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The purpose of this paper is to detect and propose "nYIYAY'''; 

els to forecast the Value-at-Risk (VaR) of A-Share index of 
ket. We apply OGARCH-class models (Liu and Morimune 

mod­
Mar-

mate the and forecast the one-day-ahead VaR of the returns 
of the A-Share index of Shanghai market. By comparison, we show that 
the OGARCH-class approach outperfonn the related GARCE-class models. 

we propose some combined models of OGARCH and EVT mod­
studies described herein show that these combined models 

'v,"", .. "' .... than other models used in this paper. 

1 Introduction 

In this paper, we detect appropriate models to forecast the Value-at-risk (VaR) for 
the A-Share index of the Shanghai Stock the A-Share index, see 
Liu and Morimune Some OGARCH-cIass OGARCH 
and OEGARCH models proposed by Liu 311d Morimune are applied to 

VaR and to forecast the VaR of the retl101s 1 of 
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I Define the log rerum as Yt = In (X,j:Ct_l) , where Xi. denotes the closing price of the tth day. 



the A-Share index. For VaR is simultaneollsly estimated and forecast 
using other models. The of the models are then evaluated the 
results of forecasts and some tests. The results show that the OGARCH approach 
outperfonn the related GARCH-class models, \vhich do not account for the effects 
of spells of shocks of shocks to see Liu and Morimune, 
some combined models of OGARCH and EVT models are as a 
approach. studies described herein show that these combined models 
provide better than other models used in this paper. 

The outline of tlus paper is as follows. First, a definition of VaR is III 

section 2. Section 4 to 6 present a review for estimation and methods 
of VaR the EWMA model, GARCH-c1ass EVT models and some 
joint models of the GARCH-class and EVT models. The way to some of 
these models our OGARCH-c1ass models is also described. In section 7, new 
aor)rollcll is combining OGARCH and EVT models. Section 8 shows 
some methods for and comparing these models. In section 9, VaR is 
estimated and forecast for the A-Share index various models described in 
previous sections. Moreover, the perfonnances of these methods are compared. 
Finally, a conclusion is in section 10. 

2 Definition of VaR 

Several versions of the VaR definition exist. For an asset. the VaR can have two 
sorts of definitions with respect to the or that an investor 
holds. Our study specifically address the risk of loss. Therefore, a 
definition of VaR is adopted here for a long for daily data. For a long 
.... v~ .... v·u with a small probability a and a time index t, we define VaR as 

A loss 
tth 

VaRt,a == Ya inf (y) :2: (2.1) 

is the cumulative distribution function of log retllms Yt and Ya 
of F. For a long such VaR conesponds to a threshold. 

than this threshold occurs with probability equal to a on the 
For a short position, the definition of VaR is 

F aRt ,a == Yl-a inf 1 

3 Approach with EWMA model 

The EWMA models were developed 
are also called RiskMetrics TM . .n,\J',",V,'u.. 
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JP 
to 

Chase and Co.: the models 
(2002), the EWMA models can 



be eX[lreSSed as an IGARCH(U) model without a drift. We express the EWMA 
model as 

Yt = P + €t 

€t = }h;Zt 

ht = (1 - A) 

1) 

+ 

where is assumed as \vhite noise with mean 0, variance of one, J.P. Morgan 
the value of A, 0.94. The unknown p, can be estimated us-

likelihood estimation The methods for 
VaRs resembles those of the GARCH-class which will be described in the 

"""",",\.lUI!; section, 

4 Approaches with GARCH and OGARCH-class models 

A method for forecasting VaRs for some assets uses GARCH-class mod-
(2002) and Dowd (2006) useful examples. The aPl:lro,lcn 

OGARCH-class models is a simple of GARCH-class model aPt)ro~lch. 
We show a common method for both GARCH and OGARCH-class models, 

Denote the log return of assets as Yt, a GARCH or OGARCH-class 
model can be expressed as 

(4,1) 

\vhere h t is called volatility, Xt is a vector including of and Wi 

is a vector including lags of ht and of €t, In addition, Zt is an i,Ld, white noise 
process following a random distribution with cumulative distribution function F 
, with mean 0 and variance of I, and f (-) and g (.) denote any well-behaved func­
tions, When the log returns of some asset confonn to such a model, the VaR of a 

position on the tth day is calculated as 

p + f (xt) + za}h; (4,2) 

where Za = inf {ziF , for a small probability: 0 < a 1. 

To forecast VaR for a GARCH-class modeL the unknown must 
first be estimated, The method is used here. As a ~'UM"'''~' for an 
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OGARCH( I, I) model with Zt, a white noise with mean 0 and variance I, following 
Liu and Morimune (2005), \'ie can fonn the expressions 

Yt p. + lOt 

Et (4.3) 

ht. = Cl'o + Cl'J + 

Once we obtain the estimates of ,",V'_AH,",'", 0:1 "fJ, ¢ and and assume 
Zt ~ N (0, we can forecast the VaR with a 0.05 for time t + 1 as 

= fi - 1.65 x 

where the value 1.65 is used as the 
and 

quantile of a standard nonnal distribution, 

+ + /3ht - 1 (4.5) 

is the estimation of h t . The forecasting methods for other GARCH-class models 
are similar. We show some related to VaR OG­
ARCH and OEGARCH models and some other GARCH-class models in section 
9. 

