit. omit. omit. omit.















DζF =













C1 0 0
C2 0 0
C3 Xα +Xlα(l + L)− flα λ1
C4 Xα λ2

omit. omit. omit.













DzH=

(

fl 0 0 0 0
LX
l

(

Xl

X − 1
l

)

X 0 0 1

)

DζH=

(

fα 0
(

1 + L
l

)

Xα 0

)

,
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µ = φW/(W − l)κ′−1(φλ1), dv/dλ1 = φ/κ′′(κ′−1(φλ1)) and a31(α) = µ/[2(W −
l)]λ2+2Xl(l, α)+Xll(l, α)(l+L)−fll(l, α). Ci’s in DζF are the non-homogeneous
part of the linearized system. Coefficients for ẇ are omitted since they are too
lengthy to be filled in this space. In the above specification, the autonomous econ-
omy is set as a MIMO (multiple-input-multiple-output) element which is ready
to be included in a more comprehensive system accompanying policy controls or
feedbacks to the recognition of agents.4

We are going to specify moderate parameter values to see the behavior of
the above system. For the moment, we only handle a simple case with a fixed
gross separation rate σ̃ with x = 0. To incorporate the fact that the observed
separation rate is countercyclical, we need to consider the case where employees
are fired or rejected, i.e. x > 0, in recession. However, it requires to distinguish
dynamics in boom and recession and will not undertaken in this paper. There-
fore, the following analysis is for an economy changing in a moderate speed
especially when it goes downward. Monthly correspondents of Φ and Φ̄ are set
to 0.4 and 0.65 respectively and monthly separation rate is set to 0.034. Data
for Φ is adopted from Shimer (2005) as the average of the sample period. Data
for Φ̄ is its historical high record of worker’s matching probability in the same
period and the separation rate takes the trend value in 2003 in the same data
resource. They imply φ = 6.13, φ̄ = 12.60 and σ = −12 log(1 − 0.034) = 0.415.
The values imply that natural employment requires vu ratio to be higher than

φ̄/φ = 2.06 at static steady states according to the results obtained in Section
5. Total workforce W is normalized to 1. Since the unemployment insurance
payment can be approximated by the half of average wage rate, the calculated
instantaneous unemployment insurance from its present value at steady state is

b =
´ 1/2

0
b̄e−rt/

´

∞

0
e−rt = 0.0097w for r = 0.039 where b̄ is the actual payment

done in six months and w is an equilibrium wage rate. The production function
is assumed to be Cobb-Douglas with other inputs fixed, using information about
labor share to settle down the coefficient. It is formulated as αlγ with normal-
ization α = 1 at steady states. On the other hand, the hiring cost function is
assumed to be ηvψ . Corollary 3 implies that the share of labor is approximated
by bl/y + k(r, µ, σ)γ/2 approximating the second variation effect dv/dl to be
a constant −1. Using b = 0.0097w, we numerically set parameters to target
the steady-state labor share to 0.64 which is the average of Japanese economy
from 1980 to 2007. On the other hand, the parameters need to attain moderate
steady-state labor market values, which are set to θ = 1.01 and u = 0.064. Then,
marginal productivity of labor should be set at γ = 0.518 and the hiring cost
to have η = 2.05 and ψ = 2.5. The last two parameters specify the curvature of
hiring cost function which affect both v and the uv ratio. The targeted vu ratio
1.01 < φ̄/φ = 2.06 justifies the state of underemployment. Also, resulting value
λ1 = 0.000329 > 0 satisfies the no-firing condition.

4The modularization implemented in this way also enables utilization of extensive range of
computer applications for signal analysis.
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With the parameter values given above, the economy bears reasonable out-
comes at a static steady state. In below, we are going to add cyclical perturba-
tions to external inputs around the static steady state to obtain periodic steady
state outcomes. Before providing actual perturbations, the linearized system (15)
and (16) already gives some insights on the “stability” when it is integrated in a
feedback mechanism. The stability implied here is the property that the whole
system is free from resonance. Since our system produces a phase shift, there
is always a risk that a badly designed economic policy amplifies the fluctuation
of the original business cycle source. Although it is unlikely for the resonance
to persist since an economic policy tend to react observations, a rational policy
maker will not adopt it from the start. As it is normal for an economy that
outcomes are contaminated by external errors, any economic policy rules must
contain a feedback mechanism.

Let G(s) denote a transfer function which is defined to be a Laplace transform
of a unit impulse response, which equals the ratio of a Laplace transform of
the output function to that of the input function both in time domain. Then,
function G(iω) where ω denotes the angular frequency shows the steady state
response of the system to a unit sine input since iω and its complex conjugate
are poles of the input function. Figure 2a shows the vector loci of our open-loop
system with above parameter values in which the loci of the frequency response
G(iω) is drawn in the Gaussian plane when ω is changed from zero to infinity.
The lower graph in Figure 2a magnifies the dashed square labeled A in the upper
graph. For example, the locus α → y shows how the transfer function from α
to y changes as ω moves in the above domain. For given ω, the distance from
the origin shows the amplitude of outputs and the argument shows the forward
shift of the phase. The figure shows that both amplitude and phase of output
changes as the frequency of input does. When economic policies are brought
under consideration, the above open-loop system is extended to a closed loop
by defining an economic policy as a negative feedback mechanism, sometimes
including a dead time element. Suppose a particular economic policy that is
designed to have negative output directly fed back to the input as pass-through.
Then, if the output phase shift of the open-loop element is −π and its amplitude
is greater than or equal to one, it causes resonance. It corresponds to the case
when the vector locus of the pass-through feedback crosses the real axis in the
region smaller than −1. Of course, a feedback mechanism can have different
amplitude and phase. In such a case, a similar consideration must be made for
the composite effect of the original system and the feedback mechanism. The
vector loci of the system crosses the negative real axis for the transfer from α
to y and β to y. It implies that when constructing an economic policy which
affects α or β based on the information of y, attention must be paid to the risk
of resonance.

Now, we compare the response of the economy to fluctuations in two different
sources of business cycles: fluctuation in productivity on the supply side and that
in the discount factor of the consumer on the demand side. We refer to these as a
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productivity cycle case and a demand cycle case, respectively, in short. Imposed
assumptions are α = 1+0.0072 sin[2πt/(period)] and β = 3.92 in the former and
α = 1 and β = 3.92(1 + 0.87 sin[2πt/(period)− π]) in the latter. The amplitude
of the oscillation in the former makes the standard deviation of output in the
ten year cycle case imitate the observed data. Although Canova (1998) shows
that its value is susceptible to detrending method, we adopt the data obtained
from HP filter, specifically s.d.(y) = 1.76 by Hansen (1985). This value is around
the median value of the variety of data presented in Canova (1998). Some of
Hansen’s estimation is listed in Table I as a reference. The amplitude of oscilla-
tion in β in the latter case is chosen so that its annual rate is four percent and
the lower bound is above zero. The given coefficient satisfies these conditions and
is tweaked to imitate the standard deviation of working hours, i.e. s.d.(l) = 1.66.
Table II summarizes variation of variables of the model. Focusing on the ten year
cycle, labor shows smaller fluctuation than it should be for appropriate ampli-
tude in outputs in the case of productivity cycles, while fluctuation of outputs is
smaller for appropriate fluctuation in labor in the demand cycle case. It suggests
either that actual data mixes fluctuation in these two sources or that capital
not incorporated in the model plays a critical role. Hansen (1985) called large
variability of working hours compared to that of productivity an open problem
in equilibrium business cycle theory. The observed ratio s.d.(l)/s.d.(y/l) in Table
I is 1.4. Corresponding ratio in our model is listed in the last column of Table
II. Though the ratio for productivity fluctuation is small, that for discount fluc-
tuation exceeds the observed ratio. This fact also supports the above suggestion
that actual economy mixes two sources of cycles.

