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Abstract. The GARCHmodel is modi�ed to capture the effect on volatilities of the consecutive number
of days of positive or negative shocks. The newmodel is applied to the Shanghai Shcomp and Nikkei225
indices and found particularly useful in analyzing the Shcomp index. Similarly, the EGARCH model is
extended along the same line as the GARCH model and is applied to the same sets of data. Stationarity
of the new GARCH(1,1) model is proved, and also derived is the asymptotic distribution of the quasi-
maximum likelihood estimator.

Key words: stock market; GARCH model; Volatility; spells of positive or negative shocks.

1. Introduction

Numerous ARCH class models have been proposed to estimate the conditional volatil-
ity of log returns including ARCH model (Engel, 1982) and GARCH model (Boller-
slev, 1986). Both models are suitable for estimating the time-varying nature of the
volatility in log returns of �nancial assets. The GARCH model is popular today, but
it cannot capture the asymmetric effects of shocks on volatilities. The exponential
GARCH (EGARCH, Nelson 1991) and the GJR-GARCH models (Glosten et al.
1993) were introduced to analyze the asymmetric effects. Subsequently proposed
were the regime switching GARCH models such as the volatility-switching GARCH
(Fornari and Mele, 1996, 1997) and the markov-switching GARCH (Kim 1993). The
former allows all parameters in the conditional variance equation to depend on the
sign of shocks, and, in the latter, the regime of the conditional variance equation is
determined by unobservable Markov-processes. Baillie et al. (1996) and Bollerslev
and Mikkelsen(1996) proposed the fractionally integrated GARCH and EGARCH,
respectively, to analyze the persistent effect of shocks on volatilities. Further, every
effort has been made to develop multivariate models including Bollerslev(1990),
Engle and Kroner(1995). See Engel et al. (1990) and Kim and Tsurumi(2000) for
empirical studies.
In this paper, the GARCH model is modi�ed so that it can capture the effect

of spells of positive or negative shocks on volatilities. The number of consecutive
positive or negative shocks is incorporated into the GARCH model as a nonlinear

? Author for correspondence.
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coef�cient of the ARCH term. Spells of positive or negative shocks are expected to
have positive effect on volatilities as the size of returns does. On the other hand, the
effect of these spells on returns can be either positive or negative. For instance, a
positive return is not necessarily expected to follow from a spell of positive returns.
Arbitrages may possibly follow if it does. The modi�ed model is applied to Shanghai
Shcomp and Nikkei225 indices, and the spell term is found signi�cant only in the
former.
Background of this modeling is found in the Chinese stock market which has

different features from markets in other nations as Kang et al. (2002) and Chen and
Shih(2002) studied. Shanghai Stock Exchange was established only in 1990 and is
still immature. The A-share market is clustered by individual investors who have only
a little knowledge on stock investments. As a result, they behave like noise traders
whose decisions tend to be affected by rumors, by the rise and fall of share prices,
and probably by spells of shocks. They also trade very frequently.
The following section presents the model. The new model is referred to as OG-

ARCH since our aim is to capture the overresponse in markets caused by spells
of positive or negative shocks. Empirical studies in section 3 demonstrate that the
OGARCH(1; 1); OGARCH(1; 2); OGARCH(1; 3) models �t better than the corre-
sponding GARCH model with respect to Shanghai Shcomp index. The EGARCH
model is modi�ed along the same line as OGARCH in section 3, and is applied to
the same sets of data. Section 4 reports conclusions. The asymptotic properties of the
new model are derived in the Appendix.

