Pointwise Multipliers From BMOA $^{\alpha}$ To BMOA $^{\beta}$

Rikio Yoneda

Abstract

Let g be an analytic function on the open unit disk D in the complex plane C. We will study the following operator $$
I_{g}(f)(z):=\int_{0}^{z} f^{\prime}(\zeta) g(\zeta) d \zeta, J_{g}(f)(z):=\int_{0}^{z} f(\zeta) g^{\prime}(\zeta) d \zeta .
$$

In this paper we study the operators I_{g}, J_{g} from $B M O A^{\alpha}$ to $B M O A^{\beta}$ (from D_{α} to $\left.D_{\beta}\right)(\alpha \leq \beta)$. And we study pointwise multipliers from $B M O A^{\alpha}$ to $B M O A^{\beta}$ (from D_{α} to $\left.D_{\beta}\right)(\alpha \leq \beta)$.

Key Words and Phrases : integration operator, Bloch space, Dirichlet spaces, $B M O A$, boundedness, multiplier.

§1. Introduction

Let $D=\{z \in C:|z|<1\}$ denote the open unit disk in the complex plane C and let $\partial D=\{z \in C:|z|=1\}$ denote the unit circle. For $1 \leq p<+\infty$, the Lebesgue space $L^{p}(D, d A)$ is defined to be the Banach space of Lebesgue measurable functions on the open unit disk D with

$$
\|f\|_{L^{p}(d A)}:=\left(\int_{D}|f(z)|^{p} d A(z)\right)^{\frac{1}{p}}<+\infty
$$

where $d A(z)$ is the normalized area measure on D. The Bergman space $L_{a}^{p}(D)$ is defined to be the subspace of $L^{p}(D, d A)$ consisting of analytic functions. For $0<p<+\infty$, the Hardy space H^{p} is defined to be the Banach space of analytic functions f on D with

$$
\|f\|_{p}:=\left(\sup _{0<r<1} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right)^{\frac{1}{p}}<+\infty
$$

For $z, w \in D$, let $\beta(z, w):=\frac{1}{2} \log \frac{1+\left|\varphi_{z}(w)\right|}{1-\left|\varphi_{z}(w)\right|}$, where $\varphi_{z}(w)=\frac{z-w}{1-\bar{z} w}$. For $0<r<+\infty$

[^0]and $z \in D$ ，let $D(z)=D(z, r)=\{w \in D: \beta(z, w)<r\}$ denote the Bergman disk． $|D(z, r)|$ denotes the normalized area of $D(z, r)$ and $|D(z, r)|$ is comparable to $\left(1-|z|^{2}\right)^{2}$ ．

The space of analytic functions on D of bounded mean oscillation，denoted by $B M O A$ ，consists of functions f in H^{2} for which

$$
\|f\|_{B M O A}:=\sup _{z \in D}\left\|f \circ \varphi_{z}-f(z)\right\|_{2}<+\infty .
$$

Let $\alpha>0$ ．Then α－Bloch space B^{α} is defined to be the space of analytic functions f on D such that

$$
\|f\|_{B^{\alpha}}:=\sup _{z \in D}\left(1-|z|^{2}\right)^{\alpha}\left|f^{\prime}(z)\right|<+\infty .
$$

And the little α－Bloch space，denoted by B_{0}^{α} ，is the closed subspace of B^{α} consisting of functions f with $\left(1-|z|^{2}\right)^{\alpha} f^{\prime}(z) \rightarrow 0\left(|z| \rightarrow 1^{-}\right)$．Note that B^{1}, B_{0}^{1} are the Bloch space B ，the little Bloch space B_{0} ，respectively．

The space $B M O A^{\alpha}$ is defined to be the space of analytic functions f on D such that

$$
\|f\|_{B M O A^{\alpha}}^{2}:=\sup _{a \in D} \int_{D}\left(1-|z|^{2}\right)^{2 \alpha-2}\left|f^{\prime}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z)<+\infty
$$

The space $B M O A_{\alpha}$ is defined to be the space of analytic functions f on D such that

$$
\|f\|_{B M O A_{\alpha}}^{2}:=\sup _{I \subset \partial D} \frac{|I|^{2 \alpha-2}}{|I|} \int_{S(I)}\left|f^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right) d A(z)<+\infty
$$

where I is any arc on the unit circle $\partial D, S(I)=\left\{z \in D:|z|>1-|I|, \frac{z}{|z|} \in I\right\}$ ，and $|I|$ is the normalized arc length on ∂D ．

The space D_{α} is defined to be the space of analytic functions f on D such that

$$
\|f\|_{D_{\alpha}}^{2}:=\int_{D}\left(1-|z|^{2}\right)^{\alpha}\left|f^{\prime}(z)\right|^{2} d A(z)<+\infty
$$

Then note that $B M O A=B M O A^{1}=B M O A_{1}, L_{a}^{2}=D_{2}$ and $H^{2}=D_{1}$ ．
Let X and Y be Banach spaces．Then a function f on D is a multiplier of X into Y if $f g \in Y$ for all g in X ．In this case，we write $f X \subset Y$ ．

For g analytic on D ，the operators I_{g}, J_{g} and M_{g} are defined on the above spaces by the following：

$$
I_{g}(h)(z):=\int_{0}^{z} g(\zeta) h^{\prime}(\zeta) d \zeta, J_{g}(f)(z):=\int_{0}^{z} f(\zeta) g^{\prime}(\zeta) d \zeta, M_{g}(f)(z):=g(z) f(z)
$$

In［P］，Ch．Pommerenke showed that J_{g} is a bounded operator on Hardy space H^{2} if and only if g is in $B M O A$ ，and this result was extended to other Hardy spaces H^{p} $1 \leq p<+\infty$ in［AS1］．In［AS2］，A．Aleman and A．G．Siskakis studied the operator J_{g} defined on weighted Bergman spaces．

In［Yo1］，we proved the following result：

Theorem 1.1. The operator J_{g} is a bounded operator on B if and only if

$$
\sup _{z \in D}\left(1-|z|^{2}\right)\left(\log \frac{1}{1-|z|^{2}}\right)\left|g^{\prime}(z)\right|<+\infty
$$

and the operator J_{g} is a compact operator on B if and only if

$$
\lim _{|z| \rightarrow 1^{-}}\left(1-|z|^{2}\right)\left(\log \frac{1}{1-|z|^{2}}\right)\left|g^{\prime}(z)\right|=0
$$

And let $\alpha>1$. Then the operator J_{g} is a bounded operator on B^{α} if and only if $g \in B$. And the operator J_{g} is a compact operator on B^{α} if and only if $g \in B_{0}$.

In [Yo2], we also proved the following results :
Theorem 1.2. Let $\alpha \geq 1$ and g be analytic on D. Then the operator I_{g} is a bounded operator on B^{α} if and only if $g \in H^{\infty}$. And the operator I_{g} is a compact operator on B^{α} if and only if $g \equiv 0$.

Theorem 1.3. For g analytic on D, the following are equivalent :
(i) $g B \subset B\left(g B_{0} \subset B_{0}\right)$;
(ii) Both I_{g} and J_{g} are bounded operators on B (or B_{0});
(iii) $g \in H^{\infty}, \sup _{z \in D}\left(1-|z|^{2}\right)\left(\log \frac{1}{1-|z|^{2}}\right)\left|g^{\prime}(z)\right|<+\infty$.