Table D.1 and Table D.2 draw dynamics of major variables. Note that with
the values calibrated above, the economy is at the state of underemployment
and no labor hoarding will occur with the cycles examined. Although distortion
is hardly observed in most of variables in the tables, composite variables such as
share of labor can have significant distortion depending on the cycles of external
forces. Table D.3 shows correlation between variables and Table D.4 provides the
“peak-shift matrices” to show the degree of phase shift, which lists the time shift
maximizing cross-correlation between two variables. Correlation between outputs
and labor is 0.73 in the case of ten-year productivity cycle whereas 1.00 in the
demand cycle case. This is natural since in the latter case labor and outputs are
directly connected via the production function whereas in the former case there
exists a wedge due to fluctuating productivity. Note that the correlation of the
productivity cycle case is close to the observed data in Table I. On the other
hand, correlation between outputs and productivity is 0.98 in the productivity
cycle case and −1.00 in the demand cycle case.

Table D.4 shows that interest rate is nearly countercyclical in the demand
cycle case. In the one-year cycle case, it proceeds income cycle by 0.54 year
which is 54 percent shift of the cycle. Its shift is 2.10 year (42 percent) in the
five-year cycle case and 3.50 year (35 percent) in the ten-year cycle case. Interest
rate is acyclical in the productivity case by the definition that the discount
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TABLE I

Standard deviation of U.S. data estimated by Hansen (1985)

Output (y) Working hours (l) Productivity (y/l)
standard deviation 1.76 1.66 1.18
correlation with y 1.00 0.76 0.42

TABLE II

Standard deviation of major variables

(a) Productivity cycle case

cycle α y l y/l, dy/dl λ1 w wl/y θ
s.d.(l)

s.d.(y/l)
1 year 0.51 0.51 0.01 0.50 0.09 0.36 0.19 0.24 0.02
5 year 1.14 1.21 0.15 1.07 0.26 1.10 0.09 2.40 0.14
10 year 1.61 1.76 0.41 1.49 0.41 1.66 0.31 6.48 0.28

(b) Demand cycle case

cycle β y l y/l, dy/dl λ1 w wl/y θ
s.d.(l)

s.d.(y/l)
1 year 86.5 0.02 0.03 0.02 0.27 0.44 0.45 0.73 2.08
5 year 193.3 0.29 0.55 0.27 0.95 1.78 1.96 8.80 2.07
10 year 273.4 0.86 1.66 0.80 1.63 3.17 3.23 26.12 2.07

factor is constant. Other variables show different lags to react. Among others,
labor productivity and wage rate show sharp contrast between two cases. They
are almost procyclical in the productivity cycle case, whereas they have larger
phase shift in the other case. From the wage function given by Theorem 2, any
factors which affect coalitional marginal profit more than momentarily raises a
phase shift. Wage rate shows synchronization in the former case since a quarter-
cycle shift raised by the future consideration is canceled out by the fluctuation of
µ = φθ in the third term of the wage equation in Theorem 2. It mitigates the shift
of employment which in turn brings the synchronization of labor productivity.
Demand cycle gives perfect countercyclicality in labor productivity which arises
from the production function and the fact that 0 < γ < 1. Wage rate shift
is a mixed effect of both the half-cycle shift raised by the current coalitional
marginal productivity and the nearly synchronized wave brought by the future
consideration where the effect of µ is relatively small since it is almost procyclical.
The countercyclicality of labor productivity in the pure demand cycle case seems
counterfactual. Whereas a mixed source of forced oscillation can mitigate this
property, introduction of labor hoarding is another possibility as it has procyclical
impact on average productivity.

Finally, Figure D.5 shows the dynamics in the uv plane. The Beveridge curve
is represented by a dashed line in the graph. It is obtained by simply putting
l̇ = 0 in equation (1), which becomes φv = σ(W − u) in the state of underem-
ployment. Since the Beveridge curve is a collection of static steady states, it is
invisible in data. Cycles in productivity and demand both raises counterclock-
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wise trajectories in the uv plane as empirically observed. A longer cycle in the
sources gives a larger fluctuation in unemployment.

7. CONCLUSION: SOME POLITICAL IMPLICATIONS

In our model, the government sector can be formulated as another “big” con-
sumer who has a mass measure. Its discount rate is considered as a reflection
of political stance and the budget is required to satisfy the transversality con-
dition. Due to the mass measure of the government, its change of the discount
rate affects that of the representative consumer. As already observed, it in turn
affects hiring activity of firms via interest rate and changes the level of output
in long run, not only the short run substitution between consumers and the gov-
ernment. Namely, in the state of underemployment, Ricardian equivalence does
not hold. Although wage/price is flexible, the modeled economy does not show
unconditional stability towards the natural unemployment even in long run. This
property can be relieved once house production is introduced in the economy. It
requires relaxation of the assumption that technical knowledge is monopolized
by entrepreneurs.

The paper showed that if labor is heterogeneous so that the usage of internal
resources is inevitable for the firm to hire workers, due to required hiring activities
such as interviews and trainings, the economy exhibits the principle of effective
demand. This is due to the fact that increasing employment is time consuming,
therefore the market discount rate of the future affects the long-run production
level. It shows that, with a frictional labor market, demand-driven business cycles
should not be excluded from analysis.

APPENDIX A: BARGAINING OUTCOME IN TERMS OF VALUE

This appendix provides the proof of Theorem 1. Let Ω be a set of all players. Players are
partitioned by groups S0 and S1 such that S0∪S1 = Ω and S0∩S1 = ∅. Each group consists of
Ni ∈ N∪{∞} players (i = 0, 1). The j-th player in group Si is denoted by si(j) (j = 1, . . . , Ni).
s1(j) has measure dl for all j and there exists a fixed number l ∈ R+ such that N1 dl = l.
Characteristic function is denoted by v : 2Ω → R. We require following assumptions:

1. (Essential game) The game is essential, i.e. v(Ω) >
∑

s∈Ω v
(
{s}
)
.

2. (Anonymity) Players in the same group are anonymous, i.e. for any S and j, v
(

S ∪
{
s1(j)

})

− v(S) is common.

3. (Indispensability) Missing groups make coalition unproductive, i.e. v(S) =
∑

i,j∈S v({si(j)})

if there exists i such that S ∩ Si = ∅.