5 Approach based on EVT 

Another popular approach for forecasting VaR is based on a theory called EVT. 
In tins we first a brief review of EVT, which includes theories of 
generalised extreme-value distribution 

Basic methods for estimating and VaR based on EVT are pre-
sented next, followed by a description of how to address dependence of data. 

5.1 VaR using 

The theory of which is used to 
theorem (Fisher and (1928» 

VaR, is based on the 
GEV can be 

an asymptotic distribution of the extreme value of some random variable. 

5.1.1 Del'ivation and basic 

Let {Xi}, i 1,2, ... , n, be a independent random sample from some underlying 
distribution then define == max ). If the cumulated distribution function 
F satisfies some then two sequences, en, bn1 and a parameter'; 
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exist such that the nornlalized minimum 
following distribution 

asymptotically follows the 

H lim P { ~ x} 
n->oo en 

{ e~p -II') for ~ :f. ° (5. I) 
exp exp ) for ~ = ° 

F.""",.uu""u extreme-value distribution 
of GEV It is a representation of 

the Fisher-Tippett theorem 

tIus nrpCPll,t",ti 

the extreme value distributions discovered 
and Tippett (1 

The h\-'o sequences en and sometimes are called location series and series of 
scaling factors: the ~ is called shape parameter (see Tsay (2002)). The 
shape ~ indicates the of the tail of the distribution F: 
the larger tIle value of ~ the fatter the tail of the F. Q = is called the tail 
index in financial studies. For 0: of a Student t-distribution is its 
of freedom: for a normal distribution ~ ::::: 0, 0: = 00. 

Relative to different values GEV is separable into three types: the Gumble 
distribution for ~ 0, the Frechet distribution for ~ > 0, and the Weibull distribu­
tion for € < 0. A summary of the characteristics of the underlying distribution F 
of these three is tabulated in Table 5.1: 

Frechet 

Weibull 

Table 5.1 

0, ° 
O,a > 0 truncated at:1: = l/€ 

of F 

ganllla 

student's t, Pareto 

beta 

From Table the Frechet is seen to correspond to an distri-
bution F whieh has fat tails. Numerous studies have revealed that the distributions 
of returns of financial assets have a fat taiL Therefore, the Frechet will be 

as we analyze VaR for financial assets. 
iflerenliating eq. (5. I), one can derive the probability 

2Fol detaIls of MDA, see Embrecllts et al. (200 I). 
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relative to H as follows 

h (x) { 
+ 1) 

exp 

for t; #- 0 

for t; :::: 0 

where x satisfies 1 + > 0, In our we specifically examine the VaR 
of long positions, For that reason, the concem is on the left tail of the underlying 
distribution the GEV for normalized j\f n == min (Xi) is 
U sing simple one can derive the formula for M n from that of 

H lim p{ 

{ ~ exp 

exp 

and density function of en 

f {
(I 

exp[x 

bn } 2:x 
en 

(1 - .. 1/ 1;) 

exp 

(1 - -1 

for t; #- 0 

for t; = 0 

for t; #- 0 

for 0 

for detail see 
follows: 

(2002),,'. From eq. (5.4), we can derive the PDF of 

(5.4) 

as 

{ en ( 1 
-1/1;-1 [( 

exp - 1 for t; #- 0 

1... exp 
en 

(Mn-bn)] - exp ----c;::-- for t; 0 

where 1 0 

5.1.2 Estimation 

as shown in equation (5,5), one can perfoml maximum likelihood esti-
mation to estimate the unknown parameters of GEV for a sample 

} ,i 1,2,' . " n x m., one minimum exists. With only one observation, 
MLE does not work. presents a means to solve tlus problem, He di-
vide the into m blocks with equal and obtains an minimum, 

for k 1) 2, .. " m, for every block. the minima of m blocks as 

3The definition of t; is different from the definition of kin Tsay (2002). 
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one can use this 
LO.'"'U'''JVU function is 

to estimate parameters of GEV 

In l In (III n,k } , 
k=l 

is the PDF of the block minimum. 

5.1.3 Selection of nand 112 

An empirical exists on MLE of GEV For different values of n ,ve will 
we obtain different estimates of and For en and this does not seem 
serious because the true values of en and are vary with the true 
value of E, does not vary: the selection of the size of blocks nand 
the sample size of 112, becomes very important. Because a large value of 
n can raise the quality of the minimum, and because a value of 112 give us 

to increase the of MLE, we want to use large nand 
greatest possible ,,,e must confront the restriction 

size of 
take a balance for nand 112. one way to 
solve tins problem is to first estimate unknown parameters with various nand 112; 

thereafter, as the final estimates, we can select the estimates relative to the nand 
112 which to the most performance. 

5.1.4 Estimation and fOl'ecasting of VaR 

From one can derive the ath quantile of GEV for minima 

{ 
bn + { 1 In (1 -

bn + en In { In (1 - a)} 

then use the relationship 

it is apparent that the 
is calculated as 

1 - {I - P 

} for =1= 0 

for = 0, 

to probability a* ::::::: P 

_ { bn + {I In(l-a*»-t;,,} for =1=0 

bn + en In In (1 - a*)} for = O. 

For detail to see Tsay (2002) and Dmvd (2006). 