2. Model

The OGARCH(1; 1) model is

yt = f(xt�1) + "t (1)
"t = zt

p
ht (2)

ht = �0 + �1 exp(�t�1)"
2
t�1 + �ht�1; (3)

where yt is the log return, xt�1 is a vector of variables in the information set which
includes all information upon time t � 1, f is any well behaved function, "t is the
shock or unpredictable return, zt is a white noise with mean zero and variances one,
and ht is the conditional variance of "t: Signs of coef�cients a0; a1;and � are assumed
to be positive, non-negative, and non-negative, respectively: Equations (1) and (3)
are called the mean equation and the volatility equation, respectively.
t�1 is the number of days in the spells of positive or negative shocks. It is a

positive integer and formally de�ned as

t�1 � i; if sign("t�1) = � � � = sign("t�i) = �sign("t�(i+1)):
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It can take only two values, one or t�2+1 which is larger than two, and is known at
t. De�ne p = P (zt > 0), q = 1� p, then the distribution of t�1 in equation (3) is

P (t�1 = ) = qp+ qp ;  = 1: (4)

Since sign("t�i) = sign(zt�i); t�1 is written as

t�1 = g(sign(zt�1); sign(zt�2); � � � ):

The exponential term is always positive, and the � coef�cient is expected to be
positive so that ht increases together with t�1. The standard GARCH(1; 1) model
follows if � is zero. The asymptotic properties of the OGARCH model are proved in
the Appendix.

3. Empirical analysis

The OGARCHmodel is applied to the log returns of daily closing prices of Nikkei225
and Shcomp which are price indices of 225 stocks of Tokyo Stock Exchange and of
Shanghai Stock Exchange, respectively.
Chinese and Japanese stock markets have different features. Stocks have been

traded since 1860's, but stock market was closed in 1949 in the Mainland China. The
new Shanghai Stock Exchange was re-opened in 1990 and has developed to a biggest
exchange. The total market capitalization grew from 1:2 billion RMB in 1990 to 2:6
trillion RMB in 2004. On the other hand, Tokyo Stock Exchange was established
in 1949. The total market capitalization decreased from 449:4 trillion yen to 385:7
trillion yen in the same period.
The Chinese market has 1:5 trillion RMB of uncirculated state-held shares that

account 57:6% of the total market capitalization. This does not exist in the Japanese
market. Moreover, the Chinese markets have two strictly segmented A and B-share
sections. The A-shares are denominated by the Chinese currency and issued almost
only to and traded almost only by domestic investors. On the other hand, the B-
shares are denominated by the US or Hong Kong dollars and issued almost only to
and traded almost only by foreign investors (Kang et al. 2002). The A-share is the
larger part which is affected immensely by individual investors.
Shanghai Stock market grew up rapidly. Brands were replaced frequently and

indices were unstable in the early years. Such unstable period is avoided in this study.
The IT bubble period is also avoided which may be roughly from 1996 though 2000.
The sample period used in this study extends from 4 January, 2001 to 15 August,
2005 for both Shcomp and Nikkei225 indices.
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Table I. Summary Statistics of Data

T Mean Variance Skewness Kurtosis

Shcomp (01/04/2001-15/08/2005)
1104 �0:05 1:94 1:13 11:13

Nikkei (01/04/2001-15/08/2005)
1135 �0:01 2:12 �0:04 4:55

3.1. THE SUMMARY STATISTICS1

The summary statistics of the two log return yt series are tabulated in Table I. The
Shcomp kurtosis doubles that of Nikkei which means Shcomp is more �uctuant than
Nikkei. Figure I tabulates the correlograms of the two series which are mostly in-
signi�cant except for the marginally signi�cant seventh Shcomp and forth Nikkei au-
tocorrelations. Ljung-Box statistics (P-values) with the �rst twelve serial correlations
for Shcomp and Nikkei are 12:31(0:42) and 11:44(0:49), respectively. Supported
also by AIC and BIC, any lag of the log return is not included in our mean equation
in the following studies.

Figure I. Correlogram of Log return.

1 3.1 and 3.2 are included following the two referees' comments.
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A OGARCH MODEL 5

Table II. Day-of-the-week Effect

Variable 1 d1 d2 d3 d4

Shcomp
Coef�cient �:10 �:10 :29� :10 �:03
Std. Error :10 :13 :13 :13 :13

Nikkei
Coef�cient :10 �:22 �:10 �:10 �:05
Std. Error :10 :14 :14 :14 :14

* indicates signi�cant coef�cient at 5%.

