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Abstract

The purpose of this paper is to detect and propose appropriate mod-
els to forecast the Value-at-Risk (VaR) of A-Share index of Shanghai Mar-
ket. We apply OGARCH-class models (Liu and Morimune (2005)) to esti-
mate the daily VaR, and forecast the one-day-ahead VaR of the log returns
of the A-Share index of Shanghai market. By comparison, we show that
the OGARCH-class approach outperform the related GARCH-class models.
Moreover, we propose some combined models of OGARCH and EVT mod-
els. Empirical studies described herein show that these combined models
provide better performance than other models used in this paper.

1 Introduction

In this paper, we detect appropriate models to forecast the Value-at-risk (VaR) for
the A-Share index of the Shanghai Stock Exchange (for the A-Share index, see
Liu and Morimune (2005)). Some OGARCH-class models, including OGARCH
and OEGARCH models proposed by Liu and Morimune (2005), are applied to
estimate the daily VaR and to forecast the one-day-ahead VaR of the log retms! of
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the A-Share index. For comparison, VaR is simultaneously estimated and forecast
using other models. The performances of the models are then evaluated using the
results of forecasts and some tests. The results show that the OGARCH approach
outperform the related GARCH-class models, which do not account for the effects
of spells of shocks (for spells of shocks to see Liu and Morimune, 2005). Moreover,
some combined models of OGARCH and EVT models are proposed as a practical
approach. Empirical studies described herein show that these combined models
provide better performance than other models used in this paper.

The outline of this paper is as follows. First, a definition of VaR is provided in
section 2. Section 4 to 6 present a review for estimation and forecasting methods
of VaR using the EWMA model, GARCH-class models, EVT models and some
joint models of the GARCH-class and EVT models. The way to expand some of
these models using our OGARCH-class models is also described. In section 7, new
approach is proposed by combining OGARCH and EVT models. Section 8 shows
some methods for evaluating and comparing these models. In section 9, VaR is
estimated and forecast for the A-Share index using various models described in
previous sections. Moreover, the performances of these methods are compared.
Finally, a conclusion 1s given in section 10.

2  Definition of VaR

Several versions of the VaR definition exist. For an asset, the VaR can have two
sorts of definitions with respect to the positions, long or short, that an investor
holds. Our study specifically address the day-to-day risk of loss. Therefore, a
definition of VaR is adopted here for a long position for daily data. For a long
position with a small probability ¢ and a time index ¢, we define VaR as

VaR;, =y, = inf {y|F (y) 2> a} 2.1

where F (-} is the cumulative distribution function (CDF) of log returns y; and y,
is the ath quantile of . For a long position, such VaR corresponds to a threshold,
A loss greater than this threshold occurs rarely, with probability equal to a on the
tth day. For a short position, the definition of VaR is

VaR g =y1-q = i {y|F(y) > 1—a}. 2.2

3 Approach with EWMA model

The EWMA models were developed by JP Morgan Chase and Co.; the models
are also called RiskMetrics™ . According to Tsay (2002), the EWMA muodels can



be expressed as an IGARCH(1,1) model without a dfift. We express the EWMA
model as

Me=p+e

er = /luz G.1)

hy = (1 — Nei ) + Aoy,

where z; is assumed as white noise with mean 0, vanance of one. J.P. Morgan
suggests the value of A, 0.94. The unknown parameter, 4, can be estimated us-
ing quasi-maximum likelihood estimation (QMLE). The methods for forecasting
VaRs resembles those of the GARCH-class models, which will be described in the
proceeding section.

4 Approaches with GARCH and OGARCH-class models

A simple method for forecasting VaRs for some assets uses GARCH-class mod-
els. Tsay (2002) and Dowd (2006) provide usefu]l examples. The approach using
OGARCH-class models is a simple expansion of GARCH-class model approach.
We show a common method for both GARCH and OGARCH-class models.

Denote the log return of assets as y,, commonly, a GARCH or OGARCH-class
model can be expressed as

yr=p+ f(xe) +e

e = Vhiz (4.1)

}?'t =g (V‘*’i) 3

where h; is called volatility. Generally, %, is a vector including lags of y;, and wy
is a vector including lags of Ay and lags of €, In addition, 2, is an i.i.d. white noise
process following a random distribution with cumulative distribution function F (-)
, with mean 0 and variance of 1, and f {-) and g (-} denote any well-behaved func-
tions. When the log returns of some asset conform to such a model, the VaR of a
long position on the fth day is calculated as

VaRgs = p+ f(%Xe) + 2V 1t 4.2)

where 2, = inf{z|F (z) > a}, fora small probability: 0 < a < 1.
To forecast VaR for a GARCH-class model, the unknown parameters must
first be estimated. The QMLE method is used here. As a simple example, for an



OGARCH(1.1) model with z;, a white noise with mean 0 and variance 1, following
Liu and Morimune (2005), we can form the expressions

Yr = ptey

& = vVha (4.3)

hy = ag + ag exp(¢y-1)el_; + Bhy.

Once we obtain the estimates of coefficients, 4, &y, él,,é, @ and fzt, and assume
z¢ ~ N (0,1}, we can forecast the VaR with ¢ == 0.05 for ime £ -+ 1 as

VaRoosi1 = ft — 1.65 x 1/ hy, (4.4)

where the value —1.65 is used as the 5% quantile of a standard normal distribution,
and

\ by = Go 4 G exp(@vi-1 )71 + Bhy (4.5)

is the estimation of &,. The forecasting methods for other GARCH-class models
are similar. We show some empirical analyses related to forecasting VaR by OG-
ARCH and OEGARCH models and some other GARCH-class models in section
9.