::; !ll.a), 

(5.6) 

For '\'e use the VaR that was estimated using the sample up to time 
t as the of VaR for one time interval time t + 1. 
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Analyze VaR by GPD 

Embrechts, Kltippelberg, and Mikosch (2001) show us another EVT approach. 
Tllis is based on GPD .. Assuming , i 1,2,' . " n. is an ii.d. 

from an distribution F, and F is in the MDA of H. Conse-
quently, 

where 

and 

f'u(x)=P(X u< > 

{
I - (1 + 

Gf.,c(u) (x) = 1 exp ( 

Pareto distribution (GPD). 

for ~ '" 0 
for <; = 0 

derives the density function of GPD for <; 2: 04 as 

+ 
-l/f.-l 

, e ?:: O. f 
1 
e e 

define ::::::xi-u,i=l,2,···, 
is the number of Xi regarding 1) 2, .. 

as a sample from GPD, one can estimate unknown parameters MLE 
the log-likelihood function as 

In I (Z] )' . " Ie, <;) In (c) ( 1) IV" ( 1 + - LIn 1 + 
<; ;=1 e 

where ~ 2: 0, e ?:: O. 
For a short position, Kltippelberg, and Mikosch (200 I), 

once t and C, the estimates of ~ and c, are obtained, then the VaR for level a can be 
estimated as 

=u { -1 . 
-~ } 

(5.7) 

For forecasting, because the method resembles that for GEV, its is omit-
ted here. 

For a long position, for a new series 

{Yd:::::: }, yielding (y) for }. 

D. which correspond to distributIOns WIth fat tails. 
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5.3 EVT for OelJenOelJl data 

The EVT described above operates under an i.i.d. Can \ve apply such 
inference ofEVT to extreme values of non-i.i.d. data as well? The answer 
is 'No'. for some classes of strictly stationary processes, the answer is 
'Yes', for \vhich we can calculate VaR using the same method as that based on 
EVT of Li.d. data. 

According to Embrechts. K1i.ippelberg, and Mikosch (200 I), if an Li.d. se-
1,2,"', n, and a strictly sequence {yt} t 1,2"", n 

.""',..,"~' distribution, then we have 

(5.8) 

where en, and H are the location factors and GEY, 
In () is called extremal index. simple algebra, one 

can shm". that = H + for some c 0, d E which means that 
choosing some appropriate series as Cn and one can obtain H(), which is in the 
same form of H. In other words, if has a then also has a 

) which takes the same fonn as the difference is that of paI·arrletl~rs. 
we can perfonn MLE and forecast the VaR for no-Li.d. data by the 

same maImer as for i.i.d. data described above. 

6 Joint approach 

McNeil and (2000) present a to estimate and forecast VaR for a 
heteroscedastic financial time series. fit a GARCH-class model to data using 
vn'LLd-'. then GPD to the standardized residuals of the GARCH-c1ass model. 
We define the standardized residual for a GARCH-class models as 

e* t 

where it and ht are the estimate of E:t and 
is as follows: 

The procedure for this joint 

1. Estimate unknmvn TV:\r·.,,,,,,,,,,rc of a particular GARCH-class model for 
returns using QMLE. 

1) 

2. Calculate residuals of these GAR CH -class models according to the parame­
ters estimated in step 1. 
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3, Calculate the standardized residuals et: following eq, (6.]). 

4 GPD to the standardized residuals ei. 

5. Calculate the predictive values ofVaRs according to eq. (5.7), 

In step I, to I'Iprtnrm Weiss (1986», an jj,d, assumption for 
The distribution of disturbance does not need to be 

assumed as a specific distribution. Using one can obtain consistent estima-
tors with under some reasonably conditions. For the OGARCH-
class models, we can construct joint models in a similar manner. 

Using some of empirical McNeil and (2000) show that 
such a joint outperforms which use GARCH-c1ass models 
or GPD alone because tills joint can take account of the dynamic struc-
ture by the GARCH-c1ass models and the fat tail characteristic of the standardized 
residuals by GPD. 

We also construct joint models of GARCH-c1ass and OGARCH-class models 
using GEV models. The procedure forestimatioll is similarto that of joint approach 
of GARCH and GPD models, In order to save space, a of this similar 

is omitted here. 

7 A practical combined approach 

We propose a new approach by combine OGARCH model and EVT models to 
the of VaR models with respect to cost of risk man-

as,_""_,,,. One can construct combined models of other GARCH-class models and 
EVT models similarly. This approach can be by other GARCH­
class models. The estimator of VaR for the left tail with level a on tth for tlus 
approach is defined as 

= max I) 

\"here and denote the predictive value of VaR by 
OGARCH-class models and EVT models "nT1TC"W 

procedure for this combined ap~)ro,ICh is as follows: 

I. Estimate unknown parameters of a 
retums. 

with level of a. The 

OGARCH-class model for 

2. Apply GEV or to retums and estimate unknown parameters 
by MLE. 
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3. Forecast VaR according to the parameters estimated in step I and 2 to obtain .---- .----
VaRO,a,t and VaRE,Q,t. 

4. Calculate the predictive values of l~C,a,t using eq. (7.1). 

The idea of tlus approach is very simple. However, for investors \vho want 
to limit cost of risk management or take some measures to meet BIS regulations 
(the Basel Committee on Banking Supervision (1995) and the Basel Committee on 
Banking Supervision (1996)), tlus approach is extremely useful. It incorporates 
advantages of both OGARCH and EVT models. We will argue what these advan­
tages are and provide some evidence for tills point by presenting some results of 
empirical studies in section 9. 