And let $\alpha>1$. The following are equivalent :
$(i)^{\prime} \quad g B^{\alpha} \subset B^{\alpha}\left(g B_{0}^{\alpha} \subset B_{0}^{\alpha}\right) ;$
(ii) $)^{\prime} \quad I_{g}$ is a bounded operator on $B^{\alpha}\left(\right.$ or $\left.B_{0}^{\alpha}\right)$;
$\left(\right.$ iii) ${ }^{\prime} \quad g \in H^{\infty}$.

In Theorem 1.3, the equivalence of (i) and (iii), the equivalence of $(i)^{\prime}$ and $(i i i)^{\prime}$ were proved in [Zhu3] and [Zhu4].

The space $B M O A^{\alpha}$ has been previous studied by R.Zhao in [Z1, p.51]. So $B M O A^{\alpha}$ is the same as $B M O A_{2}^{\alpha}$ in [Z1]; Pointwise multipliers on $B M O A$ have been characterized by D.Stegenga in [St] and J.M.Ortega and J.Farega in [OF]. Also , the boundedness of the operator J_{g} on $B M O A$ has been characterized by Siskakis and Zhao in [SZ].

In this paper we study the operators I_{g}, J_{g} from D_{α} to D_{β} (from $B M O A_{\alpha}$ to
$\left.B M O A_{\beta}\right)(\alpha \leq \beta)$ ．And we also study the multipliers from D_{α} to D_{β}（from $B M O A_{\alpha}$ to $\left.B M O A_{\beta}\right)(\alpha \leq \beta)$ ．And some of the techniques used to prove theorems were inspired by ［OSZ］and［W］．Throughout this paper，C, K will denote positive constant whose value is not necessary the same at each occurrence．

§2．Multipliers from $B M O A$ to Bloch space

In this section，we study multipliers from $B M O A$ to Bloch space．

Theorem 2．1．For g analytic on D ，the following are equivalent：
（i）$g B M O A \subset B$ ；
（ii）$I_{g}, J_{g}: B M O A \rightarrow B$ are bounded operators ；
（iii）$g \in H^{\infty}, \sup _{z \in D}\left(1-|z|^{2}\right)\left(\log \frac{1}{1-|z|^{2}}\right)\left|g^{\prime}(z)\right|<+\infty$ ．
Proof．First，we prove that $J_{g}: B M O A \rightarrow B$ is bounded operator if and only if

$$
\sup _{z \in D}\left(1-|z|^{2}\right)\left(\log \frac{1}{1-|z|^{2}}\right)\left|g^{\prime}(z)\right|<+\infty .
$$

Let $f \in B M O A$ ．Put $L:=J_{g} f$ ．Then we see

$$
\left(1-|z|^{2}\right)\left|L^{\prime}(z)\right|=\left(1-|z|^{2}\right)|f(z)|\left|g^{\prime}(z)\right|=\left(1-|z|^{2}\right) \log \frac{1}{1-|z|^{2}}\left|g^{\prime}(z)\right| \frac{|f(z)|}{\log \frac{1}{1-|z|^{2}}}
$$

Since $|f(z)| \leq C\|f\|_{B M O A} \log \frac{1}{1-|z|^{2}}$（ see［SZ］），hence we have

$$
\left\|J_{g} f\right\|_{B}=\sup _{z \in D}\left(1-|z|^{2}\right)\left|L^{\prime}(z)\right| \leq C \sup _{z \in D}\left(1-|z|^{2}\right) \log \frac{1}{1-|z|^{2}}\left|g^{\prime}(z)\right|\|f\|_{B M O A}
$$

To prove the converse，suppose that J_{g} is bounded on $B M O A$ ．For $a \in D$ ，put $f_{a}(z)=$ $\log \frac{1}{1-\bar{a} \bar{z}}$ ．Then it is clear that $\left\{f_{a}\right\}$ is a bounded set in $B M O A$ ．For $z \in D(a, r)$ ，we have $\log \frac{1}{1-|a|^{2}} \leq C\left|\log \frac{1}{1-\bar{a} z}\right|$ ．So by using the subharmonicity of $\left|g^{\prime}(z)\right|$ and the fact that
there is a constant $C_{1}>0$ (depending only on r) such that

$$
\begin{gathered}
\int_{D(a, r)} \frac{1}{\left(1-|z|^{2}\right)^{2}} d A(z) \leq C_{1}<\infty \\
\left(1-|a|^{2}\right)^{2}\left(\log \frac{1}{1-|a|^{2}}\right)^{2}\left|g^{\prime}(a)\right|^{2} \leq C^{\prime}\left(\log \frac{1}{1-|a|^{2}}\right)^{2} \int_{D(a, r)}\left|g^{\prime}(z)\right|^{2} d A(z) \\
\leq C C^{\prime} \int_{D(a, r)}\left|\log \frac{1}{1-\bar{a} z}\right|^{2}\left|g^{\prime}(z)\right|^{2} d A(z) \\
\leq C C^{\prime} \sup _{z \in D(a, r)}\left(1-|z|^{2}\right)^{2}\left|\log \frac{1}{1-\bar{a} z}\right|^{2}\left|g^{\prime}(z)\right|^{2} \int_{D(a, r)} \frac{1}{\left(1-|z|^{2}\right)^{2}} d A(z) \\
\leq C C^{\prime} C_{1} \sup _{z \in D}\left(1-|z|^{2}\right)^{2}\left|\log \frac{1}{1-\bar{a} z}\right|^{2}\left|g^{\prime}(z)\right|^{2} \\
\leq C C^{\prime} C_{1} \sup _{a \in D}\left\|J_{g} f_{a}\right\|_{B}^{2} \\
\leq C C^{\prime} C_{1}\left\|J_{g}\right\|^{2} \sup _{a \in D}\left\|f_{a}\right\|_{B M O A}^{2}<\infty .
\end{gathered}
$$

Next, we prove that $I_{g}: B M O A \rightarrow B$ is a bounded operator if and only if $g \in H^{\infty}$. Let $f \in B M O A$. Put $L:=I_{g} f$. Then we see for some constant $C>0$,

$$
\begin{aligned}
\left(1-|z|^{2}\right)\left|L^{\prime}(z)\right| & =\left(1-|z|^{2}\right)\left|f^{\prime}(z) \| g(z)\right| \\
& \leq\|g\|_{\infty}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \\
& \leq C\|g\|_{\infty}\|f\|_{B M O A}
\end{aligned}
$$

Hence $\left\|I_{g} f\right\|_{B} \leq C\|g\|_{\infty}\|f\|_{B M O A}$.
To prove the converse, suppose that I_{g} is bounded on $B M O A$. For $a \in D$, put $f_{a}(z)=\log \frac{1}{1-\bar{a} z}$. Then

$$
\begin{aligned}
|a|^{2}|g(a)|^{2} & \leq C \frac{|a|^{2}}{\left(1-|a|^{2}\right)^{2}} \int_{D(a, r)}|g(z)|^{2} d A(z) \\
& \sim C \int_{D(a, r)}\left|\left(\log \frac{1}{1-\bar{a} z}\right)^{\prime}\right|^{2}|g(z)|^{2} d A(z) \\
& \sim C \int_{D(a, r)} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}} \sup _{z \in D(a, r)}\left(1-|z|^{2}\right)^{2}\left|f_{a}^{\prime}(z)\right|^{2}|g(z)|^{2} \\
& \sim C\left\|I_{g} f_{a}\right\|_{B}^{2} \leq C\left\|I_{g}\right\|^{2}\left\|f_{a}\right\|_{B M O A}^{2}<\infty
\end{aligned}
$$