5 Approach based on EVT

Another popular approach for forecasting VaR is based on a theory called EVT.
In this section, we first give a brief review of EVT, which includes theories of
generalised extreme-value distribution (GEV) and generalised Pareto distribution
{GPD). Basic methods for estimating and forecasting VaR based on EVT are pre-
sented next, followed by a description of how to address dependence of data.

5.1 Analyze VaR wsing GEV

The theory of GEV, which is used to analyze VaR, is based on the Fisher-Tippett
theorem (Fisher and Tippett (1928)). Roughly speaking, GEV can be regarded as
an asy mptotic distribution of the extreme value of some random variable.

5.1.1 Derivation and basic properties

Let {z;},¢ = 1,2, - -, n, be a independent random sample from some underlying
distribution F; then define A/, = max (z;). If the cumulated distribution function
F satisfies some regular conditions, then two sequences, c,,, b,, and a parameter £



exist such that the normalized minimum (A4, — &, ) /¢, asymptotically follows the
following distribution

H(z) Enli_{rgoP{W < :z,}
_ ) exp (—(1+£x’)_1/‘5) for # 0 5.1)
exp(-exp(—a))  forg= |

for z that satisfies 1 +£z > 0. In other words, such F'is in the maximum domain of
attraction (MDA)? of H, which is called the generalised extreme-value distribution
(GEV). Jenkinson (1955) gives this presentation of GEV. It is a representation of
the extreme value distributions discovered using the Fisher-Tippett theorem (Fisher
and Tippett (1928)).

The two sequences ¢, and b, sometimes are called location series and series of
scaling factors; the parameter £ is called shape parameter (see Tsay (2002)). The
shape parameter £ indicates the shape of the tail of the underlying distribution F'
the larger the value of € the fatter the tail of the F. a = 1/¢ is called the tail
index in financial studies. For example, o of a Student ¢-distribution is its degree
of freedom: for a normal distribution £ = 0, o = co.

Relative to different values of £, GEV is scparable into three types: the Gumble
distribution for £ = 0, the Fréchet distribution for £ > 0, and the Weibull distribu-
tion for £ < 0. A summary of the characteristics of the underlying distribution F
of these three types is tabulated in Table 5.1:

Table 5.1: Summary and Example of ETV.

Type £and o Right tails of Example of F
Gumble £=0,a =00 exponential tails nonmal, gamma
Fréchet E>0,a<0 fat tails student’s ¢, Pareto
Weibull £<0,a>0 truncated at o = 1/€ unifonn, beta

From Table 5.1, the Frechet type is seen to correspond to an underlying distri-
bution F which has fat tails. Numerous studies have revealed that the distnibutions
of log returns of financial assets have a fat tail. Therefore, the Frechet type will be
examined, particularly as we analyze VaR for financial assets.

Differentiating eq. (5.1), one can derive the probability density function (PDF)

*For details of MDA, see Embrechts et al. (2001).



-relative to I as follows

h(z) = { (x€ + 1)'%_3 exp P (€ + 1) %J for£ #0 5.2)

exp [—x — exp (—x}] for¢ =0

where z satisfies 1 4 £x > 0. In our study, we specifically examine only the VaR
of long positions. For that reason, the concern is on the left tail of the underlying
distribution £, the GEV for normalized minimum, A, = min (z;) is important,
Using simple transformations, one can derive the formula for A/, from that of A/,:

H (z) EﬂangOP{M 21}
_ { 1~ exp (—(1—5:::)__1/5) for£ #0 (53)
1 — exp {—exp {x)) for£ =0

. . M, by
and density function of =‘f%

-1/6- (1 — Y
m):{ (=0T ep o] e
exp [z — exp (z)] for£ =0

for detail see Tsay (2002)°. From eq. (5.4), we can derive the PDF of A/ n 35
follows:

2 (1= e ) T g [ (1t} ] por 0

73

M, ~bn A, ~bn -0
P exXp [T — €Xp (T)] fm‘:f =
(5.5)

g (xtcmbmg) =

l»—\

M, ~b
where 1 — £52222 5 (),
Cr

5.1.2 Estimation

Using PDF, as shown in equation (5.5), one can perform maximum likelihood esti-
mation (MLE) to estimate the unknown parameters of GEV. However, for a sample
{z;},1=1,2, -, n x m., only one minimum exists. With only one observation,
MLE does not work. Tsay (2002) presents a means to solve this problem. He di-
vide the samples into m blocks with equal sample size, n, and obtains an minimum,
M, g, fork = 1,2,---,m, for every block. Assuming the minima of m blocks as

3The definition of £ is different from the definition of k in Tsay (2002).



ani.id. sample from GEV, one can use this sample to estimate parameters of GEV
by MLE. The log-likelihood function is

m
lnz (Mnj)‘ . '::}i:[_n;m§cﬂ)bﬂ>§n) = Z}n {g (ﬁn)klc‘ﬂ}bn>€ﬂ)} 3
k=]

where g (+|en, bn, &) is the PDF of the block minimum.

5.1.3 Selectionof nandm

An empirical problem exists on MLE of GEV. For different values of n we will
we obtain different estimates of ¢,,, b, and £,. Forc, and b, , this does not secem
serious because the true values of ¢, and by, are vary with n. However, the true
value of £ does not vary; consequently, the selection of the size of blocks n and
the sample size of M, ., m, becomes very important. Because a large value of
n can raisc the quality of the minimum, and because a large value of m give us
a large sample to increase the performance of MLE, we want to use large n and
m to the greatest possible degree. Nevertheless, we must confront the restriction
of the total sample size of z;, which is 7 x m. In empirical studies, we must
take a balance for n and m. According to the predictive performance, one way to
solve this problem is to first estimate unknown parameters with various n and m.
thereafter, as the final estimates, we can select the estimates relative to the n and
m which correspond to the most predictive performance. ‘

5.1.4 Estimation and forecasting of VaR
From equation {5.4), one can derive the ath quantile of GEV for minima
bot 2 {1 = (~In(1—a))™} forg, #0
M, = £
bn +enln{—In(l —a)} foré, =0,
then use the relationship
a=P (M, M) =1-{1—P(x; <M)}".