8 Evaluation methods 

Many methods exist to evaluate the performance of various VaR models. They 
have an identical character, llsing the predictive value for previous days. There­
fore, these methods are called backtests by some researchers. First, three popular 
likelihood ratio type backtests are reviewed. Secondly, we shO\v hO\v to evaluate 
models according to the daily capital requirement. 

8.1 Likelihood ratio tests for coverage probability 

Christoffersen (1998) proposed three likelihood ratio tests for coverage probability 
to evaluate VaR model performance. The coverage probability is 1- a in our setup, 
,,,here a, the level of VaR, is set by researchers or investors. The first LR test test 
has a null hypothesis, Ho : a* = a, and altemative hypothesis, HI : a* -I- a, 

where a* is the probability of unconditional coverage failure. a* can be estimated 
as ii* = min, where n is the total number of days in the predictive interval. Also, 
m is the number of violations: the number of observations \" luch are smaller than 
the related predictive values of VaRs. The LR statistic takes the following form: 

(8.1) 

it converges in law to X2 with one degree of freedom. 
The second is for testing whether the violations are time-independent. The 

null hypothesis is independent. For a random sample {xL} , n and l~t = xL 

II 



t 1,2," n, 

aOl P 

all = P 

The statistic is as follows: 

which converges in law to 

are the estimates of aOl and all 

n 

1200 

n 

nOJ 

t=2 
n 

nJO 

nIl 

t=2 

I 

I (Xt-J 

I 

I 

where I (.) is the indicator function. 

< 
> 

) 
) . 

of freedom. In 

+ nOJ) 

+ nll) 

and 

< x;-J, Xt 2: 

2: x~_l' Xt < 

> ,Xt 

(8.2) 

(8.3) 

(8.4) 

(8.5) 

(8.6) 

The last is a joint test of coverage and 

nation of LRuc and 

The statistic is a combi-

which converges in law to 

pendence can be tested 

with two 

using LRcc. 

8.2 Daily requirement 

(8.7) 

of freedom. Coverage and inde-

Another evaluation method is based on the BIS mle daily re­
quirements. to the Basel Committee Basel Conunittee on Bank­

ing Supervision (1995) and the Basel Committee on Banking Supervision 
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banks are allowed to use internal models to forecast their daily VaRs. 
to these predictive values of capital requirements are to banks. 
the Basel Committee on (1995) states that a daily capital re-
quirement must be set as the of the previous day's predictive value of 
or an average of predictive values of VaRs on last 60 days times a scaling factor k, 
which is usually than 3. The capital requirement can be expressed as 
the following: 

max (I 
Therein, 1·1 the absolute value. 

In order to encourage banks to refine their VaR models, Basel Committee 
(the Basel Committee on Supervision (1996)) proposed a mle of penally. 
Banks with internal models that numerous violations must be 
a high daiJy A is imposed as an increase in 
k. That increase is relative to the number of violations. 

factor 
to the Basel 

Committee on Table 8.1 presents details related to 
the penally mle for a case based on 250 daily obsenJalions of VaRs. 

Table 8. L BIS Rule 

Zone N umber of violations Increase in k 

0 0 

0 

Green 2 0 

3 0 

4 0 

5 0.4 

6 0.5 

YellO\v 7 0.65 

8 0.75 

9 0.85 

Red 10 1 

The information in this table is from Basel 
Committee(l996). 

According the mle described above, one can calculate values of daily capital 

13 



requirements, using factor k derived based on Table 8.1. The mean value of 
daily capital requirements is useful to evaluate various VaR models. We abbreviate 
it to MDCR hereafter. 

9 Empirical analysis 

Lin and Morimune (2005) show that the OGARCH model is useful for analyzing 
the log returns of A-Share of the Stock Exchange. As an empirical study, 
in this section, v,e forecast VaRs for returns of the A-Share index of the Shang-
hai Stock For ''I.e forecast VaRs lIsing other GARCH-class 
HIVU"''>. EVT models, models and the combined models as ,veIl. As a prelim-
inary before the we examine the data and estimation 
results of some of these subsection. 

9.1 Data and pR:linlin,a .. yanalysis 

The data are the returns of the A-Share as used in Liu and Morimune 
(2005). To check whether we need to EVT or joint models to A-Share 
we the characteristics of the standardized residuals e;. For the 
standardized residuals e't of the 1) model, are calculated as follows 

/ 
+ exp (YI-1 - pl] + (9.1) 

where P. &1, ¢ and /3 are the estimates of parameters. 
We calculate the et for GARCH-class and OGARCH-class models for the A­

Share data the estimates in Tables 9.1 and 9.2. For these the 
sample period of the A-Share index extends from 5 January, 2001 to 29 "et)[ell1D1er 
2006. 
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Table 9.1: OGARCH and GARCH Estimation 

Parameter 0:0 0:1 !3 logL 

A share 
GARCH 
Coeff -0.0069 0.0849** 0.1254*' 0.836 1**' -2297.93 
SE 0.0332 0.0267 0.0336 0.0332 
OGARCH 
Coeff -0.0227 0.0918** 0.0625* 0.8353** 0.2916** -2290.67 
SE 0.0333 0.0264 0.0278 0.0338 0.1047 

Note: The sample period of the A-Share extends from 5 January, 2001 to 29 Sep­
tember, 2006. * and ** indicate significant coefficient at 5% and 1 %, respectively. 
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Table 9.2: OEGARCH and EGARCH Estimation 