Hence we see $\sup _{z \in D}|g(z)|<\infty$. Thus we see that the equivalence of (ii) and (iii) holds. So it suffices to show that $g B M O A \subset B$ implies $g \in H^{\infty}$. Put $k_{a}(z):=\log \frac{1}{1-\bar{a} z}-\log \frac{1}{1-|a|^{2}}$ $(a, z \in D)$. Since $g B M O A \subset B$ and $k_{a}(a)=0$,

$$
\begin{aligned}
|a||g(a)| & =\left(1-|a|^{2}\right)\left|k_{a}(a) g^{\prime}(a)+k_{a}^{\prime}(a) g(a)\right| \\
& \leq \sup _{z \in D}\left(1-|z|^{2}\right)\left|k_{a}(z) g^{\prime}(z)+k_{a}^{\prime}(z) g(z)\right|<+\infty
\end{aligned}
$$

Hence we see that $g \in H^{\infty}$ ．

We also get the following results，but we omit to prove them because we can prove as the proof of the previous theorem．In the following theorem，the equivalence of（ii）and (v) was proved in［OSZ］．

Theorem 2．2．Let $0<\alpha<1$ and $\alpha \leq \beta$ ．For g analytic on D ，the following are equivalent：
（i）$g B M O A^{\alpha} \subset B^{\beta}$ ；
（ii）$g B^{\alpha} \subset B^{\beta}$ ；
（iii）$J_{g}: B M O A^{\alpha} \rightarrow B^{\beta}$ is a bounded operator ；
（iv）$J_{g}: B^{\alpha} \rightarrow B^{\beta}$ is a bounded operator ；
（v） $\sup _{z \in D}\left(1-|z|^{2}\right)^{\beta}\left|g^{\prime}(z)\right|<+\infty$ ．

In the following theorem，the equivalence of $(i i)$ and (v) was proved in［OSZ］．
Theorem 2．3．Let $\alpha=1$ and $\beta>1$ ．For g analytic on D ，the following are equivalent：
（i）$g B M O A^{\alpha} \subset B^{\beta}$ ；
（ii）$g B^{\alpha} \subset B^{\beta}$ ；
（iii）$J_{g}: B M O A^{\alpha} \rightarrow B^{\beta}$ is a bounded operator ；
（iv）$J_{g}: B^{\alpha} \rightarrow B^{\beta}$ is a bounded operator ；
（v） $\sup _{z \in D}\left(1-|z|^{2}\right)^{\beta}\left(\log \frac{1}{1-|z|^{2}}\right)\left|g^{\prime}(z)\right|<+\infty$ ．
In the following theorem，the equivalence of $(i i)$ and（vii）was proved in［OSZ］．
Theorem 2．4．Let $\alpha>1$ and $\alpha<\beta$ ．For g analytic on D ，the following are equivalent：
（i）$g B M O A^{\alpha} \subset B^{\beta}$ ；
（ii）$g B^{\alpha} \subset B^{\beta}$ ；
（iii）$I_{g}: B M O A^{\alpha} \rightarrow B^{\beta}$ is a bounded operator ；
（iv）$J_{g}: B M O A^{\alpha} \rightarrow B^{\beta}$ is a bounded operator ；
(v) $\quad I_{g}: B^{\alpha} \rightarrow B^{\beta}$ is a bounded operator ;
(vi) $J_{g}: B^{\alpha} \rightarrow B^{\beta}$ is a bounded operator ;
(vii) $\sup _{z \in D}\left(1-|z|^{2}\right)^{\beta-\alpha+1}\left|g^{\prime}(z)\right|<+\infty$.

In the following theorem, the equivalence of $(i i)$ and (v) was proved in [OSZ].
Theorem 2.5. Let $\alpha>1$ and $\alpha=\beta$. For g analytic on D, the following are equivalent:
(i) $g B M O A^{\alpha} \subset B^{\beta}$;
(ii) $g B^{\alpha} \subset B^{\beta}$;
(iii) $I_{g}: B M O A^{\alpha} \rightarrow B^{\beta}$ is a bounded operator ;
(iv) $\quad I_{g}: B^{\alpha} \rightarrow B^{\beta}$ is a bounded operator ;
(v) $g \in H^{\infty}$.

§3. Multipliers from $B M O A^{\alpha}$ to $B M O A^{\beta}$

In this section we study the operators I_{g} and J_{g} from $B M O A^{\alpha}$ to $B M O A^{\beta}$, and the operators I_{g} and J_{g} from $B M O A_{\alpha}$ to $B M O A_{\alpha}$.

Theorem 3.1. Let $\alpha \leq \beta$. For g analytic on D, the operator $I_{g}: B M O A^{\alpha} \rightarrow$ $B M O A^{\beta}$ is a bounded operator if and only if

$$
\sup _{z \in D}\left(1-|z|^{2}\right)^{\beta-\alpha}|g(z)|<\infty
$$

Proof. If $\sup _{z \in D}\left(1-|z|^{2}\right)^{\beta-\alpha}|g(z)|<\infty$, it is trivial that $I_{g}: B M O A^{\alpha} \rightarrow$ $B M O A^{\beta}$ is bounded. So we only need to prove the converse. Firstly, we prove the case $\alpha=1$. Let $f_{a}(z):=\log \frac{1}{1-\bar{a} z}$. Then it is clear that $\left\{f_{a}\right\}$ is a bounded set in
$B M O A^{1}=B M O A$ ．Since $1-|z|^{2}$ is comparable to $1-|a|^{2}$ and $|1-\bar{a} z|$ for $z \in D(a, r)$ ， we have

$$
\begin{aligned}
& \left(1-|a|^{2}\right)^{2(\beta-1)}|a|^{2}|g(a)|^{2} \\
& \leq C \frac{|a|^{2}}{\left(1-|a|^{2}\right)^{2}} \int_{D(a, r)}\left(1-|z|^{2}\right)^{2(\beta-1)}|g(z)|^{2} d A(z) \\
& \sim C \int_{D(a, r)}\left(1-|z|^{2}\right)^{2(\beta-1)}\left|\left(\log \frac{1}{1-\bar{a} z}\right)^{\prime}\right|^{2}|g(z)|^{2} d A(z) \\
& \sim C \int_{D(a, r)}\left(1-|z|^{2}\right)^{2(\beta-1)}\left|\left(\log \frac{1}{1-\bar{a} z}\right)^{\prime}\right|^{2}|g(z)|^{2} \frac{\left(1-|a|^{2}\right)\left(1-|z|^{2}\right)}{|1-\bar{a} z|^{2}} d A(z) \\
& =C \int_{D(a, r)}\left(1-|z|^{2}\right)^{2(\beta-1)}\left|f_{a}^{\prime}(z)\right|^{2}|g(z)|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \leq C \int_{D}\left(1-|z|^{2}\right)^{2(\beta-1)}\left|f_{a}^{\prime}(z)\right|^{2}|g(z)|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \leq C \int_{D}\left(1-|z|^{2}\right)^{2(\beta-1)}\left|\left(I_{g} f_{a}\right)^{\prime}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& =C\left\|I_{g} f_{a}\right\|_{B M O A^{\beta}}^{2} \leq C\left\|I_{g}\right\|^{2}\left\|f_{a}\right\|_{B M O A}^{2}<+\infty .
\end{aligned}
$$