Thereby, it is apparent that the VaR, which corresponds to probability ¢* = P (z; < A,),
is calculated as

Cn I . ~En,
VaRa = | it {1 (—nln(l — a*)) } foré, # 0 56
bp + cnln {—nln(l —a")} for&, = 0.

For detail to see Tsay (2002) and Dowd (2006),
For forecasting, we use the VaR that was estimated using the sample up to time
t as the predicate of VaR for one time interval abead, time £ + 1.



5.2 Analyze VaR by GPD

Embrechts, Kliippelberg, and Mikosch (2001) show us another EVT approach.
This approach is based on GPD. . Assuming {z;}, ¢ = 1,2,-- -, n. is an i.i.d.
sample from an underlying distribution /', and F is in the MDA of H. Conse-
quently,
Fu(z) & Ceppu (2)
where
Fulz)=P(X —u<z]X >u)

and
1= (€)Y g 20
Gf,C(u)(I)_{ 1-€Xp(c) f0r§ 0

is the generalised Pareto distribution (GPD).
Smith (1987) derives the density function of GPD for £ > 0% as

i ~1/6-1
f@) == (1+62) e 0

Choose a lugh threshold w, and forfor z; > u,define 2y =25 —w, 1 = 1,2,---, Ny,
Therein, Ny is the number of x; larger than w. Then, regarding {z;},¢ = 1,2, -
-, Ny, as a sample from GPD, one can estimate unknown parameters by MLE using
the log-likelihood function as

mi (2, 2y, 6, €) = —NyIn () ( )Zl (1+—>

where £ > 0,c> 0.
For a short position, following Embrechts, Kliippelberg, and Mikosch (2001),
once £ and &, the estimates of £ and ¢, are obtained, then the VaR for level a canbe

estimated as A
P é TL -
VaR, :u—%—g E(l—a’) —-1%. 5.7

For forecasting, because the method resembles that for GEV, its description is omit-
ted here. o
For a long position, using eq. (5.7), we can calculate VaR, (y) for a new series

{y:} = {~;}. yielding ValRe (z) = ~VaR, (y) for {z;}.

*We only concern on the case for £ > 0, which correspond to distributions with fat tails.



5.3 EVT for dependent data

The EVT described above operates under an 1.1.d. assumption. Can we apply such
inference of EVT directly to extreme values of non-i.i.d. data as well? The answer
is ‘No’. However, for some classes of sirictly stationary processes, the answer is
‘Yes®, for which we can calculate VaR using the same method as that based on
EVTofiid. data.

According to Embrechts, Kliippelberg, and Mikosch (2001), if an iid. se-
quence {z;},i =1,2,---,n, and a strictly stationary sequence {y:} £ =1,2,---,n
have same marginal distribution, then we have

Ay g — by a 7 e My ~ bn d 2% (5.8)

Cn Cn

where ¢,, &, and H are the location series, the series of scaling factors and GEV,
respectively. In addition, 8 is called extremal index. Using simiple algebra, one
can show that H? () = H (cz 4+ d) for some ¢ > 0, d € R, which means that
choosing some appropriate series as ¢, and b,, one can obtain H®, which is in the
same form of H. In other words, if {x;} has a GEV, H, then {y,} also has a GEV,
H?, which takes the same form as H. the difference is only that of parameters.
Therefore, we can perform MLE and forecast the VaR for no-iid. data by the
same manner as for i.i.d. data described above. :

6 Joint approach

McNeil and Frey (2000) present a procedure to estimate and forecast VaR for a
heteroscedastic financial time series. They fit a GARCH-class model to data using
QMLE, then apply GPD to the standardized residuals of the GARCH-class model.
We define the standardized residual for a GARCH-class models as

6.1

€$E&~
R/

where £; and fzt are the estimate of £, and ;. The procedure for this joint approach
is as follows:

1. Estimate unknown parameters of a particular GARCH-class model for log
returns using QMLE.

2. Calculate residuals of these GARCH-class models according to the parame-
ters estimated in step 1.



3. Calculate the standardized residuals €] following eq. (6.1).
4. Apply GPD to the standardized residuals ¢].

5. Calculate the predictive values of VaRs according to eq. (5.7).

In step 1, to perform QMLE (see Weiss (1986)), only an i.1.d. assumption for
disturbance, z:, i1s required. The distribution of disturbance does not need to be
assumed as a specific distribution. Using QMLE, one can obtain consistent estima-
tors with normality under some reasonably regular conditions. For the OGARCH-
class models, we can construct joint models in a similar manner.

Using some examples of empirical study, McNeil and Frey (2000) show that
such a joint approach outperforms approaches which use GARCH-class models
or GPD alone because this joint approach can take account of the dynamic struc-
ture by the GARCH-class models and the fat tail characteristic of the standardized
residuals by GPD.