Table III. Seasonality Test

Variable 1 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11

Shcomp
Coeff :02 :08 �:34 :09 �:14 �:37 �:05 :32 �:01 :24 �:23 :00

SE :24 :39 :31 :26 :21 :32 :28 :37 :10 :16 :16 :23

Nikkei
Coeff :08 :12 :13 :12 :11 :11 �:04 :04 �:12 :08 :16 :11

SE :15 :21 :21 :21 :21 :21 :21 :21 :22 :22 :22 :22

3.2. PRELIMINARY TESTS

Examined in this sub-section are day-of-the-week effects, seasonality, serial correla-
tions in y2t , and an alternative speci�cation of the mean equation.
Firstly, following Engle and Ng (1993), log return yt is regressed on a constant

and four dummy variables d1 to d4 to examine day-of-the-week effects. Results are
reported in Table II, and the Tuesday coef�cient d2 is found signi�cant in the Shcomp
series for this particular sample period. The original series is replaced by residuals
from regressing yt on a constant and d2 in the following estimation for shcomp.
Secondly, yt is regressed on a constant and eleven dummy variables m1 to m11

to examine the seasonality of the two series. Observing the Table III, we can �nd any
seasonality in neither series.

Thirdly examined are the serial correlations in y2t . Ljung-Box statistics (P-values)
with the �rst twelve serial correlations for Shcomp and Nikkei are 29:03(0:00) and
185:64(0:00), respectively. Time-varying volatility is in this series.
After trying various models with various lags in yt, comparing AIC and SBIC of

these models, and testing signi�cance of coef�cients, the mean equation chosen for
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both Shcomp and Nikkei is
yt = �+ "t: (5)

Mean equations with t�1 as an explanatory variable such as

yt = f(xt�1) +  t�1 + "t;

were also estimated, but t�1 turned out to be always insigni�cant. (The volatility
equation must be estimated together. For example,  is 0:03 with t-ratio 1:18 in the
equation yt = �+  t�1 + "t in the Shcomp OGARCH(1; 1).)

3.3. OGARCH ESTIMATION AND TESTS

The OGARCH(1; 1) and GARCH(1; 1)models are estimated by the quasi-maximum
likelihood (QML) method assuming that zt is a standard normal random variable. The
quasi log likelihood function is

LT (�) =
TX
t=1

�1
2
log 2� � 1

2
log ht �

"2t
2ht

; (6)

where T is the sample size. The QML method is usually applied to the ARCH class
models since the distribution of disturbance term is unknown but known to be non-
normal.
Table IV presents the summary of estimation. In Shcomp case, all OGARCH

coef�cients are signi�cant including �, and the quasi log likelihood of OGARCH
increased by 9:0 from that of GARCH. However, � is not signi�cant in Nikkei case,
and other coef�cients and the quasi log likelihood values are similar between the two
models. The Wald test2 also supports the same result on the � coef�cient.

The same models are applied to the A and B share indices of Shanghai market.3
Estimation results on A and B share indices are similar to those of Shcomp, and the
coef�cient � is positive and signi�cant in both series. This follows since, �rstly, the
log return of the A share index is very similar to that of Shcomp since they have
similar components. Secondly, the �uctuations of A and B shares are similar. In fact,
the �uctuation of B shares is dominated by A shares since every B share which is
traded in foreign currency is a counterpart of an A share but with a small amount.
The A share accounts for 90% of all shares in Shanghai market, and there are only
54 B share brands in 2002.

2 According to Weiss (1986), the LR test statistic for ARCH class model estimated by QMLE is not
distributed as �2. However, the Wald test statistic is distributed as �2. It is only a squared t-ratio in our
estimation of � coef�cient.