4. (Existence of a non-degenerate player) S0 is a special group which consists of only one
player, i.e. N0 ≡ 1.

Refer to this game with symbol a1
N1

(Ω, v). Next, define a more specific game within the class

of a1
N1

(Ω, v) which possesses essential concavity defined below as an additional assumption.
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Namely, it requires concavity only for coalitions with more than two players so that essentiality
of the game will not be lost.5 Namely, we put the following additional property:

5. (Essential concavity) The game is essentially concave, i.e. its characteristic function v
has the property that, if S, T ⊆ Ω satisfies ∅ ⊂ S ⊂ T , then

v(S ∪ {s}) − v(S) ≥ v(T ∪ {s})− v(T )

for any s ∈ Ω \ T .

Refer to this game with symbol a2
N1

(Ω, v). Finally, define an even more specific game a3
N1

(Ω, v)
with characteristic function

(17) v(S) =

{

Ul̃ if there exists i such that S ∩ Si = ∅

F (l̃) otherwise

where l̃ := ‖S ∩ S1‖ and F is increasing and concave.6

Our objective is to obtain a bargaining solution of the above games when N → ∞ keeping l
fixed.7 Note that, by doing so, the firm s0(1) keeps discrete influence on coalitional payoff. The
property that workers get only partial contribution depends on the assumption that players
in S0 does not degenerate, rather than the particular value assumption N0 ≡ 1. Also, note
that concavity of v and F is sufficient to hold only from below at Ω and l, respectively, i.e.
the concavity need not hold for supersets of Ω or any l̂ ≥ l. Denote the density imputation to
player s by ι(s), i.e. imputation of player s with measure dl becomes ι(s)dl.

Lemma 5 In a1
∞ (Ω, v), the imputation to allocate

(18) ι
(
s1(j)

)
dl =

1

2
v
({

s1(j)
})

+
1

2

[

v(Ω) − v
(

Ω \
{
s1(j)

})]

for any j is supported by Shapley value.

Proof: Choose a player sı̂(̂) for some ı̂ and ̂. Consider any coalition S such that sı̂(̂) ∈ S
containing ni players from group Si such that ni ≥ 0 and nı̂ ≥ 1. The contribution of sı̂(̂)
to coalition S is v({sı̂(̂)}) if there exists i such that S ∩ Si = ∅ from the indispensability
assumption. In other cases, it is v(S) − v(S \ {sı̂(̂)}). The Shapley’s weight γ(S) for the
contribution of sı̂(̂) to coalition S is given by

γ(S) =
(
∑1

i=0 ni − 1)!(
∑1

i=0 Ni −
∑1

i=0 ni)!

(
∑1

i=0 Ni)!

=

(
1∑

i=0

Ni

)−1
(
∑1

i=0 Ni − 1
∑1

i=0 ni − 1

)−1

.

Without loss of generality, let us assume ı̂ = 1 below for concise notations. From the anonymity
assumption, any S with same (n0, n1) has the same γ(S). The number of cases to form coalition
S containing sı̂(̂) = s1(̂) with same (n0, n1) is given by

(N0

n0

)

·
(N1 − 1

n1 − 1

)

.

5A globally concave game always violates zero-additivity, thus formation of non-trivial coali-
tions cannot be expected.

6The assumption of global concavity in F is actually asking too much than necessary. It is
sufficient if F satisfies F (l̃) ≤ F (l)−∂F (l)/∂l ·(l− l̃), ∀l̃ ≤ l for the current level of employment
l.

7We seek for the limit of the sequence of bargaining solutions and do not pursue uniformity
as in uniform approximate core by Wooders (1992). Indeed, the pregame which generates the
game presented here does not satisfy uniform inessentiality of large groups.
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Then, Shapley value is given by

(19) ι
(
s1(̂)

)
dl1 = v

(

{s1(̂)}
) ∑

{S:
∏

1
i=0

ni=0}

Γ(S)+
∑

{S:
∏

1
i=0

ni≥1}

Γ(S)
[

v(S) − v
(

S \
{
s1(̂)

})]

where

Γ(S) := γ(S) ·
(N0

n0

)

·
(N1 − 1

n1 − 1

)

=

(N0

n0

)
·
(N1−1
n1−1

)

(
∑1

i=0 Ni

) (∑1
i=0

Ni−1
∑

1
i=0

ni−1

) .

Proposition 11 in Appendix C show that coefficient Γ(S) is a probability mass function such
that Γ(S) = Υ(n0, n1 − 1;N0, N1 − 1) where distribution Υ is defined in Appendix C. Note
that the distribution possesses point symmetry Υ(n1; ζ1) = Υ(ζ1 − n1; ζ1). Using these two
facts,

∑

{S:n0=0}

Γ(S) =
∑

{S:n0=1}

Γ(S)

Now, in either case of n0 = 0, 1,
∑

{S:
∏

1
i=1

ni=0} Γ(S) → 0 as N1 → ∞.
∑

{S:
∏

1
i=1

ni=0} Γ(S)

can be written as

∑

{S:
∏

1
i=1

ni=0}

Γ(S) =

∏

{i:ni=0,n1=1}

(Ni
0

)

∑1
i=0 Ni

∑

ni

∏

{i:ni≥1,n1≥2}

(Ni
ni

)

(∑1
i=0

Ni−1
∑

1
i=0

ni−1

)

=
1

∑1
i=0 Ni

∑

ni

∏

{i:ni≥1,n1≥2}

(Ni
ni

)

(∑1

i=0
Ni−1

∑
1

i=0
ni−1

)

where the right hand side converges to zero as N1 → ∞. Therefore,

∑

{S:
∏

1
i=0

ni=0}

Γ(S) ≈
∑

{S:n0=0}

Γ(S) =
∑

{S:n0=1}

Γ(S) ≈
∑

{S:
∏

1
i=0

ni≥1}

Γ(S) ≈
1

2
.

It shows the coefficient of v
(

{sı̂(̂)}
)

dlı̂ in (19) converges to 1/2 as N1 → ∞′. From Proposition

12 in Appendix C, we obtain equation (18) for all j. Q.E.D.

The above derivation critically depends on the indispensability and the existence assump-
tion of a non-degenerate player, which enable for the firm to keep discrete influence on payoffs
whereas that of individual workers becomes negligible as N1 → ∞. On the other hand, char-
acterizing bargaining solution as nucleolus requires an additional assumption that the game
should be essentially concave. At the outset, the following lemma shows that core is non-
empty if and only if the production process is more productive for the last marginal worker
than unemployment in terms of value.

Lemma 6 a1
N1

(v,Ω) has non-empty core if it is zero-additive. So does a2
N1

(v,Ω) iff

(20) v(Ω) − v
(
Ω \

{
s1(j)

})
≥ v
({

s1(j)
})

for all j. In a3
N1

(v,Ω), the condition (20) is replaced by ∂F/∂l ≥ U .