In the case $\alpha \neq 1$ ，by puting $f_{a}(z):=(1-\bar{a} z)^{1-\alpha}$ ，we can prove that as well．So we omit it．

Theorem 3．2．Let $\alpha \leq \beta$ and $0<\alpha<1$ ．For g analytic on $D, J_{g}: B M O A^{\alpha} \rightarrow$ $B M O A^{\beta}$ is a bounded operator if and only if

$$
g \in B M O A^{\beta}
$$

Proof．Suppose that

$$
g \in B M O A^{\beta}
$$

If $h \in B M O A^{\alpha}$ ，then

$$
\begin{aligned}
\left(1-|a|^{2}\right)^{2 \alpha}\left|h^{\prime}(a)\right|^{2} & \leq C\left(1-|a|^{2}\right)^{2 \alpha} \frac{1}{\left(1-|a|^{2}\right)^{2}} \int_{D(a, r)}\left|h^{\prime}(z)\right|^{2} d A(z) \\
& \leq C\left(1-|a|^{2}\right)^{2(\alpha-1)} \int_{D(a, r)}\left|h^{\prime}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \leq C \int_{D}\left(1-|z|^{2}\right)^{2(\alpha-1)}\left|h^{\prime}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z)
\end{aligned}
$$

So we have

$$
\|h\|_{\infty}^{2} \leq C\left(|h(0)|^{2}+\sup _{a \in D}\left(1-|a|^{2}\right)^{2 \alpha}\left|h^{\prime}(a)\right|^{2}\right) \leq C\left(|h(0)|^{2}+\|h\|_{B M O A^{\alpha}}^{2}\right)
$$

Thus we see $B M O A^{\alpha} \subset H^{\infty}$. Hence we have

$$
\begin{aligned}
\left\|J_{g} f\right\|_{B M O A^{\beta}}^{2} & =\int_{D}\left(1-|z|^{2}\right)^{2(\beta-1)}\left|g^{\prime}(z) f(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \leq\|f\|_{\infty}^{2}\|g\|_{B M O A^{\beta}}^{2} \\
& \leq C\|f\|_{B M O A^{\alpha}}^{2}\|g\|_{B M O A^{\beta}}^{2}
\end{aligned}
$$

Hence we have that $J_{g}: B M O A^{\alpha} \rightarrow B M O A^{\beta}$ is a bounded operator.
It is trivial that the converse holds. In fact, since a non-zero constant c belongs to $B M O A^{\alpha}$, we have $J_{g} c \in B M O A^{\beta}$. Hence $g \in B M O A^{\beta}$.

By using Theorem 3.1 and Theorem 3.2, we have the following corollary :
Corollary 3.3. Let $\alpha \leq \beta$ and $0<\alpha<1$. For g analytic on D, the following are equivalent:
(i) $g B M O A^{\alpha} \subset B M O A^{\beta}$;
(ii) $J_{g}: B M O A^{\alpha} \rightarrow B M O A^{\beta}$ is a bounded operator ;
(iii) $g \in B M O A^{\beta}$.

Proof. We only prove the case $\beta>\alpha$, because we can prove the case $\beta=\alpha$ as well. Then, since $\sup _{z \in D}\left(1-|z|^{2}\right)^{\beta-\alpha}|g(z)| \sim \sup _{z \in D}\left(1-|z|^{2}\right)^{\beta-\alpha+1}\left|g^{\prime}(z)\right|$ and

$$
\sup _{z \in D}\left(1-|z|^{2}\right)^{\beta-\alpha+1}\left|g^{\prime}(z)\right| \leq \sup _{z \in D}\left(1-|z|^{2}\right)^{\beta}\left|g^{\prime}(z)\right| \leq C\|g\|_{B M O A^{\beta}}
$$

we see that the boundedness of J_{g} implies the boundedness of I_{g} because of Theorem 3.1 and Theorem 3.2. So it follows that (ii) implies (i). To prove that (i) implies (iii), suppose that $g B M O A^{\alpha} \subset B M O A^{\beta}$. Since a non-zero constant c belongs to $B M O A^{\alpha}$, we have $c g \in B M O A^{\beta}$. Thus we have $g \in B M O A^{\beta}$.

Proposition 3.4. Let $1<\alpha \leq \beta$. For g analytic on D, if $J_{g}: B M O A_{\alpha} \rightarrow$ $B M O A_{\beta}$ is a bounded operator, then

$$
g \in B M O A_{\beta-\alpha+1} .
$$

And if $g \in B M O A^{\beta-\alpha+1}$, then $J_{g}: B M O A^{\alpha} \rightarrow B M O A^{\beta}$ is a bounded operator.
Proof. Let $1<\alpha \leq \beta$. Suppose that $J_{g}: B M O A_{\alpha} \rightarrow B M O A_{\beta}$ is a bounded operator. For any arc $I \subset \partial D$, let $a=(1-|I|) \zeta$, where ζ is the center of I. Put
$f_{a}(z)=(1-\bar{a} z)^{1-\alpha},(a \in D)$ ．Then $\left\{f_{a}\right\}$ is a bounded set in BMOA，and for any $z \in S(I)$ ，there is a constant $C>0$ ，such that $\frac{1}{C}|I|^{1-\alpha} \leq\left|f_{a}(z)\right| \leq C|I|^{1-\alpha}$ ．So we have

$$
\begin{aligned}
& \frac{|I|^{2(\beta-\alpha)}}{|I|} \int_{S(I)}\left|g^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right) d A(z) \\
& \leq \frac{1}{C} \frac{|I|^{2(\beta-1)}}{|I|} \int_{S(I)}\left|f_{a}(z)\right|^{2}\left|g^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right) d A(z) \\
& =\frac{1}{C} \frac{|I|^{2(\beta-1)}}{|I|} \int_{S(I)}\left|\left(J_{g} f_{a}\right)^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right) d A(z) \\
& \leq \frac{1}{C}\left\|J_{g} f_{a}\right\|_{B M O A_{\beta}}^{2} \\
& \leq \frac{1}{C}\left\|J_{g}\right\|^{2}\left\|f_{a}\right\|_{B M O A_{\alpha}}^{2}<\infty .
\end{aligned}
$$

Thus we have $g \in B M O A_{\beta-\alpha+1}$ ．
Next，suppose that $g \in B M O A^{\beta-\alpha+1}$ ．Since $|f(z)| \leq C\left(1-|z|^{2}\right)^{1-\alpha}\|f\|_{B M O A^{\alpha}}$ for all $f \in B M O A^{\alpha}$ for some constant $C>0$ ，we have

$$
\begin{aligned}
\left\|J_{g} f\right\|_{B M O A^{\beta}}^{2} & =\sup _{a \in D} \int_{D}\left(1-|z|^{2}\right)^{2(\beta-1)}|f(z)|^{2}\left|g^{\prime}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \leq C^{2}\|f\|_{B M O A^{\alpha}}^{2} \int_{D}\left(1-|z|^{2}\right)^{2(\beta-\alpha)}\left|g^{\prime}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& =C^{2}\|f\|_{B M O A^{\alpha}}^{2}\|g\|_{B M O A^{\beta-\alpha+1}}^{2}
\end{aligned}
$$