3 Following estimation was suggestd by a referee.
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Table IV . OGARCH and GARCH Estimation

Parameter � �0 �1 � � logL

Shcomp
GARCH
Coeff :029 :138�� :179�� :770�� �1861:3
SE :047 :041 :063 :052

OGARCH
Coeff :110�� :108�� :087� :794�� :268�� �1852:3
SE :042 :030 :038 :044 :068

A share
Coeff :085� :101�� :072� :809�� :309��

SE :043 :028 :032 :041 :069 �1839:1
B share

Coeff :058 :202�� :085� :807�� :213�� �2194:0
SE :047 :066 :034 :038 :076

Nikkei
GARCH
Coeff :037 :151 :087�� :910�� �1954:3
SE :035 :010 :022 :022

OGARCH
Coeff :036 :015 :073�� :909�� :087 �1953:6
SE :039 :049 :028 :030 :153

Note: The sample periods of the A and B shares are the same as Shcomp. The
numbers of observations are 1103; 1097; 1091; and 1135 for Shcomp, A sha-
re, B share, and Nikkei, respectively. * and ** indicate signi�cant coef�cient
at 5% and 1%, respectively.

The OGARCH(1; 1) model captures the effects of spells of shocks on the con-
ditional volatility in the Shcomp case successfully. News impact curves are used to
visualize this property in the next subsection.

3.4. NEWS IMPACT CURVES

The impact curve functions are

ht = �0 + ��
2 + �1"

2
t�1

for GARCH(1; 1), and

ht = �0 + �1 exp(�t�1)"
2
t�1 + ��

2

for OGARCH(1; 1) where � is the unconditional standard deviation. The impact
curves are plotted in Figure II using estimates in Table IV.
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Figure II. Impact Curves. OGARCH1, OGARCH3 and OGARCH5
denote OGARCH witht�1= 1,3 and 5, respectively.

The news impact curve of OGARCH(1; 1) is affected by the values of t�1.
It is close to that of GARCH(1; 1) when t�1 = 3, and they deviate away from
GARCH(1; 1) for other values. The larger are the values of t�1 (as same the longer
are the spells), the greater are the impacts on ht in the OGARCH(1; 1)model. Effects
of the number of days in spells are obvious in the Shcomp case.

3.5. DIAGNOSTIC TESTS

Further diagnostic tests are applied to examine whether asymmetric effects should be
taken into account in the two models. Diagnostic tests include the sign bias, negative
size bias, positive size bias, and the joint tests. See Engle and Ng 1993 for details of
these tests. Results are reported in Table V. The negative bias tests of the two models
are signi�cant in Shcomp, and the negative bias tests and joint tests of the two models
are signi�cant in Nikkei. Asymmetric analyses can be useful in this series for both
Shcomp and Nikkei.

Ljung-Box statistics for the �rst twelve serial correlations in the normalized resid-
uals �t � "t=

p
ht and �2t are calculated for the two series, but they turn out to be
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Table V . Diagnostic Test

SB �SB +SB JT LB of �t LB of �2t

Shcomp
GARCH 1:66 2:16 �1:34 6:77 5:04 4:62

P-value :097 :031� :181 :080 :929 :948

OGARCH 1:67 2:61�� �1:01 7:55 6:63 5:69

P-value :095 :009 :311 :056 :828 :893

Nikkei
GARCH 1:04 2:13� �1:95 9:12� 6:62 12:25

P-value :298 :033 :051 :028 :829 :345

OGARCH 1:08 2:23� �1:95 9:40� 6:26 11:80

P-value :280 :026 :051 :025 :855 :379

Note: * indicates signi�cant results at 5%. Sign bias, negative size bias, posit-
ive size bias, joint tests and Ljung-Box test are denoted SB, -SB, +SB, JT and
LB, respectively, and their null distributions are t; t; t; �2 and �2.

insigni�cant. It may be concluded that the time-varying properties of volatilities are
successfully captured by the two models.

3.6. HIGHER ORDER GARCH AND OGARCH

The OGARCH model should be compared with higher order GARCH models.4 The
mean equation is kept the same, and the GARCH(1,2) and GARCH(1,3) models are
equations (7) and (8), respectively.

ht = �0 + �1"
2
t�1 + �2"

2
t�2 + �ht�1 (7)

ht = �0 + �1"
2
t�1 + �2"

2
t�2 + �3"

2
t�3 + �ht�1 (8)