We also construct joint models of GARCH-class and OGARCH-class models
using GEV models. The procedure for estimation is similar to that of joint approach
of GARCH and GPD models. In order to save space, a description of this similar
procedure is omitted here,

7 A practical combined approach

We propose a new approach by combine OGARCH model and EVT models to
improve the performance of VaR models with respect to saving cost of risk man-
agement. One can construct combined models of other GARCH-class models and
EVT models similarly. This approach can be expanded by using otber GARCH-
class models. The estimator of VaR for the left tail with level ¢ on tth day for this
approach is defined as

s e, e,
VaRe = max (VaRo., VaRE,Q’t) ; a1

where %"Ro,&,t and VaR £, respectively denote the predictive value of VaR by
OGARCH-class models and EVT models approaches with level of VaR, a. The
procedure for this combined approach is as follows:

1. Estimate unknown parameters of a particular OGARCH-class model for log
returns.

2. Apply EVT, GEV or GPD, to log retums and estimate unknown parameters
by MLE.

10
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Forecast VaR according to the parameters estimated in step 1 and 2 to obtain
VaRo . and VaRg q ;.

4. Calculate the predictive values of iﬂ?&’,(;,a,t using eq. (7.1).

The idea of this approach is very simple. However, for investors who want
to himit cost of risk management or take some measures to meet BIS regulations
(the Basel Committee on Banking Supervision (1995) and the Basel Committee on
Banking Supervision (1996)), this approach is extremely useful. It incorporates
advantages of both OGARCH and EVT models. We will argue what these advan-
tages are and provide soine evidence for this point by presenting some results of
empirical studies in section 9.

8 Evaluation methods

Many methods exist to evaluate the performance of various VaR models. They
have an identical character, using the predictive value for previous days. There-
fore, these methods are called backtests by some researchers. First, three popular
likelihood ratio type backtests are reviewed. Secondly, we show how to evaluate
models according to the daily capital requirement. '

8.1 Likelihood ratio tests for coverage probability

Christoffersen (1998) proposed three likelihood ratio tests for coverage probability
to evaluate VaR model performance. The coverage probability is 1 — a in our setup,
where a, the level of VaR, is set by researchers or investors. The first LR test test
has a null hypothesis, Hy : ¢ = q, and alternative hypothesis, Hy : ¢* # a,
where ¢” is the probability of unconditional coverage failure. ¢* can be estimated
as @* = m/n, where n is the total number of days in the predictive interval. Also,
mm 15 the number of violations: the number of observations which are smaller than
the related predictive values of VaRs. The LR statistic takes the following form:

1 —a n-—m a m
LRy = —21In [( )n_m( ) 7}1 ,
[(1=a)"™ ()]
it converges in law to x? with one degree of freedom.

The second is for festing whether the violations are time-independent. The
null hypothesis is independent. For a random sample {z;}, n and VaR; = zj,

(8.1

11



e = P (:}:g > aylayg < xz‘_})

a1 = F (;}:g > Z:;«/Eb»l >z Z:_]> '

The statistic is as follows:

[(]ﬁ . &*)nooFﬂm (&*}nm"!mn“]

LRing = —21In ,
™ (1~ do1)™ 45" (1~ axs)™ a7}']

which converges in law to x? with one degree of freedom. In LR ;g

ap = ng /{noo + no1)
a1y = ny1 /{no +ni1)

are the estimates of apy and g7 A/, respectively, and

7

op = ZI (.’L‘t_] < x’{-],xt < ’27’;)
tom
n

ngp = Zl (211 < af_q, 2 > z7)
=2
Vi

no =Y I (11oy 23}y, 7 < 7})
b2
T

nyy = Zf (zi-1 > 2_y, 70 > 27)
{2

where 7 (-) is the indicator function.

(8.2)

(8.3)

(8.4)

(8.5)

(8.6)

The last is a joint test of coverage and independence. The statistic is a combi-

nation of LR, and LR.q4:

LRcc = LRuc + LRind:

(8.7)

which converges in law to v with two degrees of freedom. Coverage and inde-

pendence can be tested jointly using LR ..

8.2 Daily capital requirement

Another evaluation method is based on the BIS rule regarding daily capital re-
quirements. According to the Basel Committee {(the Basel Committee on Bank-
ing Supervision (1993) and the Basel Committec on Banking Supervision (1996)),

12



banks are allowed to use internal models o forecast their daily VaRs. According
to these predictive values of VaRs, daily capital requirements are charged to banks.
the Basel Committee on Banking Supervision (1993) states that a daily capital re-
quirement must be set as the higher of the previous day’s predictive value of VaR,
or an average of predictive values of VaRs on last 60 days times a scaling factor £,
which is usually large than 3. The daily capital requirement can be expressed as

the following:
) . (8.8)
Therein, |-| represents the absolute value.

In order to encourage banks to refine their VaR models, Basel Cominiltee
(the Basel Committee on Banking Supervision {1996)) proposed a rule of penalty.
Banks with internal models that engender numerous violations must be charged
a high dailv requirement. A penalty is imposed as an increase in scaling factor
k. That increase is relative to the number of violations. According to the Basel
Committee on Banking Supervision (1996), Table 8.1 presents details related to
the penally rule for a case based on 250 daily observations of predictive VaRs,

5 > VaRe

DCRy = max (lmt_ll K

Table 8.1: BIS Rule

Zone  Number of violations Increase in k&

0 0
1 0
Green 2 0
3 0
4 0
5 0.4
6 0.5
Yellow 7 0.65
8 0.73
9 0.83
Red 10 i
The information in this table is from Basel
Committee(1996).

According the rule described above, one can calculate values of daily capital

13



requirements, using scaling factor £ derived based on Table 8.1. The mean value of
daily capital requirements is useful 1o evaluate various VaR models. We abbreviate
it to MDCR hereafter.