Parameter fi, ¢ L 

EGARCH - Coeff -0.015.5 0.0280** -0.0596* 0.2115** 0.9654** -2280.02 
C\ 

SE 0.0316 0.0100 0.0281 0.0412 0.0141 
OEGARCH 
Coeff -0.0674' 0.0308** -0.0420 0.1551** 0.9615** 0.1390 -2278.71 
SE 0.0::315 0.0101 0.0276 0.0435 0.0145 0.08:34 

Note: The numbers of observations is 1381 for A-Share. * and ** indicate coefficient at and 



The summary statistics of et; for several GARCH-class and OGARCH-class 
models are s11m"11 together with the statistics of the log retu01s, Yt, in Table 9.3. 

the second line in Table we can see that after standardization by 
conditional volatilities, the kurtoses of of these models more closely approxi-
mate 3, the kurtosis of standard normal than the kurtosis of log 
retums. Nevertheless, the kurtoses of the four models are all than 5, which 
indicates that e; of these models follow distributions \\lth fat tails. 

We draw QQ-plots for et' a standard n0011al distribution and log rehlO1S 
Yt. The graphs are shown in 9.1 and 9.2. 9.2 shows that the tails 
of e; are less fat than that Therefore, it can be concluded that GARCH-class 
models can cancel fatness of the tails to some extent. 9.1 indicates 
that these standardized residuals do not conform to a standard 110nnal distrib­
ution: instead, they follow distributions with fat tails. Consequently, 
applying a GARCH-class model with a standard nonnal disturbance approach to 
the A-share index seems to involve some We will examine application 
of other models described above to analyze VaR in sections. 

9.2 Estimation results 

For GARCH-class models and OGARCH-class models. we can find estimation re­
sults in Liu and Morimune (2005). In this subsection, ''lie present estimation results 
of EVT models and EVT models for standardized residuals in the joint 
The sample is set to be from 6 January, 1998 to 29 September, 2006 with 
sample size n 2106. The estimation methods used here are described in section 
5. Two cases of GEV model are estimated: the size of blocks n for one case is set 
as and for the other case, n is 63. The hvo cases are denoted as 
GEV21 and GEV63. to Tsay the value 21 corresponds to the 
number of trading days in one month, and 63 to a quarter, approximately. For 
to guarantee a sufficient sample size of block minimum, we decide the value 
of u according to size of block minimum. Two cases of GPD are estimated 
relative to different values of u: 

• case L 
u {ulcard > t 1 2 ... n} = 180} " , (9.2) 

• case 2, 
u {ulcard {YtlYt > It, t 1,2,· . " n} = IOO}, 

where card(A) represents the cardinal number of the set A, which rehlfl1S the 
number of elements in set A. We denote these two cases as GPD 180 
and GPD 100. The estimation results of these models are tabulate in Table 9.4. 
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Table 9.3: Summary statistics of standardized residuals. 

Mean Skev..-ness Kurtosis 

Log Rehlm -0.Ql 0.64 8.42 

GARCH -0.02 0.27 5.62 

OGARCH -0.01 0.32 5.69 

EGARCH -0.01 0.28 5.47 

OEGARCH 0.03 0.26 5.39 

QQ Plot for GARCH QQ Plot for OGARCH 
8 8 
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QQ Plot for EGARCH QQ Plot for OEGARCH 
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Figure 9.1: QQ plots for e't aginst standard nonna!. 
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QQ Plot for GARCH QQ Plot for OGARCH 
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Figure 9.2: QQ plots of e; aginst Yt. 
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When the estimates hold nonnality, l\;e can perfonn a 
of GEV the estimates of c and bare 
against the null c = 0 and b O. 
significant with a confidence level 5% 

For both cases 
with confidence level 
the estimates of':; are not 

,ve obtain similar results: the estimates of c are v'o"U"vu 

.:; = 0. ForGPD 
but those of .:; 

are not 
Estimation results of ETV models for the series e; of joint models are 

shmvn in Table 9.5 For GEV, the sample size in each block are set as n = 21, for 
GPD the value of threshoId is setas u = {u!card !Yt > Ii, t = 1,2, ... , n} = 180}. 
All estimates are significant except for':;, the of significance of t;: becomes 
more serious. 

In estimations mentioned above, there is a fact cause problem: the total sample 
size of returns is not so large, \ve can not high quality of the sample, 
minima or Yt lager thanll, used in the estimations. Another possible reason is that, 
"hen the tme value of':; is overly near to 0, the power of the test will \yorsen. A 
conclusion cannot be inferred based only on these t tests of coefficients. We need 
to check and compare models some wmch include three coverage 
test and comparisons by number of violations, mean absolute predictive VaR values 

and MDCR. Those ,,,,ill be in the proceeding subsection. 

9.3 Backtests 

We use the first 1806 observations from 6 1998 as a sample to forecast the 
VaR of the 1807tl1 day using the methods described in previous sections. There-

"1"lUl,aUl.H5 the length of ,vindows as 1806, we forecast VaR for the 
300 days. Two series ,vith 300 VaRs with probabilities 

are forecasted. 
The models are evaluated several: the tluee LR type backtests and eval-

uation methods according to the number of MVaRs, and MDCRs. 

9.3.1 LR tests 

We calculate the three and for various models ,:dth 
VaR level a = 5% and 1 %. The results are tabulated in Table 10.1 and Table 10.2. 
The sl.:1tistics all show that no tests can the null hypothesis at 
levels of or 1 %. In other only according to these tests, we can not 
conclude >vhich models are better. 