These two and corresponding OGARCH models are estimated for Shcomp. The es-
timation results are tabulated in Table VI. �3 is insigni�cant in the GARCH(1,3)
model, and �2 is insigni�cant in the GARCH(1,2) model. Therefore, among the
GARCH models, the GARCH(1,1) model where �1 is signi�cant could be accepted
as most desirable if a model search is started from GARCH(1,3).
It is of interest to compare OGARCH(1,1) and GARCH(1,2) since the spell ef-

fect can be absorbed by extending lag windows of the GARCH model. However,
these models are not nested with each other and not comparable directly. Since
GARCH(1,2) is nested in OGARCH(1,2), the OGARCH(1,2) model is estimated for
comparison. � turns out to be signi�cant, the OGARCH(1,2) model is found to be
more desirable than the GARCH(1,2) model. Increment in the log likelihood value is

4 This study was also suggested by a referee.
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Table VI. Higher Order Models

Parameter � �0 �1 �2 �3 � � logL

Order (1; 2)

GARCH :028 :263�� :086 :213 :604�� �1853:5
OGARCH :052 :333�� :048 :138� :550�� :237� �1843:1

Order (1; 3)

GARCH :028 :551�� :091 :257� :130 :304�� �1852:2
OGARCH :006 :624�� :049 :113�� :080 :277� :275� �1842:2

Note: * and ** indicate signi�cant coef�cient at 5% and 1%, respectively. The number of
observations is dependent upon the lag orders. SEs are omitted to save space.

not small, either. Similar results are found in OGARCH(1,3). The spell effect can be
absorbed by lag windows, but the spell term is found useful in analyzing this series.

3.7. EGARCH MODEL

The extension of EGARCH model referred as OEGARCH model is

log(ht) = �0 + exp(�t�1) [�1zt�1 + �(jzt�1j � E(jzt�1j))] + � log(ht�1): (9)

The OEGARCH(1; 1) model reduces into EGARCH(1; 1) when � is zero.

Asymptotic properties of OEGARCH(1; 1) are not derived, but the QML method
is applied to the same sets of data. Results are tabulated in Table VII. The � coef-
�cients of Shcomp and Nikkei are both insigni�cant, and other coef�cients of the
EGARCH and OEGARCH are similar. The OEGARCHmodel does not perform bet-
ter than the EGARCHmodel for both series. Note that the GARCH and the EGARCH
models are neither nested with each other, nor comparable by the quasi log likelihood
values, either.

4. Conclusion

The GARCHmodel is modi�ed to capture the effect on volatilities of the consecutive
number of days of positive or negative shocks. Spells of positive or negative shocks
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Table VII. OEGARCH and EGARCH Estimation

Parameter � �0 �1 � � � logL

Shcomp
EGARCH
Coeff �:029 :029� �:119� :968�� :188�� �1828:4
SE :036 :010 :039 :014 :037

OEGARCH
Coeff �:042 :031�� �:114� :966�� :181�� :022 �1828:1
SE :042 :030 :038 :044 :068 :071

Nikkei
EGARCH
Coeff :000 :012 �:062� :983�� :172�� �1948:0
SE :035 :008 :027 :082 :040

OEGARCH
Coeff :000 :012 �:060� :983�� :167�� :013 �1947:9
SE :035 :008 :028 :008 :051 :088

Note: The numbers of observations are 1103 and 1135 for Shcomp and Nikkei respecti-
vely. * and ** indicate signi�cant coef�cient at 5% and 1%, respectively.

are expected to have positive effect on volatilities. The new model nomenclatured
OGARCH is applied to the Shanghai Shcomp and Nikkei225 indices and found
particularly useful in analyzing the Shcomp index. Similarly, the EGARCH model
is extended to the OEGARCH model along the same line and is applied to the same
sets of data.
The OGARCH model describes the dynamic behavior of conditional volatility

better than the GARCH model in analyzing the Shcomp index series. This result
holds for three sets of ARCH lag orders; (1,1),(1,2), and (1,3). The new model does
not perform well in the Nikkei225 index series. This may imply that the Shanghai
market has different features from the Tokyo market as Kang et al. (2002) and Chen
and Shih (2002) have reported.
Only �fteen years have passed since the Shanghai market was established. In-

vestors might be still immature, and they might have been in�uenced by spells of
positive or negative shocks. Conditional volatilities but not the mean returns might
have increased as investors face consecutive positive or negative shocks. Theoretical
justi�cation is needed to explain this phenomenon.
The OGARCH model is simple and can be extended into other directions. For

instance, the spell term exp(�t�1) can be replaced by a function of some other
variables. It is also of interest to apply this model to other series, particularly, to
market indices of newly established stock exchanges in the world.
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5. Appendix