9 Empirical analysis

Liu and Morimune (2005) show that the OGARCH model is useful for analyzing
the log returns of A-Share of the Shanghai Stock Exchange. As an empirical study,
in this section, we forecast VaRs for log retums of the A-Share index of the Shang-
hai Stock Exchange. For comparison, we forecast VaRs using other GARCH-class
models, EVT models, joint models and the combined models as well. As a prelim-
inary analysis, before forecasting the VaRs, we examine the data and estimation
results of some of these models in the proceeding subsection.

9.1 Data and preliminary analysis

The data are the daily log returns of the A-Share index, as used in Liu and Morimune
{2003). To check whether we need to apply EVT or joint models to A-Share index,
we analyze the characteristics of the standardized residuals ef. For example, the
standardized residuals e of the OGARCH(1,1) model, are calculated as follows

& = (v — 1) / Ve
hy = G + G exp [T%_1 (-1 — 11)2} + Bhea, .0

where /i, ¢, 43, ¢ and 3 are the estimates of parameters.

We calculate the e} for GARCH-class and OGARCH-class models for the A-
Share data using the estimates in Tables 9.1 and 9.2, For these estimations, the
sample period of the A-Share index extends from 5 January, 2001 to 29 September,
2006.

14



Table 9.1: OGARCH and GARCH Estimation

Parameter m Qo o I5] 1) log L
A share
GARCH
Coeff —0.0069 0.0849** 0.1254** 0.8361*" —2297.93
SE 0.0332 0.0267 0.0336 0.0332
OGARCH
Coeff —0.0227 0.0918** 0.0625* 0.8353** 0.2916™ —2290.67
SE 0.0333 0.0264 0.0278 0.0338 0.1047

Note: The sample period of the A-Share extends from 5 January, 2001 to 29 Sep-
tember, 2006. * and ** indicate significant coefficient at 5% and 1%, respectively.



91

Table 9.2: OEGARCH and EGARCH Estimation

Parameter 7 g o g K ¢ log L
A-Share

EGARCH

Coeff ~0.0155 0.0280* -0.0596* 0.2115% 0.9654* —2280.02

SE ‘ 0.0316 0.0100 0.0281 0.0412 0.0141

OEGARCH

Coeff ~(.0674" 0.0308"" —-0.0420 0.1551*" 0.9615* 0.13%90 —2278.71

SE 0.0315 0.0101 0.0276 0.0435 0.0145 0.0834

Note: The numbers of observations is 1381 for A-Share. * and ** indicate significant coefficient at 5% and 1%, respectively.



The summary statistics of e; for several GARCH-class and OGARCH-class
models are shown together with the statistics of the log returns, ¥, in Table 9.3
Observing the second line in Table 9.3, we can see that after standardization by
conditional volatilities, the kurtoses of ¢; of these models more closely approxi-
mate 3, the kurtosis of standard normal distribution, than 8.42, the kurtosis of log
returns. Nevertheless, the kurtoses of the four models are all larger than 5, which
indicates that e} of these models follow distributions with fat tails.

We draw QQ-plots for e} against a standard normal distribution and log returns
y¢. The graphs are shown in Figures 9.1 and 9.2, Figure 9.2 shows that the tails
of e} are less fat than that of . Therefore, it can be concluded that GARCH-class
models can cancel fatness of the tails to some extent. However, Figure 9.1 indicates
that these standardized residuals ¢} do not conform to a standard normal distrib-
ution: instead, they apparently follow distributions with fat tails. Consequently,
applying a GARCH-class model with a standard normal disturbance approach to
the A-share index seems to involve some problems. We will examine application
of other models described above to analyze VaR in subsequent sections.

9.2 Estimation results

For GARCH-class models and OGARCH-class models, we can find estimation re-
sults in Liu and Morimune (2005). In this subsection, we present estimation results
of EVT models and EVT models for standardized residuals in the joint approach.
The sample period is set to be from 6 January, 1998 to 29 September, 2006 with
sample size n = 2106. The estimation methods used here are described in section
5. Two cases of GEV model are estimated: the size of blocks n for one case is set
as 21, and for the other case, » is 63. The two cases are respectively denoted as
GEV21 and GEV63. According to Tsay (2002), the value 21 corresponds to the
number of trading days in one month, and 63 to a quarter, approximately. For GPD,
to guarantee a sufficient large sample size of block minimum, we decide the value
of u according to sample size of block mimumum. Two cases of GPD are estimated
relative to different values of u:

e case |,
w= {ulcard {yly; > u,t =1,2,---,n} = 180} (9.2

e case 2,
u = {ufcard {ysly; > u,t = 1,2, - -,n} = 100}, (9.3)

where card(A) represents the cardinal number of the set A, which returns the
number of elements in set 4. We respectively denote these two cases as GPD 180
and GPD 100. The estimation results of these models are tabulate in Table 9.4.
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Table 9.3: Summary statistics of standardized residuals.

Mean Skewness Kurtosis
Log Return —0.01 0.64 8.42
GARCH —0.02 0.27 5.62
OGARCH —0.01 0.32 5.69
EGARCH -0.01 0.28 5.47
OEGARCH 0.03 0.26 5.39
QQ Plot for GARCH QQ Plot for OGARCH
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Figure 9.1: QQ plots for e} aginst standard normal.
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When the estimates hold normality, we can perform a Student’s’. For both cases
of GEV models, the estimates of ¢ and b are significant with confidence level 5%
against the null hypotheses ¢ = 0 and b = 0. However, the estimates of £ are not
significant with a confidence level 5% against the null hypothesis £ = 0. For GPD
models, we obtain similar results: the estimates of ¢ are significant but those of £
are not.