Hence $J_{g}: B M O A^{\alpha} \rightarrow B M O A^{\beta}$ is bounded operator．In the case of $\alpha=1$ ，we can prove it by using a test function $f_{a}(z)=\log \frac{1}{1-\bar{a} z}$ for all $a \in D$ and the estimate $|f(z)| \leq$ $C\left(\log \frac{1}{1-|z|^{2}}\right)\|f\|_{B M O A}$ for all $f \in B M O A$ as well．So we omit it．

Proposition 3．5．Let $1<\alpha \leq \beta$ ．For g analytic on D ，then $J_{g}: B M O A^{\alpha} \rightarrow$ $B M O A^{\beta}$ is a bounded operator if and only if $g \in B^{\beta-\alpha+1}$ ．

Proof．Let $g \in B^{\beta-\alpha+1}$ ．Let $f \in B M O A^{\alpha}$ ．Then

$$
\begin{aligned}
\left\|J_{g} f\right\|_{B M O A^{\beta}}^{2} & =\sup _{a \in D} \int_{D}\left(1-|z|^{2}\right)^{2(\beta-1)}|f(z)|^{2}\left|g^{\prime}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \leq\|g\|_{B^{\beta-\alpha+1}}^{2} \sup _{a \in D} \int_{D}\left(1-|z|^{2}\right)^{2(\alpha-2)}|f(z)|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z)
\end{aligned}
$$

Since $f \in B M O A^{\alpha}$ we get

$$
\sup _{a \in D} \int_{D}\left(1-|z|^{2}\right)^{2(\alpha-1)}\left|f^{\prime}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z)<\infty
$$

Applying Proposition 2 in [Z2] to the antiderivative F of f we see that the above inequality is equivalent to

$$
\sup _{a \in D} \int_{D}\left(1-|z|^{2}\right)^{2(\alpha-2)}|f(z)|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z)<\infty
$$

Therefore $\left\|J_{g} f\right\|_{B M O A^{\beta}}<\infty$ and so $J_{g} f \in B M O A^{\beta}$. An application of the Closed Graph Theorem gives the boundedness of the operator J_{g}.

Conversely, let $J_{g}: B M O A^{\alpha} \rightarrow B M O A^{\beta}$ be bounded. It is easy to see that $\left\{f_{a}(z)=\right.$ $\left.(1-\bar{a} z)^{1-\alpha}\right\}$ is a bounded set in $B M O A^{\alpha}$. So

$$
\begin{aligned}
\infty & >\sup _{a \in D}\left\|J_{g} f_{a}\right\|_{B M O A^{\beta}}^{2} \\
& =\sup _{a \in D} \int_{D}\left(1-|z|^{2}\right)^{2(\beta-1)}\left|f_{a}(z)\right|^{2}\left|g^{\prime}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \geq \sup _{a \in D} \int_{D(a, r)} \frac{\left(1-|z|^{2}\right)^{2(\beta-1)}}{|1-\bar{a} z|^{2(\alpha-1)}}\left|g^{\prime}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \geq C \sup _{a \in D}\left(1-|a|^{2}\right)^{2(\beta-\alpha)} \int_{D(a, r)}\left|g^{\prime}(z)\right|^{2} d A(z) \\
& \geq C \sup _{a \in D}\left(1-|a|^{2}\right)^{2(\beta-\alpha)}\left(1-|a|^{2}\right)^{2}\left|g^{\prime}(a)\right|^{2} \\
& =C\|g\|_{B^{\beta-\alpha+1}}^{2}
\end{aligned}
$$

Thus $g \in B^{\beta-\alpha+1}$. The proof is complete.

Corollary 3.6. Let $1<\alpha<\beta$. For g analytic on D, if $g \in B M O A^{\beta-\alpha+1}$, then $g B M O A^{\alpha} \subset B M O A^{\beta}$.

Proof. Let $1<\alpha<\beta$. If $g \in B M O A^{\beta-\alpha+1}$, then $J_{g}: B M O A^{\alpha} \rightarrow B M O A^{\beta}$ is bounded operator. And if $g \in B M O A^{\beta-\alpha+1}$,

$$
\sup _{z \in D}\left(1-|z|^{2}\right)^{\beta-\alpha+1}\left|g^{\prime}(z)\right|<\infty
$$

Since $\sup _{z \in D}\left(1-|z|^{2}\right)^{\beta-\alpha+1}\left|g^{\prime}(z)\right| \sim \sup _{z \in D}\left(1-|z|^{2}\right)^{\beta-\alpha}|g(z)|, I_{g}: B M O A^{\alpha} \rightarrow B M O A^{\beta}$ is bounded operator. Hence we have $g B M O A^{\alpha} \subset B M O A^{\beta}$.

Together with Corollary 3.3, the following result gives a relative complete description of multipliers between $B M O A^{\alpha}$ and $B M O A^{\beta}$ (except for the case $\alpha=1, \beta \neq 1$).

Corollary 3．7．（i）Let $1<\alpha<\beta$ ．Then g is a multiplier from $B M O A^{\alpha}$ into $B M O A^{\beta}$ if and only if $g \in B^{\beta-\alpha+1}$ ．
（ii）Let $\alpha>1$ ．Then g is a multiplier from $B M O A^{\alpha}$ into itself if and only if $g \in H^{\infty}$ ．
（iii）Let $\alpha>\beta$ and g is a multiplier from $B M O A^{\alpha}$ into $B M O A^{\beta}$ ，then $g \equiv 0$ ．

Proof．Let $1<\alpha<\beta$ ．Let $g \in B^{\beta-\alpha+1}$ as $\alpha<\beta$ and $g \in H^{\infty}$ as $\alpha=\beta$ ．Since $H^{\infty} \subset B$ ，by Theorem 3.1 and Theorem 3．2，both I_{g} and J_{g} are bounded operators from $B M O A^{\alpha}$ into $B M O A^{\beta}$ ．So g is a multiplier from $B M O A^{\alpha}$ into $B M O A^{\beta}$ ．

Conversely，suppose that g is a multiplier from $B M O A^{\alpha}$ into $B M O A^{\beta}$ ．As in the proof of Proposition 3．5，for any $a \in D,\left\{f_{a}(z)=(1-\bar{a} z)^{1-\alpha}\right\}$ is a bounded set in $B M O A^{\alpha}$ ． Thus $\left\{g f_{a}\right\}$ is a bounded set in $B M O A^{\beta}$ ．Thus by Proposition 2 of $[\mathrm{Z} 2]$ we have

$$
\begin{aligned}
\infty & >\sup _{a \in D} \int_{D}\left(1-|z|^{2}\right)^{2(\beta-2)}\left|f_{a}(z)\right|^{2}|g(z)|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \geq \sup _{a \in D} \int_{D(a, r)} \frac{\left(1-|z|^{2}\right)^{2(\beta-2)}}{|1-\bar{a} z|^{2(\alpha-1)}}|g(z)|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \geq C \sup _{a \in D}\left(1-|a|^{2}\right)^{2(\beta-\alpha-1)} \int_{D(a, r)}|g(z)|^{2} d A(z) \\
& \geq C \sup _{a \in D}\left(1-|a|^{2}\right)^{2(\beta-\alpha-1)}\left(1-|a|^{2}\right)^{2}|g(a)|^{2} \\
& =C \sup _{a \in D}\left(1-|a|^{2}\right)^{2(\beta-\alpha)}|g(a)|^{2}
\end{aligned}
$$

which implies that $g \in B^{\beta-\alpha+1}$ as $\alpha<\beta ; g \in H^{\infty}$ as $\alpha=\beta$ and $g \equiv 0$ as $\alpha>\beta$ ．The proof is complete．