The strict stationarity conditions are derived and the asymptotic theory of OGARCH(1; 1)
is established in this appendix. The asymptotic distribution is necessary for applying
Wald tests.

5.1. STATIONARITY

De�ne
�(zt�1; t�1) � �1z

2
t�1 exp(�t�1) + �;

then a new representation of equation (3) is

ht = �0 + �(zt�1; t�1)ht�1: (10)

A proposition follow.

PROPOSITION 1. LetE[log �(zt�1; t�1)] be nonzero. There exists a strict-stationary
solution iff E[log �(zt�1; t�1)] < 0: If there exists a solution, it is unique.

Proof. Proof is based on Zakoian (1994).
(i) Suf�ciency.
Suppose E[log �(zt�1; t�1)] = � < 0. Repeated substitutions in equation (10)

yield

ht = �(zt�1; t�1)�(zt�2; t�2) � � � �(zt�p; t�p)ht�p

+�0

p�1X
i=0

�(zt�1; t�1)�(zt�2; t�2) � � � �(zt�i; t�i); (11)

with the convention that �(zt�1; t�1) � � � �(zt�i; t�i) = 1 for i = 0.
Since t is a function of (zt; zt�1; � � � ), log �(zt; t) is a function of (zt; zt�1; � � � )

which are i:i:d:, then flog �(zt; t)g is a strictly stationary ergodic sequence by
Theorem 3.5.8 of Stout (1974). Moreover, by the Ergodic theorem (Stout, 1974),

lim
i�!1

1

i

i�1X
k=0

log �(zt�1�k; t�1�k) = � a:s: (12)

Since � < 0, it follows that

lim
i�!1

�
�(zt�1; t�1)�(zt�2; t�2) � � � �(zt�i; t�i)

� 1
i = e� < 1 a:s: (13)

Hence, �t exists which satis�es

�t = lim
p�!1

pX
i=0

�(zt�1; t�1) � � � �(zt�i; t�i)�0 a:s: (14)
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by the Cauchy root test.
The �t process is also strictly stationary because it is a function of flog �(zt; t)g.

De�ne "t = �tzt for all t, then, the "t process is a solution of equations (2) and (3).
It is apparent that "t is strictly stationary and ergodic.
(ii) Necessity.
Suppose that E[log �(zt�1; t�1)] = � > 0.

ht �
p�1X
i=0

�(zt�1; t�1)�(zt�2; t�2) � � � �(zt�i; t�i)�0

for all p by equation (11). This series diverges as e� > 1 by equation (13); thereby,
ht also diverges. Hence, the condition E[log �(zt�1; t�1)] = � < 0 is necessary.
(iii) Uniqueness.
When E[log �(zt�1; t�1)] < 0, �(zt�1; t�1) � � � �(zt�i; t�i) in equation (11)

converges to zero by using equation (13). Therefore, �t and "t processes must be
unique. �

5.2. CONSISTENCY AND ASYMPTOTIC NORMALITY

Conditions for the consistency and the asymptotic normality of the QMLE (QML
estimate) are summarized as a proposition. They are derived by modifying the proof
of Weiss (1986) for the ARCH model.

PROPOSITION 2. �0 � (�00 �10 �0 �0) is the true parameter vector of � � (�0
�1 � �), "t0 and ht0 are the true variables of "t and ht, and

(a) "t0 satis�es strict stationarity condition and is ergodic, E("8t0) <1, the distrib-
ution conditioned on It�1 of "t0 is continuous where It�1 is the information set
containing information on the "t0 process up to and including t� 1.