Estimation results of ETV models for the series ¢} of eight joint models are
shown in Table 9.5. For GEV, the sample size in each block are setas n = 21, for
GPD the value of threshold is setas u = {ulcard {y¢|yy > u,t = 1,2, - -, n} = 180}.
All estimates are significant except for &, the problem of significance of £ becomes
more serious.

In estimations mentioned above, there is a fact cause problem: the total sample
size of log returns is not so large, we can not expect high quality of the sample,
minima or y, lager than u, used in the estimations. Another possible reason is that,
when the true value of £ is overly near to 0, the power of the test will worsen. A
conclusion cannot be inferred based only on these ¢ tests of coefficients. We need
to check and compare models using some backtests, which include three coverage
test and comparisons by number of violations, mean absolute predictive VaR values
(MVaR) and MDCR. Those will be performed in the proceeding subsection.

9.3 Backtests

We use the first 1806 observations fromn 6 January, 1998 as a sample to forecast the
VaR of the 1807th day using the methods described in previous sections. There-
after, maintaining the length of rolling windows as 1806, we forecast VaR for the
proceeding 300 days. Two series with 300 predictive VaRs with probabilities 3%
and 1% are forecasted. :

The models are evaluated using several: the three LR type backiesis and eval-
uation methods according to the number of violations, MVaRs, and MDCRs.

9.3.1 LR tests

We calculate the three statistics, LRy, LR;,s and LR, for various models with
VaR level a = 5% and 1%. The results are tabulated in Table 10.1 and Table 10.2.
The statistics all show that no tests can reject the null hypothesis at significance
levels of 5% or 1%. In other words, only according to these tests, we can not
conclude which models are better.

*For asymptotic theory on ETVY, see Smith {1985).
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Table 9.4: Estimation Results of ETV Maodels

¢ SD b SD £ SD
GEV21 0.8807 0.0725 -1.9242 (.1084 0.1103 0.0746
GEV63 0.8211 0.1464 -2.6549 0.1665 0.3975 0.2483
GPD 180 0.7443 0.0903 0.1339 0.0858
GPD100 0.6733 0.1119 (0,2549 0.1526
SD denotes stadard deviation.

Table 9.5; Estimation Results of Joint Models

GEV21 ¢ SD b SD ¢ SD
GARCH 0.6090 00514 -16435 00774 00080 00834
OGARCH 06026 0.0514 -1.6358 0.0760 00214 0.0872
EGARCH 0.5874 0.0515 -1.6182 0.0729 0.0350 0.1025
OEGARCH 0.5864 00502 -1.6104 00723 00344 0.1073
GPD180 c SD ¢ SD
GARCH 0.5633  0.0668 0.0397  0.0875
OGARCH 05677 0.0672 0.0333 0.0876
EGARCH 0.5352  0.0658 0.0637  0.1053
OEGARCH 0.5239 0.0642 0.0764  0.1090

The top panel shows the results of the joint models composed of GEV21 and var-
ious OGARCH and GARCH class models. The bottom panel shows the results
of joint models composed of GPD180 and various OGARCH and GARCH class
models. SD denotes stadard deviation.
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9.3.2 Evaluate models using other measures

To evaluate the relative performances of VaR models for A-Share, we use the num-
ber of violations, MVaR, and MDCR as measures. We infer that numerous vio-
lations reflect low performance. Moreover, usually, investors wish to manage risk
with a small amount of reservation; banks find it onerous to conform to high capital
requirements. For those reasons, low MVaR and MDCR indicate high performance
of the model to them. Models will be evaluated in these respects.

We show here how to calculate MDCRs. Using the first 250 of the 300 pre-
dictive values of VaRs as a sample, we can calculate the value of scaling factor
k, then calculate the value of the daily capital requirement of 251th day following
equation (8.8). Maintaining the length of rolling windows as 250 and using the
same method, we obtain values of daily capital requirements for the period from
the 251st to 300th day. Consequently, the mean value of these 50 daily capital
requirements, MDCRs, are obtained.

The first lines in Tables 10.3 and 10.4 show numbers of violations; the second
lines show MVaR of 300 days. 10.3 is for the case with level of VaR ¢ = 5%, and
10.4 if fora = 1%, For the case with level of VaR a = 1%, the MDCRs are shown
in the last line of Table 10.4.

9.3.3 Comparison

Firstly, we compare the OGARCH-class models with GARCH-class models. From
Tables 10.3 and 10.4, it is apparent that MVaRs and MDCRs of OGARCH for the
a = 1% case and MVaRs for the a« = 5% case are less than those of GARCH
model. Those of OEGARCH are also less than those of EGARCH. These results
illustrate that, by adopting the spells of shocks, 4.5, into the GARCH-class mod-
els, we can obtain high performance m terms of risk management costs and of
reducing daily capital requirements.

The results of joint models show a similar conclusion of comparison between
GARCH-class models and OGARCH models. The joint models of OGARCH
models produce better results than the joint models of GARCH models, and the
joint models of OEGARCH models show better results than joint models of EGARCH
models. Moreover, the results in Tables 10.3 and 10.4 show that the EGARCH and
OEGARCH models outperform related GARCH and OGARCH models. Further-
more, the results in Tables 10.3 and 10.4 also demonstrate that the performance
of EWMA is worse than other single models, and the performances of the Joint
models composed of EWMA and other models are worse than relative other joint
models.