Theorem 3．8．Let $\alpha>0$ ，the operator $I_{g}: B M O A_{\alpha} \rightarrow B M O A_{\alpha}$ is bounded if and only if

$$
g \in H^{\infty} .
$$

Proof．If $\sup _{z \in D}|g(z)|<\infty$ ，it is trivial that $I_{g}: B M O A_{\alpha} \rightarrow B M O A_{\alpha}$ is bounded．So we only need to prove the converse．Note that the quantity

$$
\sup _{a \in D}\left(1-|a|^{2}\right)^{2 \alpha-2} \int_{D}\left|f^{\prime}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z)
$$

is comparable to the quantity

$$
\|f\|_{B M O A_{\alpha}}^{2}:=\sup _{I \subset \partial D} \frac{|I|^{2 \alpha-2}}{|I|} \int_{S(I)}\left|f^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right) d A(z)
$$

Suppose that I_{g} is bounded on $B M O A_{\alpha}$. In the case of $\alpha \neq 1$, consider the test function $h_{a}(z):=(1-\bar{a} z)^{1-\alpha}$ for all $a \in D$. Then it is clear that $\left\{h_{a}\right\}$ is a bounded set in $B M O A_{\alpha}$. For any $a \in D$,

$$
\begin{aligned}
|a|^{2}|g(a)|^{2} & \leq C \frac{|a|^{2}}{\left(1-|a|^{2}\right)^{2}} \int_{D(a, r)}|g(z)|^{2} d A(z) \\
& \sim C\left(1-|a|^{2}\right)^{2(\alpha-1)} \int_{D(a, r)}\left|h_{a}^{\prime}(z)\right|^{2}|g(z)|^{2} d A(z) \\
& \sim C\left(1-|a|^{2}\right)^{2(\alpha-1)} \int_{D(a, r)}\left|h_{a}^{\prime}(z)\right|^{2}|g(z)|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \leq C\left(1-|a|^{2}\right)^{2(\alpha-1)} \int_{D}\left|h_{a}^{\prime}(z)\right|^{2}|g(z)|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \leq C\left\|I_{g} h_{a}\right\|_{B M O A_{\alpha}}^{2} \leq C\left\|I_{g}\right\|^{2}\left\|h_{a}\right\|_{B M O A_{\alpha}}^{2} \leq 2^{2 \alpha} C\left\|I_{g}\right\|^{2}<\infty .
\end{aligned}
$$

Hence we see $\sup _{z \in D}|g(z)|<\infty$.
In the case of $\alpha=1$, we can prove it by using the test function $h_{a}(z):=\log \frac{1}{1-\bar{a} z}$ as well. So we omit to prove it.

Theorem 3.9. Let $\alpha>1$, the operator $J_{g}: B M O A_{\alpha} \rightarrow B M O A_{\alpha}$ is bounded if and only if

$$
g \in B M O A
$$

Proof. Suppose that $g \in B M O A$. Then we have

$$
\begin{aligned}
\left\|J_{g} f\right\|_{B M O A_{\alpha}}^{2}= & \sup _{I \subset \partial D} \frac{|I|^{2 \alpha-2}}{|I|} \int_{S(I)}\left|g^{\prime}(z)\right|^{2}|f(z)|^{2}\left(1-|z|^{2}\right) d A(z) \\
\leq & \sup _{I \subset \partial D} \frac{2|I|^{2 \alpha-2}}{|I|} \int_{S(I)}\left|g^{\prime}(z)\right|^{2}|f(z)-f(u)|^{2}\left(1-|z|^{2}\right) d A(z) \\
& +\sup _{I \subset \partial D} \frac{2|I|^{2 \alpha-2}}{|I|} \int_{S(I)}\left|g^{\prime}(z)\right|^{2}|f(u)|^{2}\left(1-|z|^{2}\right) d A(z) \\
& =: I_{1}+I_{2} .
\end{aligned}
$$

Since $g \in B M O A$, we see $g \circ \varphi_{u} \in B M O A$. Thus $d \mu_{g}=\left|\left(g \circ \varphi_{u}\right)^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right) d A(z)$ is a Carleson measure. So we have for $u=(1-|I|) \zeta, \zeta$ the center of I,

$$
\begin{aligned}
I_{1} & \leq C\|g\|_{B M O A}^{2}\left(1-|u|^{2}\right)^{2(\alpha-1)} \int_{0}^{2 \pi}\left|f \circ \varphi_{u}\left(e^{i \theta}\right)-f(u)\right|^{2} d \theta \\
& \left(1-|u|^{2}\right)^{2(\alpha-1)} \int_{0}^{2 \pi}\left|f \circ \varphi_{u}\left(e^{i \theta}\right)-f(u)\right|^{2} d \theta \\
& \leq \sup _{u \in D}\left(1-|u|^{2}\right)^{2(\alpha-1)}\left\|f \circ \varphi_{u}(z)-f(u)\right\|_{H^{2}}^{2} \\
& \sim \sup _{u \in D}\left(1-|u|^{2}\right)^{2(\alpha-1)}\left(\int_{D}\left|f^{\prime}(z)\right|^{2}\left(1-\left|\varphi_{u}(z)\right|^{2}\right) d A(z)\right) \\
& \sim\|f\|_{B M O A_{\alpha}}^{2} .
\end{aligned}
$$

Hence there exist some positive constant $K>0$ such that

$$
I_{1} \leq K\|g\|_{B M O A}^{2}\|f\|_{B M O A_{\alpha}}^{2}
$$

On the other hand，since $B M O A_{\alpha} \subset B_{\alpha}$ ，we have that $\|f\|_{B_{\alpha}} \leq\|f\|_{B M O A_{\alpha}}$ and $|f(u)| \leq \frac{C}{(1-|u|)^{\alpha-1}}\|f\|_{B_{\alpha}}$ ．So we have
$|f(u)| \leq \frac{C}{(1-|u|)^{\alpha-1}}\|f\|_{B M O A_{\alpha}}$ ．Hence we see

$$
I_{2} \leq \sup _{I \subset \partial D} \frac{C|I|^{2 \alpha-2}}{|I|} \frac{\|f\|_{B M O A_{\alpha}}^{2}}{(1-|u|)^{2(\alpha-1)}} \int_{S(I)}\left|g^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right) d A(z)
$$