5For asymptotic IheOlY on ETV. see SmIth (1985). 
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c SD b SD € SD 

GEV21 0.8807 0.0725 -1.9242 0.lO84 0.1103 0.0746 

GEV63 0.8211 0.1464 -2.6549 0.1665 0.3975 0.2485 

GPD180 0.7443 0.0905 0.1339 0.0858 

GPDIOO 0.6733 0.1119 0.2549 0.1526 

SD denotes stadard deviation. 

GEV21 c SD b SD € SD 

GARCH 0.6090 0.0514 -1.6435 0.0774 0.0080 0.0834 

OGARCH 0.6026 0.0514 -1.6358 0.0760 0.0214 0.0872 

EGARCH 0.5874 0.0515 -1.6182 0.0729 0.0350 0.lO25 

OEGARCH 0.5864 0.0502 -1.6104 0.0723 0.0344 0.lO73 

GPDl80 c SD € SD 

GARCH 0.5633 0.0668 0.0397 0.0875 

OGARCH 0.5677 0.0672 0.0333 0.0876 

EGARCH 0.5352 0.0658 0.0637 0.1053 

OEGARCH 0.5239 0.0642 0.0764 0.1090 

The shows the results of the of GEV21 and var-
ious OGARCH and GARCH class models. The bottom panel shmvs the results 

models composed of GPD180 and various OGARCH and GARCH class 
models. SD denotes stadard deviation. 

21 



9.3.2 Evaluate models othcl' measUI'es 

To evaluate the relative ofVaR models for we use the num­
ber of violations, MVaR, and l\1DCR as measures. We infer that numerous vio­
lations reflect low Moreover, usually, investors wish to manage risk 
with a small amount of reservation: banks find it onerous to confonn to high capital 

For those reasons, low MVaR and MDCR indicate high perfonnance 
of the model to them. Models will be evaluated in these respe(;IS. 

We show here how to calculate MDCRs. Using the first 250 of the 300 pre­
dictive values of VaRs as a we can calculate the value of factor 
k, then calculate the value of the daily capital requirement of 25lth day folJmving 
equation (8.8). Maintaining the length of rolling windows as 250 and using the 
same method, we obtain values of daily capital for the period from 
the 251st to 300th day. the mean value of these 50 daily capital 

l\1DCRs, are obtained. 
The first lines in Tables 10.3 and lOA show numbers of violations: the second 

lines shmv MVaR of 300 10.3 is for the case ,vith level ofVaR a = 5%, and 
lOA iffor a = For the case with level ofVaR a the l\1DCRs are shown 
in tbe last line of Table lOA. 

9.3.3 COml)arison 

we compare the OGARCH-class models with GARCH-class models. From 
Tables 10.3 and it is apparent that MVaRs and MDCRs ofOGARCH for the 
a = case and MVaRs for the a = 5% case are less than those of GARCH 
modeL Those of OEGARCH are also less than those of EGARCH. These results 
illustrate that, by the of 'Yt-h into the GARCH-c1ass mod-

we can obtain in terms of risk costs and of 
reducing daily capital reqluu·emlenlts. 

The results of joint models show a similar conclusion of comparison between 
GARCH-class models and OGARCH models. The models of OGARCH 
models produce better results than the joint models of GARCH models, and the 
joint models of OEGARCH models sho,"\' better results than joint models ofEGARCH 
models. Moreover, the results in Tables 10,3 and lOA shm" tl1at the EGARCH and 
OEGARCH models related GARCH and OGARCH models. Further­
more, the results in Tables 10.3 and 10.4 also demonstrate that the performance 
of EWMA is worse than other and the perfomlances of the Joint 
models of EWMA and other models are worse than relative 
models. 

Figures 10.1 and 10.2 depict the plots ofrH'",rhf'tn,t>VaRs with VaR level a 
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1 %. The solid line in 10.1 sho\',$ the values oflog rerums. The dashed line 
is a plot of predictiYe values of VaRs for GARCH model. The dash-dot line is for 
OGARCH models. The dash-dot line is almost ahvays higher than the dashed 
which indicates that the OGARCH model approach can forecast VaR 
the GARCH model but with small mean absolute values of 
VaRs. 10.1 exhibits further support that the OGARCH model 
GARCH model. In to compare the OEGARCH model with the EGARCH 
model, we show their results in Figure 10.2, The graph depicted in 10.2 

the related to Tables 10,3 and lOA: OEGARCH offers <:l1t'1prlf'r 

u"\.,Vlll"'Y, we compare the GEV models with GPD models to the 
three measures: number of violations, MVaRs and MDCR. to the results 
of GEV and GPD models in Tables 10.3 and lOA. The GEV models are 
better than GPD models. 

