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Abstract 

This p"per proposes "11 efficient density estim"tioll method for analyz­
ing grouped d"t" when loc"l moments are given. Vife use the generalized 
method of moments (GIVIlVI) estimator of Hansen (1982) to incorporate 
the information contained in the local moments. We show that our esti­
m"tor is more efficient than the classical m"ximum likelihood estim"tor 
for grouped data. \Ve also construct a specification test statistic based on 
moment conditions. Monte Carlo experiments suggest that our estimator 
performs remarkably well and the specification test has good size proper­
ties even in finite samples. 

Keywords: Grouped data; GMM. 

1 Introduction 

The purpose of this paper is to improve the efficiency of the estimators when 
the observations are grouped. 'We investigate the properties of Hansen's (1982) 
generalized method of moments (G MM) estimator applied to grouped data anal­
ysis. Economic data are often provided in a grouped form. Typical example is 

*\;Ye would like to thank seminar participants at Kyoto University for significant com­
ments. This research was partially supported by the l\Jinistry of Education, Culture, Sports, 
Science and Technology (l\IEXT), Grand-in-Aid for 21st Century COE Program "Interfaces 
for Advanced Economic Analysis" . 
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personal income data reported by government. The range of income distribu­
tion is divided into some intervals aIld only summary statistics corresponding 
to each interval are observable. 

Firstly we consider the following simple example. We want to estimate 
the underlying distribution of the data. We have the density function f(x,O) 
depending on the parameter 0 E e c ]RP. The intervals B 1 , B 2 , ... , BLare 
given and we observe only the frequency ni falling in B i . Naive maximum 
likelihood estimator (!VILE) is given by the solution of the equation 

..f:--. 810gPi (0) _ 
L...t n, 80 - 0, (1.1) 
i=l 

where Pi(O) = fBi f(:c, O)d:r;. Asymptotic properties of the naive l'dLE have 
been examined in several papers (see, for example, Tallis (1967)). Note that a 
set of frequencies (n1, n2, ... , nL) is equivalent to a sample from multinomial 
distribution; that is, P(n1,n2, ... ,nL) = -,-"--,P1(0)"' ... PdO)"L, where 

11·1····n L· 

n= ni. 
Victoria-Feser and Ronchetti (1997) considered more general estimators. 

Victoria-Feser and Ronchetti (1997) investigated the family of minimum power 
divergence estimators (I\IPEs) of multinomial distribution.! The !VIPEs are de­
fined by the solution of the equation 

G( . P(O))>' = ..f:--. (~) >'+1 ~Pi(O) = 0 
p, L...t P(O) 80 ' 

i=l l 

(1.2) 

where -00 < A < 00 is a fixed parameter, and Pi = ndn is the relative fre­
quency. The value A = 0 corresponds to the naive !VILE. Victoria-Feser and 
Ronchetti (1997) investigated the robustness properties of the estimators for 
various values of A. 

Instead of emphasis on robustness, we put emphasis on improving the eff1-
ciency of the estimators using of the local moments. In this paper, we consider 
the case where the local moments such as sample mean in each interval are also 
available. Although several studies have been made on the estimators based on 
the frequencies, there is little argument on the estimator which incorporate the 
information of the local moments. The information is given in the form of the 
local moment conditions. The local moment conditions can be written as 

E[J(X E B;)(X - fLi(OO))] = 0, (1.3) 

where fLi(O) = fBi x.rI/J~~~2)dXdx is the ]ocalmean. 

liVe also propose the specification test of the underlying distribution based 
on moment conditions. The over-identifying restriction test of Hansen (1982) 
can be used as the specification test. 

1 For a discussion of power divergence statistics, see Cressie and Read (198'1). 
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This paper is organized as follows. In section 2 we describe the estimation 
procedure utilizing the local moments. Section 3 discusses the asymptotics of the 
resulting estimator. Section 4 provides the specification test of the underlying 
distribution. Section 5 presents the results of the .Monte Carlo experiments. In 
section 6 some cOllcluding remarks are made. All proofs are in the Appendix. 