Thus

$$
I_{2} \leq\|f\|_{B M O A_{\alpha}}^{2}\|g\|_{B M O A}^{2}
$$

Hence the operator J_{g} is bounded on $B M O A_{\alpha}$ ．
To prove the converse，suppose that for $a=(1-|I|) \zeta, \zeta$ the center of I ．Then there exists a bounded set $\left\{f_{a}\right\}$ in $B M O A_{\alpha}$ such that $\frac{1}{|I|^{\alpha-1}} \leq C_{1}\left|f_{a}(z)\right|$ for all $z \in S(I)$ ．Let $I \subset \partial D$ and $a=(1-|I|) \zeta, \zeta$ the center of I ．Then we have

$$
\begin{aligned}
& \frac{1}{|I|} \int_{S(I)}\left|g^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right) d A(z) \\
& \leq \frac{C_{1}|I|^{2(\alpha-1)}}{|I|} \int_{S(I)}\left|g^{\prime}(z)\right|^{2}\left|f_{a}(z)\right|^{2}\left(1-|z|^{2}\right) d A(z) \\
& \leq \frac{\left.C_{1}|I|^{2(\alpha-1}\right)}{|I|} \int_{S(I)}\left|\left(J_{g} f_{a}(z)\right)^{\prime}\right|^{2}\left(1-|z|^{2}\right) d A(z) \\
& \leq C_{1}\left\|J_{g} f_{a}\right\|_{B M O A_{\alpha}}^{2} \\
& \leq C_{1}\left\|J_{g}\right\|^{2}\left\|f_{a}\right\|_{B M O A_{\alpha}}^{2}<+\infty .
\end{aligned}
$$

Hence we have that $g \in B M O A$ ．

By using Theorem 3.8 and Theorem 3．9，we have the following corollary ：
Corollary 3．10．Let $\alpha>1$ ．For g analytic on D ，the following are equivalent：
（i）$g B M O A_{\alpha} \subset B M O A_{\alpha}$ ；
（ii）$I_{g}: B M O A_{\alpha} \rightarrow B M O A_{\alpha}$ is bounded operator ；
（iii）$g \in H^{\infty}$ ．

Proof. Since

$$
\|g\|_{B M O A} \leq \sup _{z \in D}|g(z)|
$$

we see that the boundedness of I_{g} implies the boundedness of J_{g} because of Theorem 3.8 and Theorem 3.9. So it follows that (ii) implies (i). To prove that (i) implies (iii), suppose that $g B M O A_{\alpha} \subset B M O A_{\alpha}$. Put $k_{a}(z):=(1-\bar{a} z)^{1-\alpha}-\left(1-|a|^{2}\right)^{1-\alpha}(a, z \in D)$. Since $g B M O A_{\alpha} \subset B M O A_{\alpha}$ and $k_{a}(a)=0$,

$$
\begin{aligned}
|a||g(a)| & =\left(1-|a|^{2}\right)^{\alpha}\left|k_{a}(a) g^{\prime}(a)+k_{a}^{\prime}(a) g(a)\right| \\
& \leq \sup _{z \in D}\left(1-|z|^{2}\right)^{\alpha}\left|k_{a}(z) g^{\prime}(z)+k_{a}^{\prime}(z) g(z)\right| \\
& =\left\|k_{a} g\right\|_{B^{\alpha}} \leq\left\|k_{a} g\right\|_{B M O A_{\alpha}}<+\infty .
\end{aligned}
$$

Hence we see that $g \in H^{\infty}$.

§4. Multipliers from D_{α} to D_{β}

As $\alpha>1$, it is known that the space D_{α} is exactly the weighted Bergman space $L_{a}^{2, \alpha-2}$ which contains analytic functions f on D satisfying

$$
\int_{D}|f(z)|^{2}\left(1-|z|^{2}\right)^{\alpha-2} d A(z)<\infty
$$

(see, for example, [HKZ, p12, Proposition 1.11]). But pointwise multipliers between weighted Bergman spaces have been completely characterized recently by R.Zhao in [Z2, Theorem 1]. In this section we study the operators I_{g} and J_{g} from D_{α} to D_{β}.

Theorem 4.1. Let $\alpha \leq \beta$. For g analytic on D, the operator $I_{g}: D_{\alpha} \rightarrow D_{\beta}$ is bounded if and only if

$$
\sup _{z \in D}\left(1-|z|^{2}\right)^{\frac{1}{2}(\beta-\alpha)}|g(z)|<\infty
$$

Proof. Suppose that

$$
\sup _{z \in D}\left(1-|z|^{2}\right)^{\frac{1}{2}(\beta-\alpha)}|g(z)|<+\infty .
$$

Let $f \in D_{\alpha}$ ．Then we have

$$
\begin{aligned}
\left\|I_{g} f\right\|_{D_{\beta}}^{2} & =\int_{D}\left|g(z) f^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{\beta} d A(z) \\
& =\int_{D}\left(|g(z)|\left(1-|z|^{2}\right)^{\frac{1}{2} \beta-\frac{1}{2} \alpha}\right)^{2}|f(z)|^{2}\left(1-|z|^{2}\right)^{\alpha} d A(z) \\
& \leq\left(\sup _{z \in D}\left(1-|z|^{2}\right)^{\frac{1}{2} \beta-\frac{1}{2} \alpha}|g(z)|\right)^{2} \int_{D}|f(z)|^{2}\left(1-|z|^{2}\right)^{\alpha} d A(z) \\
& \leq\left(\sup _{z \in D}\left(1-|z|^{2}\right)^{\frac{1}{2} \beta-\frac{1}{2} \alpha}|g(z)|\right)^{2}\|f\|_{D_{\alpha}}^{2}
\end{aligned}
$$

To prove the converse，for $a \in D, m>1-\frac{1}{2} \alpha$ ，let $g_{a}(z)=\left(1-|a|^{2}\right)^{m+\frac{1}{2} \alpha-1} \frac{z-a}{(1-\bar{a} z)^{m+\alpha}}$ ． Then $g_{a}^{\prime}(a)=\left(1-|a|^{2}\right)^{-\frac{1}{2} \alpha-1}$ ．Since $g(a) g_{a}^{\prime}(a)=\left(1-|a|^{2}\right)^{-\frac{1}{2} \alpha-1} g(a)$ ，we have

$$
\begin{aligned}
\left(1-|a|^{2}\right)^{-(\alpha+2)}|g(a)|^{2} & =\left|g(a) g_{a}^{\prime}(a)\right|^{2} \\
& \leq C \frac{1}{\left(1-|a|^{2}\right)^{2}} \int_{D(a, r)}\left|g(z) g_{a}^{\prime}(z)\right|^{2} d A(z) \\
& \leq C \frac{1}{\left(1-|a|^{2}\right)^{2+\beta}} \int_{D(a, r)}\left|\left(I_{g} g_{a}\right)^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{\beta} d A(z) \\
& \leq C \frac{1}{\left(1-|a|^{2}\right)^{2+\beta}}\left\|I_{g} g_{a}\right\|_{D_{\beta}}^{2} \leq C \frac{1}{\left(1-|a|^{2}\right)^{2+\beta}}\left\|I_{g}\right\|^{2}\left\|g_{a}\right\|_{D_{\alpha}}^{2}
\end{aligned}
$$

Hence

$$
\sup _{z \in D}\left(1-|z|^{2}\right)^{\frac{1}{2}(\beta-\alpha)}|g(z)|<\infty .
$$