Thirdly, we compare models \\lth high pelJOln12111C1eS 

models and the EVT models. For the case with a the MVaRs 
of some of the EVT GEV21 and GEV63, are less than that of the OGA­
RCH and OEGARCH models, the numbers of violations of these EVT models are 

For the case, the MVaRs of two GEV models are than those of 
OGARCH and EGARCH models, but the mean value of capital requirement 
of GEV21 is less than OGARCH models, and that of the GEV63 model is less than 
those of GARCH and OEGARCH models, Using these '"'V'"IJ':U"'V 

conclusion about which sort of model is better can be inferred. 
results alone, 

comparing joint models with others, the values ofMVAR and MDCR 
in Tables 10.3 and 10.<4 demonstrate that the joint models have no better perfor­
mance than their related single models, Tltis result differs from that obtained by 
McNeil and (2000), They compare joint models with GARCH-class models 
and GPD models using only binomial tests; find that their joint model is 
better than a GARCH-class model or GPD modeL we can find a 

in their paper (Fig. 8.), which show that model carries out ltigher 
MVAR than other models. Some troubles arise when two models are combined 

A possible reason is that since the distribution of standardized residuals. 
e;, is more similar to a standard normal distribution than that of Yt, it becomes 
difficult to estimate EVT models exactly for e~, We can compare the distributions 
of e; with that of Yt and standard nornial Table 9.3, and 

9.1 togethenvith Figure 9,2 in subsection 9.1. 
comparing the combined models with other models MVaRs and MD-

it is that all the combined models almost all other mod-
els. In Table lOA, the MDCRs of some of them are than that of the GEV 
model. However, their MVaRs are less than that of GEV model In particular, 
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the combined model of OGARCH and GEV models with n 63 (C-GEV63) of-
fers the best perfonnance with respect to MVaR and MDCR. MVaR is 

smaller than the other models. 
vAIJlCUl11 why the perfornlance oHhe combined model ofOGARCH and GEV 

models is supelior to those of other we sho". of predictive VaRs of 
various models in 10.3 and lOA. The figures show that the plots 
tive VaRs for OGARCH model fluctuate which the dynamics 
of returns. In contrast, the plots for ETV models are almost horizontal lines, 
,,,hich can not capture the characteristics of volatility. As described by 
Bekiros and Georgoutsos the EVT models are unsuitable for >V"w'"'U"""'FO 

daily VaR: they are suitable for long-tenn In addition, a 
weak point to GARCH-c1ass models: ''''hen GARCH-c1ass models att(~mlpt 
to cover violations in a high-volatility period, they usually overreact and derive a 

predictive value of which will cause a need for extra require-
ments, Figure 10.5 and 10.6, it can be said that the combined models 
capture the dynamics of returns, and do not overreact in peliods with high 
volatilities. combined models yield low MVaR and MDCR In other 

perfOlmance witll respect to costs of risk management. 

10 Conclusion 

The OGARCH-class models are applied along with other altemative models to an-
the VaR of A-Share index of market The results of some backtests 

and evaluations the number of MVaR and show that the 
OGARCH-c1ass models can provide better perfomlance than the related GARCH­
class models: the GARCH model and EGARCH model. The reason is that OGARCH­
class models can capture the effects of spells of shocks. 

Moreover, the empirical results of comparison between GARCH-class models 
and ETV models show that GARCH-class models can capture the dynamic struc­
hues of log returns, On the other the ETV models can caphue long-teml 
characteristic of VaRs. 

ml1len:nore. combined models were proposed and applied to the VaR 
of the A-Share index. One combined model, which comprises OGARCH-class 
and GEV outperfonns all other models. These combined models are ap-
propriate for VaR of the A-Share index: they are effective witll 
to reducing the costs of risk management. 
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Figure 10.1: plots of VaR for GARCH and OGARCH 
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--DATA 
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Figure 10.2: Plots ofVaR for EGARCH and OEGARCH 
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Figure 10.3: Plots of VaR for OGARCH and GEV models. For GEV n 2l. 
a = 1%. 
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Figure 10.4: Plots ofVaR for OGARCH and GPD models . For GPD the plot is the 
180 case. a = 1 %. 
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--- DATA 
----- GEV21 
-------- OGARCH 
- Combin 
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Figure 10.5: Plots of VaR for OGARCH, GEV and combin models. For GEV 
n = 21. a = 1%. 
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6~--~----~----~----~~==~====~ 
--- DATA 
----- GPD180 
-------- OGARCH 
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Figure 10.6 : Plots of VaR for OGARCH, GPD and combin models. For GPD the 
plot is the 180 case. a = 1 %. 
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P-value 

GEV21 1.0392 0.3080 0.0431 0.8356 1.0822 0.5821 

GEV63 0.2696 0.6036 0.9822 0.3217 1.2518 0.5348 

GPDIOO 0.2934 0.5881 1.1824 0.2769 1.4758 0.4781 

GPD180 0.2934 0.5881 1.1824 0.2769 1.4758 0.4781 

EWMA 0.0687 0.7932 0.0259 0.8721 0.0947 0.9538 

GARCH 0.0717 0.7889 2.0603 0.1512 2.1320 0.3444 

OGARCH 0.0717 0.7889 2.0603 0.1512 2.1320 0.3444 

EGARCH 0.0717 0.7889 0.1742 0.6764 0.2459 0.8843 

OEGARCH 0 0.0828 0.7736 0.0828 0.9595 

J-GEV21 Rue P-value P-value P-value 

EWMA 0.2696 0.6036 0.9822 0.3217 1.2518 0.5348 

GARCH 0.0717 0.7889 2.0603 0.1512 2.1320 0.3444 

OGARCH 0 1.6460 0.1995 1.6460 0.4391 

EGARCH 0.0687 0.7932 1.2884 0.2563 1.3571 0.5073 

OEGARCH 0.0687 0.7932 0.0259 0.8721 0.0947 0.9538 

J-GPD 180 Rue P-value P-value P-value 

EWMA 0 0.0828 0.7736 0.0828 0.9595 

GARCH 0.0717 0.7889 2.0603 (U512 2.1320 0.3444 

OGARCH 0.2696 0.6036 0.9822 0.3217 1.2518 0.5348 

EGARCH 0.0687 0.7932 1.2884 0.2563 1.3571 0.5073 

OEGARCH 0.0687 0.7932 0.0259 0.8721 0.0947 0.9538 

The first panel shows the results of models. The second and third panels 
show the results of the models constmcted of GEV21 with other models, and 
GPD 180 with other 
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Single Model Rue P-value Rind P-value Rec P-value 