Proof: We start from the necessary condition of a1. Consider imputation such that any
s ∈ Ω \ S0 is allocated by ι(s) = v

(
{s}
)

and player s0(1) is allocated by ι
(
s0(1)

)
= v(Ω) −

∑

s∈Ω\S0
v(s). This is feasible by essentiality of the game. Obviously, any S such that s0(1) 6∈ S

satisfies coalitional rationality since
∑

s∈S ι(s) ≥ v(S) =
∑

s∈S v
(
{s}
)
. So does any coalition
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S such that s0(1) ∈ S since its imputation yields
∑

s∈S ι(s) = v(Ω) −
∑

s6∈S v(s) ≥ v(S) by

zero-additivity. which implies that this imputation is located in core. If (20) holds for a2, zero-
additivity holds from the essential concavity, which shows that (20) is a necessary condition
for a2. The case for a3 is direct from this since a3 is a special case of a2.

To show (20) is a sufficient condition for a2, suppose v(Ω)−v
(

Ω\{si(j)}
)

< v
(

{si(j)}
)

for

some i, j. The individual rationality of si(j) requires ι
(

si(j)
)

≥ v
(

{si(j)}
)

. Also, coalition of

the rest requires
∑

s∈Ω\{si(j)}
ι
(

s
)

≥ v
(

Ω \ {si(j)}
)

, which implies ι
(

si(j)
)

≤ v(Ω) − v
(

Ω \

{si(j)}
)

< v
(

{si(j)}
)

. These two equations are not satisfied at the same time, thus core is

empty. It shows zero-additivity is also sufficient. The result for a3 is derived from this. Q.E.D.

Following the context of our model in which workers and the firm are all rational in partic-
ipating in production, the bargaining solution must be in core. Otherwise, at least one player
will leave the coalition, which implies that the current coalition is not actually on the optimal
path. The above lemma means that the problem can be restricted to the case of ∂F/∂lij ≥ Ui

on the optimal path.

Lemma 7 If game (Ω, v) is essentially concave in which players are partitioned by groups

such that Ω =
∑M

i=1 Si, then for any S, T ⊆ Ω such that S ⊂ T , the following inequality holds.

v(T ) − v(T \ S) ≥
M∑

i=1

‖S ∩ Si‖
[

v(T ) − v
(

T \ {si(j)}
)]

Proof: We use the fact that v(T )− v(T \ S) has common value regardless of how players of

S are removed from T . Define Si1i2···im(ni1 , . . . , nim) :=
⋂

k={1,...,m:nik
6=0}

⋂nik
j=1

{

sik (j)
}

where m = 1 and 1 ≤ ni ≤ Ni. When nik = 0 for all k, define Si1i2···im (0 · · · 0) = ∅ for
convenience. Then, for given k = 1,

v(T ) − v(T \ S) =

Nk∑

nk=1

[

v
(

T \Sk(nk − 1)
)

− v
(

T \Sk(nk)
)]

+

Ni2∑

ni2
=1

[

v
(

T \Ski2 (Nk, ni2 − 1)
)

− v
(

T \Ski2 (Nk, ni2)
)]

+ · · ·+

NiM∑

niM
=1

[

v
(

T \Ski2···iM (Nk , . . . , NiM−1
, niM − 1)

)

−v
(

T \Ski2···iM (N1, . . . , NiM−1
, niM )

)
]

≥ M

Nk∑

nk=1

[

v
(

T \Sk(nk − 1)
)

− v
(

T \Sk(nk)
)]

where i2, . . . , iM are taken in an arbitrary order so that ij 6= k and ij 6= ij′ if j 6= j′. The last
line comes from the essential concavity. Summing up the above inequality for all k = 1, . . . ,M ,

v(T ) − v(T \ S) ≥
M∑

k=1

Nk∑

nk=1

[

v
(

T \Sk(nk − 1)
)

− v
(

T \Sk(nk)
)]

≥
M∑

k=1

‖S ∩ Sk‖
[

v(T ) − v
(

T \
{

sk(j)
})]
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for any j = 1, . . . , Nk again from the essential concavity. Q.E.D.

This lemma is analogous to the property of an ordinary concave function: f(x1+∆x1, . . . , xn+
∆xn) ≤ fx1

∆x1 + · · ·+ fxn∆xn. In the current particular model, set M = 1.

Theorem 8 In a2
N1

(Ω, v) for any N1, the imputation (18) is supported by nucleolus.8

Proof: Consider imputation in the ε-core for given excess ε. In the payoff space X ⊆ RN0+N1

such that
{
ι
(
s0(1)

)
, ι
(
s1(1)

)
. . . , ι

(
s1(N1)

)}
∈ X, consider domain B(S, ε) ⊆ X which satisfies

coalitional rationality of player set S and its complement Ω \ S and total rationality ∆ :=
{
X ∈ RN0+N1 :

∑

s∈Ω ι(s) = v(Ω)
}
. Since it defines the same domain for any player set and

its complement, s0(1) 6∈ S can be assumed by symmetricity without loss of generality. We seek
for the least core by finding out minε{ε :

⋂

S∈2Ω B(S, ε) 6= ∅} where B(S, ε) has the form

(21) B(S, ε) =






X ∈ ∆ : v(S) − ε ≤

∑

s∈S

ι(s) ≤ v(Ω) − v(Ω \ S) + ε






.

Consider a special case where S = {s1(j)} for any j in equation (21) and call it equation (21’).
Any point in the intersection of B’s for all such j’s in some coalition S such that s0(1) 6∈ S, i.e.
⋂

s∈S B
(
{s}, ε

)
, satisfies the sum of the conditioning inequalities in equation (21’). Namely,

(22)
⋂

s∈S

B
(
{s}, ε

)
⊆

{

X ∈ ∆ :
∑

s∈S

v
(
{s}
)
− ‖S‖ ε ≤

∑

s∈S

ι(s)

≤
∑

s∈S

[
v(Ω) − v

(
Ω \ {s}

)]
+ ‖S‖ ε

}

Now, we show

(23) min
ε

{ε :
⋂

S∈2Ω

B(S, ε) 6= ∅} = min
ε

{ε : B
(
{s}, ε

)
6= ∅}.

Since ε ≤ 0 from Lemma 6, indispensability implies

(24) v(S) − ε ≤ v(S) −mε =
∑

s∈S

v
(
{s}
)
−mε

for any m ∈ N. On the other hand, from Lemma 7,

v(Ω) − v(Ω \ S) + ε ≥ v(Ω) − v(Ω \ S) +mε(25)

≥
∑

s∈S

[

v(Ω) − v(Ω \ {s})
]

+mε

holds for any m ∈ N. From (24) and (25), equations (21) and (22) imply B(S, ε) ⊇
⋂

s∈S B
(
{s}, ε

)

for any S ∈ 2Ω. Then, together with anonymity, equation (23) is derived.
From equation (21’), setting v

(
s1(j)

)
− ε = v(Ω)− v

(
Ω \
{
s1(j)

})
+ ε degenerates the range

of ι
(
s1(j)

)
to a point, i.e.