2 The estimator 

In this section we presellt the Gl\f1VI estimator based on the localmomellt condi­
tiOllS. The estimation environment we study is as follows. Let the range of rall­
dom variable X be devided into a set of fixed disjoint intervals B 1 , B2, ... ,BL. 
We assume that a random sample of size n is drawn from a population with den­
sity function f(:1:, e), but we can observe ollly frequencies T!i and local sample 
moments: 

(2.1 ) 

for i = 1, ... , Land .5 = 1, ... , k. For notational simplicity, hellceforth, we 
consider ollly the case k = 1, namely, local mean is available. Extension to 
the higher order moments is straightforward. The moment conditions can be 
written as 

(2.2) 

where 

(2.3) 

(2.4) 

and eo is the true parameter value. The sample counterpart of the momellt 
cOllditiolls, g(e, Xn) = ~ L:;~l g(Xi' e), is given by 

(2.5) 

(2.6) 
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The efiicient GMM estimator is given by 

(2.7) 

where Sn is the estimator of the asymptotic variance S of g(O; X1))' 
Unfortunately we cannot estimate S directry from the given data. Though 

Continuous-Updating Estimator (CUE) of Hansen, Heaton, and Yaron (1996) 

can be obtained, we will calculate S through the computer simulation instead. 
\Ve do not have individual data here and the estimate S callnot be obtained 
in the conventional manner. The CUE is still valid under this circumstance 
because, as we will show later, the asymptotic variance can be written as the 
function of O. In spite of the theoretical validity it has, though, it is computa­
tionally burdensome. \Ve will explore the simulation method to earn the value 
because it is easier than the CUE. 

The spirit underlying this method is that since we know the functional form 
of density function f(x, 0), if some value of 0 is given, we can generate random 
samples repeatedly. The estimation method is as follows. 

1. Obtain preliminary estimator en by naive MLE or GMM using an identity 
matrix. 

2. Generate random samples from f(:r, en). 
3. Estimate the weighting matrix Sn based on simulated data. 

Simulation results suggest that this method works satisfactory well. 

3 Large sample theory 

We now consider large sample properties of the GMM estimator given by (2.7). 
We give a set of regularity conditions to help us doing asymptotic analysis. 
Although conditions given below are slightly stronger than necessary, they are 
satisfied for a large class of the distributions. 

In the following, we use 11·11 to denote Euclidean norm. 

Assumption 3.1 
S is positive semi-definite and for 0 i= 0 0 , S -1 E[g( X: 0)1 i= o. 

Assumption 3.1 guarantees the identification of 00 . Under the assumption, 
the objective function of G1VIM attains unique minimum at 00 . Next assumption 
is useful to show consistency of the estimator. 

Assumption 3.2 
(i) The parameter space e is a compact su bset of]RP. 

(ii) :elogPi(O) and f.1i(O) exist and aTe continuous at each 0 E e for 
1, ... ,L. 

(iii) maxl:Si:SL {fBi sUPoE81x - {li(O)lf(x; Oo)dx} ::::; lIh < 00. 
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\Vith these conditions, following result can be established. 

Proposition 3.1 
Suppose that 8" .!!.c, S. and Assumption 3.1 and 3.2 are satisfied. TheIl On .!!.c, 00 . 

Next, we give the asymptotic distribution of the estimator. 

Assumption 3.3 
(i) 00 is an interior point of 8. 
(ii) to log Pi (0) and 11i( 0) are continuously differentiable in a neighborhood N 
of 0 0 fori = 1, ... , L. 
(iii) IBi (:r - [ti(00))2 f(:r:; Oo)d:r is finte for i = 1, ... , L. 

(iy) sUPe'~N II (;2 ;:;~,(O) II =:; 1112 < 00 and maxISiSL sUPeEN II &/~)~O) II =:; 1II3 < 
00. 

(y) DS-ID' is nonsigular for D = E[ &~,g(X, O)le=eJ. 

Assumption 3.3( iv) guarantees that for any sequence {O~} satisfying O~ .!!.c, 
00 , we have 

1· {Og( 0; X 11 ) I } _ l' {Og( 0; Xn) I } - D' P 1111 C\ , - P Illl C\ , = 
~ ~~ ~ ~~ 

(3.1) 

\Vith these additional conditions, we get the following proposition. 

Proposition 3.2 
Let {8 n } be a sequence of positiye definite matrices such that 8n .!!.c, S. Then 
under Assumption 3.1-3.3, we haye 

" L 
,fii( On - 00 ) .......,. N(O, V), 

where 
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and 

D' = ~ P(() ) 3
2

10gPi (()) I 
1 L..' 0 3()3()' 

i=l (J=(Jn 

O/~~(,IJ) I f(x, ()o)dx 
(J=(Jo 

O".o(IJ) I f(" () )d" olJ' x, 0 "c 
(J=(Jn 

Notice that {D1S1/D1} -1 is the asymptotic variance of the naive MLE. 
Proposition 3.2 shows that the asymptotic variance of the GMM is not larger 
than that of naive MLE, because D2 S221 D~ is positive semi-definite matrix. 