Figures 10.1 and 10.2 depict the plots of predictive VaRs with VaR level ¢ =
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1%. The solid line in Figure 10.1 shows the values of log retums. The dashed line
is a plot of predictive values of VaRs for GARCH model. The dash-dot line is for
OGARCH models. The dash-dot line is almost always higher than the dashed line,
which indicates that the OGARCH model approach can forecast VaR exactly like
the GARCH model approach, but with small mean absclute values of predictive
VaRs. Figure 10.1 exhibits further support that the OGARCH model outperformed
GARCH model. In addition, to compare the OEGARCH mode] with the EGARCH
model, we show their results in Figure 10.2. The graph depicted in Figure 10.2
supports the argnments related to Tables 10.3 and 10.4: OEGARCH offers superior
performance fo those of EGARCH models.

Secondly, we compare the GEV models with GPD models according to the
three measures: number of violations, MVaRs and MDCR. According to the results
of GEV and GPD models in Tables 10.3 and 10.4. The GEV models are apparently
better than GPD models.

Thirdly, we compare models with high performances of the GARCH-class
models and the EVT models. For the case with ¢ = 5%, although the MVaRs
of some of the EVT models, GEV21 and GEV63, are less than that of the OGA-
RCH and OEGARCH models, the numbers of violations of these EVT models are
large. For the 1% case, the MVaRs of two GEV models are greater than those of
OGARCH and EGARCH models, but the mean value of daily capital requirement
of GEV21 is less than OGARCH models, and that of the GEV63 model is less than
those of GARCH and OEGARCH models. Using these comparison results alone,
conclusion about which sort of model is better can be inferred.

Fourthly, comparing joint models with others, the values of MVAR and MDCR
in Tables 10.3 and 10.4 demonstrate that the joint models have no better perfor-
mance than their related single models. This result differs from that obtained by
McNeil and Frey (2000). They compare joint models with GARCH-class models
and GPD models only using only binomial tests; they find that their joint model is
better than a single GARCH-class model or GPD model. However, we can find a
Figure in their paper (Fig. 8.), which show that their joint model carries out higher
MVAR than other models. Some troubles arise when {wo models are combined
together, A possible reason is that, since the distribution of standardized residuals,
e;, is more similar to a standard normal distribution than that of y;, it becomes
difficult to estimate EVT models exactly for e;. We can compare the distributions
of e with that of v, and standard normal distribution, by observing Table 9.3, and
Figure 9.1 together with Figure 9.2 in subsection 9.1.

Lastly, comparing the combined models with other models by MVaRs and MD-
CRs, it is apparent that all the combined models outperform almost all other mod-
els. In Table 10.4, the MDCRs of some of them are larger than that of the GEV
model. However, their MVaRs are less than that of GEV model. In particular,
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the combined model of OGARCH and GEV models with n = 63 (C-GEV63) of-
fers the best performance with respect to MVaR and MDCR. Moreover, MVaR is
considerably smaller than the other models.

To explain why the performance of the combined model of OGARCH and GEV
models is superior to those of other models, we show plois of predictive VaRs of
various models in Figures 10.3 and 10.4. The figures show that the plots of predic-
tive VaRs for OGARCH model fluctuate dynamically, which captures the dynamics
of log returns. In contrast, the plots for ETV models are almost horizontal lines,
which can not capture the clustering characteristics of volatility. As described by
Bekiros and Georgoutsos (2003), the EVT models are unsuitable for forecasting
daily VaR: nevertheless, they are suitable for long-term forecasting. In addition, a
weak point pertains to GARCH-class models: when GARCH-class models attempt
to cover violations in a high-volatility period, they usually overreact and derive a
high predictive value of VaR, which will cause a need for extra capital require-
ments. Observing Figure 10.5 and 10.6, it can be said that the combined models
capture the dynamics of log returns, and do not overreact in periods with high
volatilities. Consequently, combined models vield low MVaR and MDCR. In other
words, they show a high performance with respect to costs of risk management.

10 Conclusion

The OGARCH-class models are applied along with other alternative models to an-
alyze the VaR of A-Share index of Shanghai market. The results of some backtests
and evaluations by the number of violations, MVaR and MDCR, show that the
OGARCH-class models can provide better performance than the related GARCH-
class models: the GARCH model and EGARCH model. The reason is that OGARCH-
class models can capture the effects of spells of shocks.

Moreover, the empirical results of comparison between GARCH-class models
and ETV models show that GARCH-class models can capture the dynamic struc-
tures of log returns. On the other hand, the ETV models can capture long-term
characteristic of VaRs.

Furthermore, combined models were proposed and applied to analyze the VaR
of the A-Share index. One combined model, which comprises OGARCH-class
and GEV models, outperforms all other models. These combined models are ap-
propriate for analyzing VaR of the A-Share index: they are effective with respect
to reducing the costs of risk management.
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Table 10.1: Results of LR Tests with a = 5%.

Single Roe P-value Ryg P-value R, P-value
GEV21 1.0392 03080  0.0431  0.8356 1.0822  0.5821
GEV63 0.2696 06036 09822  0.3217 12518  0.5348
GPD100 0.2934  0.5881 11824  0.2769 1.4758  0.4781
GPD180 0.2934  0.5881 1.1824 02769 14758 04781
EWMA 0.0687 07932 0.0239 0.8721  0.0947  0.9338
GARCH 0.0717 07889 20603 01512  2.1320 03444
OGARCH 0.0717 07889 20603  0.1512 21320 03444
EGARCH 0.0717 07889  0.1742  0.6764 02459  0.8843
OEGARCH 0 1 0.0828 07736 0.0828  0.9393
J-GEV21 Ruc P-value Ry P-value R, P-value
EWMA 02696  0.6036 09822 03217 1.2518  0.5348
GARCH 00717 07889 20603 01812 21320 03444
OGARCH 0 i 1.6460  0.1995 16460  0.4391
EGARCH 0.0687  0.7932 1.2884  0.2363 1.3571  0.5073
OEGARCH 0.0687 07932 00259 08721 0.0947  0.9538
J-GPD180 Rue P-value R4 P-value R P-value
EWMA 0 1 0.0828 07736 0.0828  0.9595
GARCH 0.0717 07889  2.0603  0.1512 21320  0.3444
OGARCH 0.2696  0.6036 09822 03217 1.2518  0.5348
EGARCH 0.0687  0.7932 1.2884  0.2563 13571 0.5073
OEGARCH 0.0687  0.7932  0.0259 08721 0.0947  0.9538

The first panel shows the results of single models. The second and third panels
show the results of the joint models constructed of GEV21 with other models, and
GPD 180 with other models, respectivily.
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Table 10.2: Results of LR Tests with ¢ = 1%.