(26) ε∗ = −
1

2

[

v(Ω) − v
(

Ω \
{
s1(j)

})

− v
({

s1(j)
})]

8This result coincides with Stole and Zwiebel (1996) by extending its result to a case of
infinite number of agents.
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which is common for all j ∈ S. Smaller ε than ε∗ makes
⋂

s∈S B
(
{s}, ε

)
empty. Therefore, we

have argminε{ε :
⋂

s∈Ω B
(
{s}, ε

)
6= ∅} = ε∗ and the ε-core it defines becomes a nucleolus since

it degenerates to a point. It implies payoff ι
(
s1(j)

)
dl becomes

ι
(
s1(j)

)
dl = v

({
s1(j)

})

− ε =
1

2
v
({

s1(j)
})

+
1

2

[

v(Ω) − v
(

Ω \
{
s1(j)

})]

for all j. Q.E.D.

Finally, we obtain our objective theorem.

Theorem 9 In a3
∞ (Ω, v), the imputation

E(n) =
1

2

(

U +
∂F

∂l−

)

is supported by Shapley value and nucleolus where ∂F/∂l− is a derivative from left.

Proof: The result follows from Theorem 5 and Theorem 8. For the latter, it is sufficient to
show that F satisfies essential concavity. From concavity of F , ∂F (l1)/∂l dl ≤ ∂F (l2)/∂l dl for
l1 > l2.Then, it implies essential concavity of F since F (l1 + dl)− F (l1) ≤ F (l2 + dl)−F (l2).
Q.E.D.

We labeled S0 as a set of a firm or an entrepreneur above. However, if there is any player who
exerts non-degenerate influence on productivity or, in other words, those who embodies critical
knowledge for production as rent, this player will receive non-marginal part of coalitional rent.
In this section, we derived bargaining solution in terms of value function. Its distribution is
actually done through wage payment. Bargaining outcome in terms of wages is derived in
section B.

APPENDIX B: BARGAINING OUTCOME IN TERMS OF WAGE

This appendix provides the proof of Theorem 2. By defining z := E−U in Bellman equations
(3) and (4), the dimension of the dynamics is reduced by one:

(27) żt = (rt + µt + σ̃t) zt − (wt − bt) ,

which solves to

(28) zt =

ˆ ∞

t

(
wξ − bξ

)
e−
´ ξ
t (rν+σ̃ν+µν)dνdξ.

Solving differential equation (3) for U using (28),

Ut =

ˆ ∞

t
bse

−
´ s
t

rds+

ˆ ∞

t
ds

ˆ ∞

s
µs

[(
wξ − bξ

)
e−
´ ξ
s
(r+σ̃+µ)

]

e−
´ s
t

rdξ(29)

Similarly, we obtain the value function of employment for each type.

Et =

ˆ ∞

t
wse

−
´ s
t rds−

ˆ ∞

t
ds

ˆ ∞

s
σ̃s

[(
wξ − bξ

)
e−
´ ξ
s (r+σ̃+µ)

]

e−
´ s
t rdξ(30)

The unemployment value is the discounted series of unemployment benefit and capital gain
arising from matching. The employment value is the discounted series of wage rate, expected
change of capital gain in new jobs and capital gain (loss) of dismissal.
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Theorem 10 Let H1 := {t : ydt (R) < f(lt)}. Wage rate at time t is given by

wt = bt +
MPt −MCt

2
+
(

σ̃t +
µt

2

) ˆ ∞

t

MPξ −MCξ

2
e−
´ ξ
t (r+µ/2)dξ

where

MPξ =

{

f ′(l∗ξ ) if ξ /∈ H1

0 if ξ ∈ H1,

MCt = κ′(v∗ξ )dv
∗
ξ/dlt < 0 shows the change of hiring cost when l hypothetically moves to a

neighboring optimal path and v∗ and l∗ are along the optimal path.

Proof: Theorem 1 implies ∂2F/∂t+ ∂l− = 2Ė− U̇ . Note that the bargaining is made for the
next moment, therefore time derivative must be taken from right. Applying (3), (4), (29) and
(30) on it,

(31) (wt − bt)−
(

σ̃t +
µt

2

) ˆ ∞

t

(
wξ − bξ

)
e−
´ ξ
t (r+µ+σ̃)dξ =

Ft

2

where Ft := r ∂F/∂l− − ∂2F/∂t+∂l−. Since ∂2F/∂t+ ∂l− = r∂F/∂l− −MP+MC from (5), it
actually becomes Ft = MPt −MCt which is the cost of losing marginal labor. Note that, when
xξ > 0 for some ξ, the shock of the resignation of a worker can be absorbed by the cancellation
of dismissal. Due to dependency to initial value, neighboring paths coincide afterwards since
xξ is adjusted to match the external force yd. Thus, Fτ = 0 for all τ ≥ ξ. Equation (31) is an
integral equation concerning to Yt := wt − bt. Namely,

Yt −

ˆ ∞

t
K(t, ξ)Yξdξ =

1

2
Ft

where kernel K(t, ξ) is defined by K(t, ξ) := (σ̃t + µt/2) e−
´ ξ
t (r+σ̃+µ). The solution to this

equation is given by

Yt =
1

2
Ft −

1

2

ˆ ∞

t
G(t, ξ)Fξdξ

where G(t, ξ) := −
∑∞

ζ=1

∗

Kζ(t, ξ). The iterated kernel
∗

Kn is defined by
∗

Kn := K ∗K ∗ · · · ∗K
︸ ︷︷ ︸

n

and K∗L denotes the composition of the first kind defined by K(t, ξ)∗L(t, ξ) =
´ ξ
t K(t, τ)L(τ, ξ)dτ .

Since

∗
Kn(t, ξ) =

(

σ̃t +
µt

2

)

e−
´ ξ
t (r+σ̃+µ)

[
´ ξ
t

(
σ̃s + µs

2

)
ds
]n−1

(n− 1)!
,

we obtain

G(t, ξ) = −
(

σ̃t +
µt

2

)

e−
´ ξ
t (r+µ/2)

and the solution for Yt,

Yt =
1

2
Ft +

(

σ̃t +
µt

2

) ˆ ∞

t

Fξ

2
e−
´ ξ
t (r+µ/2)dξ.

which brings the proposition. Q.E.D.
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APPENDIX C: ON A PROBABILITY DISTRIBUTION

Proof that the coefficients of (19) are equivalent to probability.

Proposition 11 Let (ζ1, . . . , ζN ) ∈ NN be a vector of parameters. Define

(32) Υ(y1, . . . , yN ; ζ1, . . . , ζN ) :=
1

1 +
∑N

i=1 ζi

∏M
i=1

(ζi
yi

)

(
∑

M
i=1

ζi
∑

M
i=1

yi

)

for any yi ∈ N such that 0 ≤ yi ≤ ζi. Then, equation (32) is a probability mass function.

Proof: Υ ≥ 0 is obvious. If we sum it up for all xi, it becomes

∑

Υ =
1

1 +
∑N

i=1 ζi

∑
ζi∑

k=0

∑

∑
yi=k

Mult.Hypg.(y1, . . . , yN ; k; ζ1, . . . , ζN ) = 1

where Mult.Hypg.(y1, . . . , yN ; k; ζ1, . . . , ζN ) is a multivariate hypergeometric distribution with
parameter (k; ζ1, . . . , ζN ). It sums up to one if all ni’s are summed up keeping

∑
ni = k.