4 Specification testing 

In this section, we study a specification test of the underlying distribution. Since 
our moment conditions include the likelihood equation, we can interpret the test 
of moment conditions as the specification test of the underlying distribution. In 
our estimation, the number of moment conditions always exceeds the number 
of parameters by L, which is the number of groups. Hence we can obtain the 
test of L over-identifYing restrictions. By utilizing the Hansen's test of moment 
conditions, we can construct the test statistic. Let 

(4.1) 

where {Sn} is a consitent estimator of S. If ()n is the efficient estimator which 
is given by (2.7), we obtain the following null asymptotic distribution. 

Proposition 4.1 
Suppose that Sn !!... S, and Assumption 3.1-3.3 are satisfied. Then 

, , L 2 
nQn(()n) -+ .'( (L), 

where L is the number of groups. 

The proof follows directly from Hansen (1982). 
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n= 
True MLE Naive l\ILE GMM 'Ihle MLE 

Standard Error 

fi 0.2967 0.3120 0.3108 0.0955 
(J 0.2109 0.2833 0.2441 0.0684 

Ratio SE 

fi 
(J 1.34 1.16 
Empirical standard error of the 3000 parameter estimates. 

5 Monte Carlo results 

0.0995 
0.0914 

1.34 

G1VIl\I 

0.0959 
0.0684 

1.00 

In this section we report the results of Monte Carlo experiments to examine 
the performance of our estimator and test statistic. vVe study the behavior of 
the naive IVILE (solution of (1.1)), the true MLE (which is computed based on 
non-grouped observations), and our GMM estimator using the local mean. vVe 
use the true MLE as the efficiency bench mark. GMM estimator is calculated 
using the two-step method explained in Section 2. We employ the naive MLE 
as a preliminary estimator. 

The simulation design is as follows. vVe consider estimators ofthe parameters 
of normal and lognormal distributions. The number of replications is fixed to 
3000. \Ve report empirical standard error for each parameter. We also calculate 
the ratio of the standard error (to be relferd to as Ratio SE) of an estimator 
relative to that of true MLE to measure the loss of efficiency caused by grouping. 
The simulations are carried out using GAUSS. 

First we estimate a normal distritbution N({l, (J2) with p, = 0 and (J = 3. \Ve 
use a small sample size n = 100 and a large sample size n = 1000. The sample is 
grouped into five groups with fixed endpoints (-00, -3, -1, 1,3,00). The results 
are summarized in Table 1. From Table 1 we see that GMM estimator dominates 
the naive MLE in both small and large samples especially when estimating (J. 

Since local mean contains the information of the location, it can improve the 
estimate of variance parameter. Table 1 also shows that although Ratio SE of 
naive MLE is not improved even in large sample, GMM performs on par with 
true MLE when sample size is large. 

Table 2 reports the results of a lognormal distribution LN(p, (J) with {l = 1 
and (J = 1. The number of observation is 200. The endpoints are (0,3,6,9,00). 
In this experiment, we also report the GMM usiilg both first and second mo­
ments (GMM II). Table 2 shows that when intervals are rather large, naive MLE 
performs very poorly. On the other hanel, GMM works considerably well. This 
is a preferable feature because it is often the case in practice that the length of 
intervals are fixed and relatively large. Adding seconelmoment can improve the 
efficiency of J, though it does not necessarily reduce the standard error of il. In 
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Table 2: Lognormal Distribution 

1be MLE Naive MLE GMlVI I GJ'dl\I II 
Standard Error 

!I 0.0721 0.0928 0.0736 0.0742 
(J 0.0505 0.0869 0.0570 0.0540 

Ratio SE 
{i 1.29 1.02 1.03 
(J 1.72 1.l3 1.07 
Empirical standard error of the 3000 parameter estimates. 

GJ'vIl"l I refers to the GJ'vIl\l estimator using local mean. 

Table 3: Size and Power 
n = 100 n = 500 n 1000 

sIze 0.042 0.049 0.054 
0.202 0.897 0.995 

Empirical size and power of the 3000 iterations. 

The nominal level of the test is 0.05. 

sammary, our GMM performs reasonably well for various distributions even in 
modest sample size. 

\;Ve also investigate the performance of our test statistic. Table 3 reports 
simulation results of the specification test. We calculate the empirical size and 
power of the test statistic. The null hypothesis is that X follows normal distri­
bution. The simulation design is almost same as that of estimation case. Under 
the null hypothesis X follows N({l, (J2) with fl' = 0 and (J = 3. The sample 
is grouped into five groups with fixed endpoints (-00,-3,-1,1,3,00). The 
nominal level of the test is 0.05. The emprical power is calculated under the 
alternative hypothesis that X follows t distribution with 5 digrees of freedom. 
The variance of t random variables is adjusted to be 9. All results are based on 
3000 iterations with 100, 500, and 1000 observations. Table 3 shows that the 
size of our test is quite close to the nominal level even in small sample size. The 
power of our test is also good when the sample size is modest. 