Single Model Roe P-value Ry P-value R, P-value
GEV21 0 1 0.0608  0.8052  0.0608  0.9700
GEV63 23482  0.1254 02458 06200 25940 0.2734
GPD 100 0 1 0.0608 08052 00608 09700
GPD180 0 1 0.0608 08052  0.0608 09700
EWMA 1.1218  0.2895 01701 06800 12919 0.5242
GARCH 03048 03809  0.1085 07418 04134 08133
OGARCH 03048 03809 01085 07418 04134 08133
EGARCH 1.1218  0.2895  0.1701 0.6800 1.2919  0.3342
OEGARCH 1.1218 0.2895 0.1701 0.6800 1.2919 0.5242
J-GEV21 R P-value Ring P-value R, P-value
EWMA 0 1 0.0608  0.8052 00608 09700
GARCH 0 1 0.0608  0.9700  0.0608  0.9700
OGARCH 0 1 0.0608  0.9700  0.0608 0.9700
EGARCH 03048 0.5809 0.1085 07418 04134 08133
OEGARCH 03048 05809 01085 07418 (4134 08133
J-GPD 180 Roe P-valve Ry P-value R, P-value
EWMA 03815  0.5368  0.0270 08696 04085 0.8153
GARCH 0.3048  0.5809  0.1085 0.7418 04134  0.8133
OGARCH 23482 0.1254 0.2458  0.6200 25940  0.2734
EGARCH 03048 05809 0.1085 07418 04134 08133
OEGARCH 11218 02895 0.1701 06800 12919 05242
Combin Rue P-value Riyng P-value R P-value
GEV21 0.3048  0.5809 0.1085 07418 04134 (8133
GEV63 23482 01254 0.2458 06200 25940 02734
GPD180 03048  0.5809  0.1085 07418 04134  0.8133
GPD100 0.3048  0.5809  0.1085 07418 04134 08133

The first panel shows the results of single models. The second and third panels
show the results of the joint models constiucted of GEV21 with other models,
and GPD180 with other models, respectivily. The last panel shows the results of
combin models composed of OGARCH(1, 1) model with other models.
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Table 10.3: Evaluation Results with a = 5%.

Single Model GEV21 GEV63 GPD180 GPD 100

Violation 19 17 13 13

MVaR -1.8408 -1.9136 -2.1257 -2.1222

Single Model EWMA GARCH  OGARCH EGARCH OEGARCH
Violation 16 14 14 14 15

MVaR -2.0857 -2.1600 -2.0591 -2.1006 -2.0671
J-GEV21 EWMA  GARCH OGARCH EGARCH OEGARCH
Violation 17 14 15 16 16

MVaR -2.0054 -2.0969 -2.0035 -2.0281 -1.9997
J-GPD 180 EWMA GARCH OGARCH EGARCH OEGARCH
Violation 15 14 17 16 16

MVaR -2.1449 -2.0929 -2.0114 -2.0091 -1.9865

The first two panels show the results of single models. The third and fourth panels
show the resulis of the joint models constructed of GEV21 with other models, and
GPD 180 with other models, respectivily. Violation and MVAR denote the number
of violations and mean absolute predictive VaR value, respectivily.



Table 10.4: Evaluation Results witha = 1%.

Single Model GEV21 GEV63 GPD180  GPDIOO

Violation 3 6 3 3

MVaR -3.3040 -2.9637 -3.5038 -3.4210

MDCR 9.8412 8.8997 16.5238 10.2912

Single Model EWMA GARCH OGARCH EGARCH OEGARCH
Violation 5 4 4 5 5

MVaR -2.9526 -3.0544 -2.9195 -2.9606 -2.9144
MDCR 11.1713 10.8324 10,5662 10.4346 99744
J-GEV21 EWMA GARCH  OGARCH EGARCH OEGARCH
Violation 3 3 3 4 4

Mean VaR -3.4128 -3.3210 -3.1763 -3.1925 -3.1436
MCR 12.8697 11.6934 11.3542 11.2107 10,7520
J-GPD 180 EWMA GARCH OGARCH EGARCH OEGARCH
Violation 2 4 6 4 5

MVaR -3.5121 -3.2812 -3,1382 -3.1569 -3.1140
MDCR 13.0304 11.6481 11.4521 11.2290 10.7640
Combin GEV21 GEV63 GPD180  GPDI100

Violation 4 6 4 4

MVaR -2.7401 -2.6479 ~2.7839 -2.9606

MDCR 9.2172 8.6878 9.5567 9.4485

The first two panels show the results of single models. The third and fourth panels
show the results of the joint models constructed of GEV21 with other models,
and GPDI180 with other models, respectivily. The last panel shows the results of
combin models composed of OGARCH(1, 1) model with other models. Violation,
MVAR and MDCR denote the number of violations, mean absolute predictive VaR
value and mean daily capital requirement, respectivily.