(b) ht > 0, �0 > 0, �1 � 0, � � 0,

(c) The parameter space � is a compact subset of the Euclidean space, �0 2 �,

(d) � < (1=4) log 2:5

Under these conditions, the QMLE �̂T of the OGARCH(1; 1) model converges to
�0 in probability. If detB0 > 0;then

p
T (�̂t � �0) d! N(0; A�10 B0A

�1
0 );

where

A0 � �E[r2LT (�0)] =
1

2
E(h�2t0 rhtr

0
ht) + E(h

�1
t0 r"tr

0
"t)

5 The upper bound of � can be larger than (1=4) log 2 if higher-order moments of "0t exist. Proof
follows by using the Hölder instead of the Cauchy-Schwartz inequality.
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14 QINGFENG LIU and KIMIO MORIMUNE

and
B0 � E[TrLT (�0)r

0
LT (�0)]:

The consistent estimators of A0 and B0 are

ÂT =
1

2T

X
h�2t rhtr

0
ht +

1

T

X
h�1t r"tr

0
"t

����
�=�̂T

;

and

B̂T =
1

T

X
rltr

0
lt

����
�=�̂T

;

respectively.

Proof. Next lemma is a modi�cation of the lemma (3.2) of Weiss (1986), and the rest
is easily proved following Weiss (1986). �

LEMMA 3. Under the conditions of proposition 2, there existsM <1 such that

E

�
@ht
@�

@ht
@� 0

�
< M

for all � 2 �. Moreover,

detE

�
@ht
@�

@ht
@� 0

�
> 0;

where � = [�0 �1 � �]0.

Proof.
By the conditions, � < 1. Differentiating the equation (3),

@ht
@�0

= 1 +
1X
i=1

�i =
1

1� � <1;

@ht
@�1

=
1X
j=0

("2t�j�1�
j exp(�t�j�1));

@ht
@�

=
1X
l=1

l�l�1[�0 + �1"
2
t�l�1 exp(�t�l�1)];

@ht
@�

=
1X
i=0

�i�1t�i�1 exp(�t�i�1)"
2
t�i�1:
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The second moment of @ht@�1
is

E

"�
@ht
@�1

�2#
= E

264
0@ 1X
j=0

("2t�j�1�
j exp(�t�j�1))

1A2
375 (15)

=
1X
i=0

1X
j=0

�i+jE
h
("2t�i�1 exp(�t�i�1))("

2
t�j�1 exp(�t�j�1))

i

�
1X
i=0

1X
j=0

�i+j
h
E["4t�i�1 exp(2�t�i�1)]E["

4
t�j�1 exp(2�t�j�1)]

i 1
2

� (E exp(4�t))
1
2 (E"8t )

1
2

1

(1� �)2

where the second quality is by the monotone convergence theorem, and the Cauchy-
Schwartz inequality is repeatedly used. Further, we have

E[exp(4�t)] =
1X
i=1

(qip+ qpi) exp(4i�) (16)

=
1X
i=1

(Ci +Di);

and,
Ci+1
Ci

=
qi+1p exp(4(i+ 1)�)

(q)i p exp(4i�)
= q exp(4�) < 1

Di+1
Di

=
pi+1q exp(4(i+ 1)�)

piq exp(4i�)
= p exp(4�) < 1

where the assumption (d), and p = q = 1=2 are used. The latter follows since the dis-
tribution of zt is symmetric. Then (15) is bounded since (16) is �nite by d'Alembert
ratio test,� is compact,E("8t ) = E("t0+�0��)8 <1. Boundedness of the second
order moments of the �rst derivatives can be proved similarly. Therefore the �rst part
of the lemma is proved.
If the second part is not satis�ed, there exists � 6= 0 such thatE

h
�
0 @ht
@�

@ht
@�

0 �
i
= 0.

This implies �
0 @ht
@� = 0; a:s: for all t. Substituting "t = "t0 + �0 � � into �

0 @ht
@� =

0; a quadratic equation in "t0 follows which has at most two solutions. Then, "t0
can not be a continuous non-degenerate random variable conditioned on It�1 which
contradicts with assumption (a). �
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