Q.E.D.

Proposition 12 Define a density function Υ̃ : RN → R characterized by Υ such that

(33) Υ̃(x1, . . . , xN ) dl1 · · · dlN = Υ(y1, . . . , yN )

where xi = yidli and 0 ≤ xi ≤ li where li is fixed for any ζi and dli keeping li = ζidli
(i = 1, . . . , N). Then, the functional form of Υ̃ is given by Υ̃(x1, . . . , xN ) = δ(1−x1/l1, . . . , 1−
xN/lN ) as ζi → ∞ for all i where δ denotes Dirac’s delta, i.e. δ(z1, . . . , zN ) = ∞ if zi = 0, ∀i
and δ(z1, . . . , zN ) = 0 otherwise, and

(34)

ˆ 1

0
· · ·

ˆ 1

0
δ(z1, . . . , zN ) dz1 · · · dzN = 1.

Proof: From Proposition 11,
∑ζ1

y1=1 · · ·
∑ζN

yN=1 Υ(y1, . . . , yN ) = 1. Using (33), it means
∑l1

x1=dl1
· · ·
∑lN

xN=dlN
Υ̃ (x1, . . . , xN ) dl1 · · · dlN = 1 which leads to show Υ̃ satisfies property

(34) as ζi → ∞, i.e. dli → 0, for all i. Note that
(

M∏

i=1

ζi

)(
M∏

i=1

(ζi

yi

)
)

= o

(
(
∑M

i=1 ζi
∑M

i=1 yi

)
)

if there exists i such that yi < ζi. Then, (33) becomes

Υ̃(l1, . . . , lN ) =
1

1 +
∑N

i=1 ζi

∏M
i=1

(ζi
yi

)

(
∑

M
i=1

ζi
∑

M
i=1

yi

)

1

dl1 · · · dlN

=
1

∏N
i=1 li

1

1 +
∑N

i=1 ζi

(∏N
i=1 ζi

)(∏M
i=1

(ζi
yi

))

(
∑

M
i=1

ζi
∑

M
i=1

yi

)
→ 0

as ζi → ∞ for all i if there exists i such that yi < ζi. On the other hand, if yi = ζi for all i, we
have

∏M
i=1

(ζi
yi

)
= 1 and thus Υ(ζ1, . . . , ζN ) = 1/(1 +

∑N
i=1 ζi). Then, from (33),

Υ̃(l1, . . . , lN ) =
1

1 +
∑N

i=1 ζi

1

dl1 · · · dlN
=

1
∏N

i=1 li

∏N
i=1 ζi

1 +
∑N

i=1 ζi
.

The second fraction diverges as ζi’s become large, therefore Υ̃(l1, . . . , lN ) → ∞ as ζi → ∞ for
all i. Q.E.D.
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APPENDIX D: PROPERTIES OF DYNAMICS

D.1. Dynamics of major variables: productivity cycle case

External input is given by α = 1+ 0.0072 sin[2πt/(period)] and β = 3.92 below.

1 year cycle 5 year cycle 10 year cycle

P
ro

d
u
c
ti

v
it
y

0.2 0.4 0.6 0.8 1.
Year

0.994
0.996
0.998

1.002
1.004
1.006

Α

1 2 3 4 5
Year

0.994
0.996
0.998

1.002
1.004
1.006

Α

2 4 6 8 10
Year

0.994
0.996
0.998

1.002
1.004
1.006

Α

W
a
g
e

ra
te

0.2 0.4 0.6 0.8 1.
Year

0.659
0.660
0.661
0.662
0.663
0.664

w

1 2 3 4 5
Year

0.658

0.660

0.662

0.664

w

2 4 6 8 10
Year

0.658

0.660

0.662

0.664

w

E
m

p
lo

y
m

e
n
t

0.2 0.4 0.6 0.8 1.
Year

0.93580
0.93585
0.93590
0.93595
0.93600
0.93605

l

1 2 3 4 5
Year

0.9355

0.9360

0.9365

l

2 4 6 8 10
Year

0.9350
0.9355
0.9360
0.9365
0.9370
0.9375

l

V
a
lu

e
o
f
la

b
o
r

(p
ro

p
.
v
a
c
a
n
c
y
)*

0.2 0.4 0.6 0.8 1.
Year

0.0003288

0.0003290

0.0003292

0.0003294

Λ1µ v

1 2 3 4 5
Year

0.0003288
0.0003290
0.0003292
0.0003294
0.0003296

Λ1µ v

2 4 6 8 10
Year

0.0003286
0.0003288
0.0003290
0.0003292
0.0003294
0.0003296

Λ1µ v

O
u
tp

u
t

0.2 0.4 0.6 0.8 1.
Year

0.962
0.964
0.966
0.968
0.970
0.972

y

1 2 3 4 5
Year

0.962
0.964
0.966
0.968
0.970
0.972
0.974

y

2 4 6 8 10
Year

0.960
0.962
0.964
0.966
0.968
0.970
0.972
0.974

y

S
h
a
re

o
f
la

b
o
r

0.2 0.4 0.6 0.8 1.
Year

0.6390
0.6395
0.6400
0.6405
0.6410
0.6415

wl � y

1 2 3 4 5
Year

0.6398
0.6399
0.6400
0.6401
0.6402
0.6403

wl � y

2 4 6 8 10
Year

0.6395

0.6400

0.6405

wl � y

v
u

ra
ti

o
(p

ro
p
.

m
.r

.
o
f
la

b
o
r)

*

0.2 0.4 0.6 0.8 1.
Year

0.986
0.988
0.990
0.992
0.994
0.996
0.998

Θ µ Μ

1 2 3 4 5
Year

0.975

0.980

0.985

0.990

0.995

Θ µ Μ

2 4 6 8 10
Year

0.96

0.97

0.98

0.99

1.01

Θ µ Μ

* prop.: proportionate to, m.r.: matching rate
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D.2. Dynamics of major variables: demand cycle case

External input is given by α = 1 and β = 3.92(1 + 0.87 sin[2πt/(period)− π]) below.