GEV21 0 1 0.0608 0.8052 0.0608 0.9700 

GEV63 2.3482 0.1254 0.2458 0.6200 2.5940 0.2734 

GPDIOO 0 1 0.0608 0.8052 0.0608 0.9700 

GPD180 0 0.0608 0.8052 0.0608 0.9700 

EWMA 1.1218 0.2895 0.1701 0.6800 1.2919 0.5242 

GARCH 0.3048 0.5809 0.1085 0.7418 0.4134 0.8133 

OGARCH 0.3048 0.5809 0.1085 0.7418 0.4134 0.8133 

EGARCH 1 1218 0.2895 0.1701 0.6800 1.2919 0.5342 

OEGARCH 1.1218 0.2895 0.1701 0.6800 1.2919 0.5242 

J-GEV21 Rue P-value Rind P-value Rec P-value 

EWMA 0 0.0608 0.8052 0.0608 0.9700 

GARCH 0 0.0608 0.9700 0.0608 0.9700 

OGARCH 0 0.0608 0.9700 0.0608 0.9700 

EGARCH 0.3048 0.5809 0.1085 0.7418 0.4134 0.8133 

OEGARCH 0.3048 0.5809 0.1085 0.7418 0.4134 0.8133 

J-GPD180 Rue P-value P-value P-value 

EWMA 0.3815 0.5368 0.0270 0.8696 0.4085 0.8153 

GARCH 0.3048 0.5809, 0.1085 0.7418 0.4134 0.8133 

OGARCH 2.3482 0.1254 0.2458 Q.6200 2.5940 0.2734 

EGARCH 0.3048 0.5809 0.1085 0.7418 0.4134 0.8133 

OEGARCH 1 1218 0.2895 0.1701 0.6800 1.2919 0.5242 

Combin Rue P-value P-value P-value 

GEV21 0.3048 0.5809 0.1085 0.7418 0.4134 0.8133 

GEV63 2.3482 0.1254 0.2458 0.6200 2.5940 0.2734 

GPD180 0.3048 0.5809 0.1085 0.7418 0.4134 0.8133 

GPDIOO 0.3048 0.5809 0.1085 0.7418 0.4 0.8133 

The first panel shows the results of single models. The second and third panels 
show the results of the models constructed of GEV21 with other models, 
and GPD 180 with other models, respectivily. The last panel shows the results of 
combin models composed of OGARCH( 1) 1) model with other models. 
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Violation 19 17 13 13 

MVaR -1.8408 -1,9136 -2,1257 -2J222 

Model EWMA GARCH OGARCH EGARCH OEGARCH 

Violation 16 14 14 14 15 

MVaR -2,0857 -2.1600 -2.0591 -2.1006 -2,0671 

J-GEV21 EWMA GARCH OGARCH EGARCH OEGARCH 

Violation 17 14 15 16 16 

MVaR -2,0054 -2,0969 -2,0035 -2.0281 -1.9997 

J-GPD180 EWMA GARCH OGARCH EGARCH OEGARCH 

Violation 15 14 17 16 16 

MVaR -2.1449 -2,0929 -2.0114 -2.0091 -1. 9865 

The first two show the results of models, The third and fourth panels 
show the results of the joint models constructed of GEV21 '''ith other models, and 
GPD180 '''ith other models, Violation and MVAR denote the number 
of violations and mean absolute VaR value, respectivily, 
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Violation 3 6 3 " .) 

MVaR -3.3040 -2.9637 -3.5058 -3.4210 

MDCR 9.8412 8.8997 10.5238 10.2912 

Model EWMA GARCH OGARCH EGARCH OEGARCH 

Violation 5 4 4 5 5 

MVaR -2.9526 -3.0544 -2.9195 -2.9606 -2.9144 

MDCR II 1713 10.8324 10.5662 10.4346 9.9744 

J-GEV21 EWMA GARCH OGARCH EGARCH OEGARCH 

Violation 3 3 3 4 4 

Mean VaR -3.4128 -33210 -3.1763 -3.1925 -3.1436 

MCR 12.8697 11.6934 11.3542 11.2107 10.7520 

J-GPD180 EWMA GARCH OGARCH EGARCH OEGARCH 

Violation 2 4 6 4 5 

MVaR -3.5121 -3.2812 -3.1382 -3.1569 -3.1140 

MDCR 13.0304 11.6481 1 L4521 11.2290 10.7640 

Combin GEV21 GEV63 GPD180 GPDI00 

Violation 4 6 4 4 

MVaR -2.7401 -2.6479 -2.7839 -2.9606 

MDCR 9.2172 8.6878 9.5567 9.4485 

The first two panels show the results of models. The third and fourth 
show the results of the joint models constructed of GEV21 with other 
and GPD 180 with other models, The last panel sho" ... s the results of 
combin models composed of 1) model with other models. 

MVAR and MDCR denote the number of violations, mean absolute 

value and mean daily capital 
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