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A NOTE ON THE BOUNDEDNESS
OF A SET OF SADDLE-POINTS%

BY HIROSHI TOSHIMA

1. It is well-known that a saddle-point plays animportant role in the
theory of mathematical programming. The Kuhn-Tucker theorem
of concave programming, as is frequently quoted, states that a
maximun problen;): |

Maximize f(x) subject to »=0, g(x)=0.
is equivalent to a saddle-point problem:

Find a non-negative saddle-poirit of p(x,u)= f(x)+u.g(x)?)
under some qualifications on g(x). Among a number of qbnstraint
qualifications, the relations of which were extensively studied in
{1), we are interested in the so-called (weak) Slater condition:

(S) There exists an =0 such that g(3)>0.

In the present note we shall show that, under strong version of the
Slater condition, a set of saddle-points of concave-convex function

is bounded.

2. Let ¢(xu) be a real valued function defined for =0 and u=0.

By a saddle-point we mean the vector (¥,u) such that

% The author is indebted to Professor Kose for his criticisms.

1) Throughout this paper, » denotes an n-vector whose i-th component is
x and u denotes an m-vector whose j-th component is #;. g (x) is an
m-vector valued function.

2) Let f(x) be a utility funetion and g(x) an excess supply function of
resources, then a saddle-point of ¢ (x,4) may be interpreted as an
equilibrium point.
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%20, u0,

e SeGu)=Se(ru) for all #=20, u=0.
Let & denote a set of saddle-points. ¢ (x,u) is differentiable with
respect to ¥ and ». We shall assume that

(G) There exists an (3,u)=0 such that
dp(x,u) <0,

ax‘ 1= 1,..-,1@’
LACADN >0, j=1,-m
ouy -7 ’ )

Now it is obvious that (G) implies (S) if @(xu)=F(x)+ug(x), so
that (G) also makes the reduction of a maximum problem into a
saddle-point problem possible. We call the condition (G) the strong
'Sla,ter condition. We can prove

THEOREM : Let ¢(x,u) be concave in x and convex in u and diffeventiable
with vespect to x and u. If the strong Slater condition (G) is satisfied, then
S is bounded.
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3. PROOF OF THEOREM. If & is empty, then the theorem is
! '
trivially true. In what follows we shall assume & = ¢. For the

~«differentiable concave-convex function, we have

oRAa AN i (x “ (Gi—2)—3 aqoa(;;“) (ug—us)=0 for all x20, u=0
=7 j=1

-where (x,,-u,xn,u,,m,'ﬁm) is any vector in &. Because & is lower
bounded by the definition, there exists, if © is not bounded, some
sequence {5’} or {u)}
such that

1<i<mn,

lim %} = + oo,

V0

x{y’ is #-th component of some vector which belongs to &
or
1=5=m,
lim uj' = + co,
n->»00
u;P is n+j-th component of some vector which belongs to &.
_Without loss of generality, we assume the existence of the sequence
=},
By putting
iy a¢(%’&> " A
PGPy =205 Gz
)
we can infer that in view of (G)

lim F(7) = — o

which leads to a contradiction. Q. E.D.

3) 1f we assume only the first (second) inequality in the codnition (G)
holds, then & is bounded with respect to x-components (#-components).
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4. It is easily shown that & is closed if ¢(xu) is continuous with
‘respect to » and ». Hence it follows from the above theorem that
© is compact provided that ¢ (x,u) is differentiable concave-convex and

the stvong Slater condition (G) holds.
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