1 year cycle 5 year cycle 10 year cycle

In
te

re
st

ra
te

/

d
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c
o
u
n
t
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te

0.2 0.4 0.6 0.8 1.
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20
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Β = r

1 2 3 4 5
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Β = r

2 4 6 8 10
Year
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20
30
40
50
60
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W
a
g
e
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te

0.2 0.4 0.6 0.8 1.
Year

0.658

0.660

0.662

0.664

w

1 2 3 4 5
Year

0.656
0.658
0.660
0.662
0.664
0.666
0.668

w

2 4 6 8 10
Year

0.655

0.660

0.665

0.670

w

E
m

p
lo

y
m

e
n
t

0.2 0.4 0.6 0.8 1.
Year

0.9356

0.9358

0.9360

0.9362

l

1 2 3 4 5
Year

0.934
0.935
0.936
0.937
0.938
0.939

l

2 4 6 8 10
Year

0.932
0.934
0.936
0.938
0.940
0.942

l

V
a
lu

e
o
f
la

b
o
r

(p
ro

p
.
v
a
c
a
n
c
y
)*

0.2 0.4 0.6 0.8 1.
Year

0.0003285

0.0003290

0.0003295

0.0003300

Λ1µ v

1 2 3 4 5
Year

0.000328

0.000329

0.000330

0.000331

Λ1µ v

2 4 6 8 10
Year

0.000328

0.000329

0.000330

0.000331

Λ1µ v

O
u
tp

u
t

0.2 0.4 0.6 0.8 1.
Year

0.9661

0.9662

0.9663

0.9664

0.9665

y

1 2 3 4 5
Year

0.9650
0.9655
0.9660
0.9665
0.9670
0.9675
0.9680

y

2 4 6 8 10
Year

0.964
0.965
0.966
0.967
0.968
0.969
0.970

y

S
h
a
re

o
f
la

b
o
r

0.2 0.4 0.6 0.8 1.
Year

0.638

0.640

0.642

0.644

wl � y

1 2 3 4 5
Year

0.635

0.640

0.645

wl � y

2 4 6 8 10
Year

0.635

0.640

0.645

0.650

wl � y

v
u

ra
ti

o
(p

ro
p
.

m
.r

.
o
f
la

b
o
r)

*

0.2 0.4 0.6 0.8 1.
Year

0.980

0.985

0.990

0.995

Θ µ Μ

1 2 3 4 5
Year

0.94

0.96

0.98

1.02

1.04

Θ µ Μ

2 4 6 8 10
Year

0.90

0.95

1.05

1.10

Θ µ Μ

* prop.: proportionate to, m.r.: matching rate
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1. Productivity cycle case

(a) 1 year cycle

α y l y/l, y′ λ1 w wl/y θ
α 1.0000 1.0000 0.9369 1.0000 0.4106 0.9602 −0.8436 0.9159
y 1.0000 1.0000 0.9382 1.0000 0.4071 0.9591 −0.8457 0.9143
l 0.9369 0.9382 1.0000 0.9356 0.06592 0.8020 −0.9781 0.7177

y/l, y′ 1.0000 1.0000 0.9356 1.0000 0.4140 0.9612 −0.8416 0.9174
λ1 0.4106 0.4071 0.06592 0.4140 1.0000 0.6490 0.1432 0.7421
w 0.9602 0.9591 0.8020 0.9612 0.6490 1.0000 −0.6601 0.9916

wl/y −0.8436 −0.8457 −0.9781 −0.8416 0.1432 −0.6601 1.0000 −0.5571
θ 0.9159 0.9143 0.7177 0.9174 0.7421 0.9916 −0.5571 1.0000

(b) 5 year cycle

α y l y/l, y′ λ1 w wl/y θ
α 1.0000 0.9998 0.9416 0.9997 −0.02437 0.9946 0.2357 0.8602
y 0.9998 1.0000 0.9487 0.9990 −0.002671 0.9921 0.2146 0.8711
l 0.9416 0.9487 1.0000 0.9337 0.3137 0.9016 −0.1049 0.9817

y/l, y′ 0.9997 0.9990 0.9337 1.0000 −0.04722 0.9967 0.2579 0.8484
λ1 −0.02437 −0.002671 0.3137 −0.04722 1.0000 −0.1279 −0.9765 0.4888
w 0.9946 0.9921 0.9016 0.9967 −0.1279 1.0000 0.3353 0.8027

wl/y 0.2357 0.2146 −0.1049 0.2579 −0.9765 0.3353 1.0000 −0.2923
θ 0.8602 0.8711 0.9817 0.8484 0.4888 0.8027 −0.2923 1.0000

(c) 10 year cycle

α y l y/l, y′ λ1 w wl/y θ
α 1.0000 0.9959 0.6656 0.9950 −0.2557 0.9655 0.3917 0.5905
y 0.9959 1.0000 0.7306 0.9818 −0.1670 0.9378 0.3067 0.6613
l 0.6656 0.7306 1.0000 0.5877 0.5512 0.4482 −0.4256 0.9953

y/l, y′ 0.9950 0.9818 0.5877 1.0000 −0.3512 0.9867 0.4818 0.5068
λ1 −0.2557 −0.1670 0.5512 −0.3512 1.0000 −0.4988 −0.9893 0.6292
w 0.9655 0.9378 0.4482 0.9867 −0.4988 1.0000 0.6179 0.3598

wl/y 0.3917 0.3067 −0.4256 0.4818 −0.9893 0.6179 1.0000 −0.5110
θ 0.5905 0.6613 0.9953 0.5068 0.6292 0.3598 −0.5110 1.0000
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2. Demand cycle case

(a) 1 year cycle

r y, l y/l, y′ λ1 w wl/y θ
r 1.0000 −0.9207 0.9207 −0.3067 −0.8161 −0.8286 −0.8328
y, l −0.9207 1.0000 −1.0000 0.06592 0.6928 0.7113 0.7177

y/l, y′ 0.9207 −1.0000 1.0000 −0.06592 −0.6928 −0.7113 −0.7177
λ1 −0.3067 0.06592 −0.06592 1.0000 0.7652 0.7483 0.7421
w −0.8161 0.6928 −0.6928 0.7652 1.0000 0.9997 0.9994

wl/y −0.8286 0.7113 −0.7113 0.7483 0.9997 1.0000 1.0000
θ −0.8328 0.7177 −0.7177 0.7421 0.9994 1.0000 1.0000

(b) 5 year cycle

r y, l y/l, y′ λ1 w wl/y θ
r 1.0000 −0.8232 0.8232 0.1972 −0.8982 −0.9277 −0.7185
y, l −0.8232 1.0000 −1.0000 0.3137 0.6350 0.7129 0.9816

y/l, y′ 0.8232 −1.0000 1.0000 −0.3137 −0.6350 −0.7129 −0.9816
λ1 0.1972 0.3137 −0.3137 1.0000 −0.5338 −0.4418 0.4887
w −0.8982 0.6350 −0.6350 −0.5338 1.0000 0.9944 0.4763

wl/y −0.9277 0.7129 −0.7129 −0.4418 0.9944 1.0000 0.5662
θ −0.7185 0.9816 −0.9816 0.4887 0.4763 0.5662 1.0000

(c) 10 year cycle

r y, l y/l, y′ λ1 w wl/y θ
r 1.0000 −0.5390 0.5390 0.3586 −0.7638 −0.8831 −0.4579
y, l −0.5390 1.0000 −1.0000 0.5512 −0.04928 0.1998 0.9950

y/l, y′ 0.5390 −1.0000 1.0000 −0.5512 0.04928 −0.1998 −0.9950
λ1 0.3586 0.5512 −0.5512 1.0000 −0.8598 −0.7066 0.6288
w −0.7638 −0.04928 0.04928 −0.8598 1.0000 0.9688 −0.1463

wl/y −0.8831 0.1998 −0.1998 −0.7066 0.9688 1.0000 0.1034
θ −0.4579 0.9950 −0.9950 0.6288 −0.1463 0.1034 1.0000