6 Conclusion 

\;Ve applied GMM principle to grouped data analysis when we can observe not 
only count but also local moments for each group. We carry out Monte Carlo 
experiments to investigate the performance of our estimator and test. SiInu­
lation results show that our estimator performs remarkably well even in finite 
sample, local mornents providing great efficiency improvement. We also show 
that the specification test statistic performs well with good empirical size. Our 
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results suggest that local moments in grouped data could be highly informative 
if proper methods of grouping and summarizing were chosen. 

A Appendix 

Here we give brief proofs for the results in Section 3. Our proofs are mainly 
based on those of Newey and McFadden (1994). 

Proof of Proposition 3.1 Let Qn( 8) denote the objective function of the 
GMl\I: [g( 8; .1:',,)]'8;;-1 [g( 8;.1:',,)], and define 

Qo(8) E[g(X, 8)],S-1 E[g(X, 8)]. 

To prove consistency we Heed to establish the following conditions (see Newey 
and Md'adden (1994, Section 2.5)). 

(a) Qo(8) is uniquely minimized at 80 , 

(b) e is compact. 

(c) Qo(8) is continuous. 

(d) Qn(8) converges to Qo(8) in probability uniformly in 8 E e. 

Condition (a) follows from Assumption 3.l. Condition (b) and (c) hold by 
Assumption 3.2(i) and (ii). Finally, we need to establish (d). By the triangle 
and Cauchy-Schwartz inequalities, we have 

IQ,,(8) - Qo(8)1 :; l[g(8; .1:'n) - E[g(X, 8)]J' 8;;-1 [g(8; .1:'n) E[g(X, 8)]]1 

+ IE[g(X, 8)]'(8;;-1 +8;;-1)[g(8:.1:'n) -E[g(X,8)]]1 

+ IE[g(X, 8)](8;;-1 -S-1)E[g(X,8)]1 

:; Ilg( 8; .1:'n) - E[g(X, 8)]11 2 118;;-111 

+ 21IE[g(X, 8)]llllg( 8; .1:'n) - E[g(X, 8)]11118;;-111 

+ IIE[g(X,8)]112118;;-1 S-111· 

Therefore, to show sUPeEe IQn( 8)-Qo( 8)1 ~ 0, we need to establish sUPeEellg( 8; .1:'n)­
E[g(X, 8)]11 ~ O. Since Assumption 3.2(i) and (ii) imply that II to log Fi ( 8) II is 
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bounded on 8, under Assumption 3.2(i), (ii) and (iii), we obtain 

~ II DlogPi(B) II < ~ Pi(Bo) ~~~ DB 

p;(B)lf(:r;, Bo)d:c 

< 00. 

This implies sUPeEellg( B; Xn) - E[g(X, B)]II .!!.." 0 by uniform law oflarge num­
bers (see, for example, Lemma 2.4 of Newey and McFadden (1994)), and the 
desired result follows. 

Proof of Proposition 3.2 Using mean value theorem around Bo, we obtain 

(A. 1) 

for some B~ between Bo and On. By Assumption 3.3(i), (ii), and (iii), the 
first-order condition: 

(A.2) 

is satisfied. Combining (A.I) and (A.2), we have 

{ }' Dg(B)_l ... 
X DB' I_~ S" vng(Bo;Xn). 

B-B" 

(A.3) 

By Assumption 3.3(ii) and (iv), 
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which implies 

r {ag1(0;Xn)1 }- 1· {ag1 (0;Xn )1 }--D' p nn ao' - p 1m 9 ' = 1 
e=o~ cO 0=00 

I· {ag2(0;Xn)1 }- I· {ag2 (0;Xn)1 }=D' p lln ao' - p lln ao' - 2 
o=o~ 0=00 

where 

D' = ~ P(O ) a
2

Iog Pi(0) I 
1 L' 0 aoao' 

i=1 0=00 

(see, for exalllple, Theorem 3.1 of Newey and KlcFadden (1994)). 
Next, using Lindeberg-Levy central limit theorem, we have 

where the row k, column I element of Smn (denote ski") is given by 

0, 

s~7 E[J(X E Bk)J(X E B,)(X - f1k(OO))(X - po'(Oo))] 

{ 
JBJr: - f1Jc(00))2f(:r, Oo)dx for k = I 
o for k =I: I. 

(AA) 

(A.5) 

(A.6) 

Under Assumption 3.3(v), substituting (AA), (A.5), and (A.6) into (A.3), we 
get 

o L 
,;ri(01l - 00 ) -+ N(O, V), 
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where 

v = {( Dl 

However, since S12 = S;l = 0, it can be reduced to 

{ -lD' D S-lD }-1 V = D 1Sn 1 + 2 22 2 , 

and the proposition is proved. 0 
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