3
0

K
O

J
I

Y
O

K
O

T
A

D
.4

.
P
ea

k
sh

ift
m

a
trices

1. Productivity cycle case 2. Demand cycle case (Units: year)

(a) 1 year cycle (a) 1 year cycle

α, y, y′ y/l λ1 w wl/y θ
α, y, y′ 0.00 0.00 0.82 0.95 0.59 0.93
y/l 0.00 0.00 0.82 0.96 0.59 0.93
λ1 0.18 0.18 0.00 0.14 0.77 0.12
w 0.05 0.04 0.86 0.00 0.64 0.98

wl/y 0.41 0.41 0.23 0.36 0.00 0.34
θ 0.07 0.07 0.88 0.02 0.66 0.00

β, r y y/l y′ λ1 w wl/y θ
β, r 0.00 0.54 0.04 0.04 0.30 0.41 0.42 0.42
y 0.46 0.00 0.50 0.50 0.76 0.87 0.88 0.88
y/l 0.96 0.50 0.00 0.00 0.26 0.37 0.38 0.38
y′ 0.96 0.50 0.00 0.00 0.26 0.37 0.38 0.38
λ1 0.70 0.24 0.74 0.74 0.00 0.11 0.12 0.12
w 0.59 0.13 0.63 0.63 0.89 0.00 0.00 0.01

wl/y 0.58 0.12 0.62 0.62 0.88 0.00 0.00 0.00
θ 0.58 0.12 0.62 0.62 0.88 0.99 0.00 0.00

(b) 5 year cycle (b) 5 year cycle

α, y, y′ y/l λ1 w wl/y θ
α, y, y′ 0.00 0.05 3.80 0.10 1.10 4.60
y/l 5.00 0.00 3.70 0.05 1.10 4.60
λ1 1.30 1.30 0.00 1.40 2.40 0.85
w 4.90 5.00 3.70 0.00 1.00 4.50

wl/y 3.90 4.00 2.70 4.00 0.00 3.50
θ 0.40 0.45 4.20 0.50 1.50 0.00

β, r y y/l y′ λ1 w wl/y θ
β, r 0.00 2.10 4.60 4.60 1.10 2.80 2.70 2.00
y 2.90 0.00 2.50 2.50 4.00 0.70 0.60 4.90
y/l 0.40 2.50 0.00 0.00 1.50 3.20 3.10 2.40
y′ 0.40 2.50 0.00 0.00 1.50 3.20 3.10 2.40
λ1 3.90 1.00 3.50 3.50 0.00 1.70 1.60 0.85
w 2.20 4.30 1.80 1.80 3.30 0.00 4.90 4.20

wl/y 2.30 4.40 1.90 1.90 3.40 0.10 0.00 4.30
θ 3.10 0.15 2.70 2.70 4.20 0.85 0.75 0.00

(c) 10 year cycle (c) 10 year cycle

α, y, y′ y/l λ1 w wl/y θ
α, y, y′ 0.00 0.30 7.20 0.60 2.00 8.60
y/l 9.70 0.00 6.90 0.30 1.70 8.30
λ1 2.80 3.10 0.00 3.30 4.80 1.40
w 9.40 9.70 6.70 0.00 1.40 8.10

wl/y 8.00 8.30 5.20 8.60 0.00 6.60
θ 1.40 1.70 8.60 1.90 3.40 0.00

β, r y y/l y′ λ1 w wl/y θ
β, r 0.00 3.50 8.50 8.50 1.90 6.00 5.60 3.30
y 6.50 0.00 5.00 5.00 8.40 2.60 2.20 9.80
y/l 1.50 5.00 0.00 0.00 3.40 7.60 7.20 4.80
y′ 1.50 5.00 0.00 0.00 3.40 7.60 7.20 4.80
λ1 8.10 1.60 6.60 6.60 0.00 4.10 3.80 1.40
w 4.00 7.40 2.40 2.40 5.90 0.00 9.60 7.30

wl/y 4.40 7.80 2.80 2.80 6.20 0.40 0.00 7.70
θ 6.70 0.20 5.20 5.20 8.60 2.70 2.30 0.00
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D.5. uv dynamics

1. Productivity cycle case

(a) 1 year cycle

Beveridge curve

Actual trajectory

0.055 0.060 0.065 0.070
u0.0625
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v

(b) 5 year cycle

Beveridge curve

Actual trajectory
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(c) 10 year cycle

Beveridge curve

Actual trajectory
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2. Demand cycle case

(a) 1 year cycle

Beveridge curve

Actual trajectory
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(b) 5 year cycle

Beveridge curve

Actual trajectory
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(c) 10 year cycle

Beveridge curve

Actual trajectory

0.055 0.060 0.065 0.070
u0.0625

0.0630

0.0635

0.0640

0.0645
v



32 KOJI YOKOTA

REFERENCES

Blatter, M., Muehlemann, S., and Schenker, S. (2012). The costs of hiring skilled workers.
European Economic Review, 56(1):20–35.

Canova, F. (1998). Detrending and business cycle facts. Journal of Monetary Economics,
41(3):475–512.

Card, D. and Krueger, A. B. (1994). Minimum wages and employment: A case study of
the fast-food industry in new jersey and pennsylvania. The American Economic Review,
84(4):772–793.

Dube, A., Naidu, S., and Reich, M. (2007). The economic effects of a citywide minimum wage.
Industrial and Labor Relations Review, 60(4):522–543.

Halkin, H. (1964). On the necessary condition for optimal control of nonlinear systems. Journal
d’Analyse Mathématique, 12(1):1–82.

Hansen, G. D. (1985). Indivisible labor and the business cycle. Journal of Monetary Economics,
16(3):309–327.

Lagos, R. (2000). An alternative approach to search frictions. Journal of Political Economy,
108(5):851 – 873.

Neumark, D. and Wascher, W. (2000). Minimum wages and employment: A case study of
the fast-food industry in new jersey and pennsylvania: Comment. The American Economic
Review, 90(5):1362–1396.

Pissarides, C. A. (1985). Short-run equilibrium dynamics of unemployment, vacancies, and
real wages. American Economic Review, 75(4):676–690.

Shimer, R. (2005). The cyclical behavior of equilibrium unemployment and vacancies. Amer-
ican Economic Review, 95(1):25–49.

Stole, L. A. and Zwiebel, J. (1996). Intra-firm bargaining under non-binding contracts. Review
of Economic Studies, 63:375–410.

Wooders, M. H. (1992). Inessentiality of large groups and the approximate core property: An
equivalence theorem. Economic Theory, 2(1):129–147.

Yashiv, E. (2000). The determinants of equilibrium unemployment. American Economic
Review, 90(5):1297–1322.

Yashiv, E. (2006). Evaluating the performance of the search and matching model. European
Economic Review, 50(4):909–936.

Yashiv, E. (2007). Labor search and matching in macroeconomics. European Economic Review,
51(8):1859 – 1895.

Yokota, K. (2009). Production theory with convex labor friction. CBC Discussion Paper, 123.