Lemma A．（［AS2，Lemma 2］）Let $\alpha>1$ ．There is a constant C_{1} such that

$$
\int_{D}|f(z)|^{2}\left(1-|z|^{2}\right)^{\alpha-2} d m(z) \leq C_{1} \int_{D}\left|f^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{\alpha} d m(z)
$$

for all analytic functions f on D ．
Proof．This follows from Lemma 2 of［AS2］．

Theorem 4．2．Let $1<\alpha \leq \beta$ ．For g analytic on D ，the operator $J_{g}: D_{\alpha} \rightarrow D_{\beta}$ is a bounded operator if and only if

$$
\sup _{z \in D}\left(1-|z|^{2}\right)^{\frac{1}{2}(\beta-\alpha)+1}\left|g^{\prime}(z)\right|<\infty
$$

Proof. Let $f \in D_{\alpha}$. Then we see by Lemma A,

$$
\begin{aligned}
\left\|J_{g} f\right\|_{D_{\beta}}^{2} & =\int_{D}\left|g^{\prime}(z) f(z)\right|^{2}\left(1-|z|^{2}\right)^{\beta} d A(z) \\
& =\int_{D}\left(\left|g^{\prime}(z)\right|\left(1-|z|^{2}\right)^{\frac{1}{2} \beta-\frac{1}{2} \alpha+1}\right)^{2}|f(z)|^{2}\left(1-|z|^{2}\right)^{\alpha-2} d A(z) \\
& \leq\left(\sup _{z \in D}\left(1-|z|^{2}\right)^{\frac{1}{2} \beta-\frac{1}{2} \alpha+1}\left|g^{\prime}(z)\right|\right) \int_{D}|f(z)|^{2}\left(1-|z|^{2}\right)^{\alpha-2} d A(z) \\
& \leq\|g\|_{B^{\frac{1}{2}(\beta-\alpha)+1}}^{2} \int_{D}\left|f^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{\alpha} d A(z)=\|g\|_{B^{\frac{1}{2}(\beta-\alpha)+1}}^{2}\|f\|_{D_{\alpha}}^{2}
\end{aligned}
$$

To prove the converse, put $g_{a}(z)=\left(1-|a|^{2}\right)^{\frac{1}{2} \alpha} \frac{1}{(1-\bar{a} z)^{\alpha}}$. Then we see that $g_{a}(z) \in$ D_{α}. Since $\left(1-|z|^{2}\right)$ is comparable to $\left(1-|a|^{2}\right)$ for all $z \in D(a, r)$, we have

$$
\begin{aligned}
\left|g^{\prime}(a)\right|^{2}\left(1-|a|^{2}\right)^{\beta-\alpha+2} & \leq C \int_{D(a, r)}\left|g^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{\beta-\alpha} d A(z) \\
& =C \int_{D(a, r)}\left|g^{\prime}(z)\right|^{2} \frac{\left(1-|a|^{2}\right)^{\alpha}}{|1-\bar{a} z|^{2 \alpha}} \frac{|1-\bar{a} z|^{2 \alpha}}{\left(1-|a|^{2}\right)^{\alpha}}\left(1-|z|^{2}\right)^{\beta-\alpha} d A(z) \\
& \sim C \int_{D(a, r)}\left|g^{\prime}(z)\right|^{2}\left|g_{a}(z)\right|^{2}\left(1-|z|^{2}\right)^{\beta} d A(z) \\
& \leq C \int_{D}\left|\left(J_{g} g_{a}\right)^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{\beta} d A(z)=C\left\|J_{g}\right\|^{2}\left\|g_{a}\right\|_{D_{\alpha}}^{2}<\infty
\end{aligned}
$$

Hence we have

$$
\sup _{z \in D}\left(1-|z|^{2}\right)^{\frac{1}{2}(\beta-\alpha)+1}\left|g^{\prime}(z)\right|<+\infty .
$$

Corollary 4.3. Let $1<\alpha<\beta$. For g analytic on D, the following are equivalent:
(i) $g D_{\alpha} \subset D_{\beta}$;
(ii) $\quad I_{g}: D_{\alpha} \rightarrow D_{\beta}$ is a bounded operator ;
(iii) $J_{g}: D_{\alpha} \rightarrow D_{\beta}$ is a bounded operator ;
(iv) $\sup _{z \in D}\left(1-|z|^{2}\right)^{\frac{1}{2}(\beta-\alpha)+1}\left|g^{\prime}(z)\right|<+\infty$.

Proof. Since the equivalence of $\sup _{z \in D}\left(1-|z|^{2}\right)^{\frac{1}{2}(\beta-\alpha)}|g(z)|<\infty$ and $\sup _{z \in D}(1-$ $\left.|z|^{2}\right)^{\frac{1}{2}(\beta-\alpha)+1}\left|g^{\prime}(z)\right|<\infty$ follows from the result of [Zhu3], the equivalence of (ii),(iii),(iv) follows from Theorem 4.1 and Theorem 4.2. It is trivial that (iv) implies (i). In fact, supposing (iv), by using the equivalence of (ii),(iii),(iv), for all $f \in D_{\alpha}$,

$$
\begin{aligned}
& \int_{D}\left(1-|z|^{2}\right)^{\beta}\left|f^{\prime}(z) g(z)+f(z) g^{\prime}(z)\right|^{2} d A(z) \\
& \leq\left\|J_{g} f\right\|_{D_{\beta}}^{2}+\left\|I_{g} f\right\|_{D_{\beta}}^{2} \leq\left(\left\|J_{g}\right\|^{2}\|+\| I_{g} \|^{2}\right)\|f\|_{D_{\beta}}^{2}
\end{aligned}
$$

So we have $g D_{\alpha} \subset D_{\beta}$ ．
To prove the converse，suppose that $g D_{\alpha} \subset D_{\beta}$ ．Then for $a \in D, m>1-\frac{1}{2} \alpha$ ， let $g_{a}(z)=\left(1-|a|^{2}\right)^{m+\frac{1}{2} \alpha-1} \frac{z-a}{(1-\bar{a} z)^{m+\alpha}}$ ．Then $g_{a}^{\prime}(a)=\left(1-|a|^{2}\right)^{-\frac{1}{2} \alpha-1}$ and $g_{a}(a)=0$ ． Since $g(a) g_{a}^{\prime}(a)=\left(1-|a|^{2}\right)^{-\frac{1}{2} \alpha-1} g(a)$ and $g^{\prime}(a) g_{a}(a)=0$ ，we have

$$
\begin{aligned}
\left(1-|a|^{2}\right)^{-(\alpha+2)}|g(a)|^{2} & =\left|g(a) g_{a}^{\prime}(a)+g^{\prime}(a) g_{a}(a)\right|^{2} \\
& \leq C \frac{1}{\left(1-|a|^{2}\right)^{2}} \int_{D(a, r)}\left|g(z) g_{a}^{\prime}(z)+g^{\prime}(z) g_{a}(z)\right|^{2} d A(z) \\
& \leq C \frac{1}{\left(1-|a|^{2}\right)^{2+\beta}} \int_{D(a, r)}\left|\left(g g_{a}\right)^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{\beta} d A(z) \\
& \leq C \frac{1}{\left(1-|a|^{2}\right)^{2+\beta}}\left\|M_{g} g_{a}\right\|_{D_{\beta}}^{2} \leq C \frac{1}{\left(1-|a|^{2}\right)^{2+\beta}}\left\|M_{g}\right\|^{2}\left\|g_{a}\right\|_{D_{\alpha}}^{2}
\end{aligned}
$$

Hence

$$
\sup _{z \in D}\left(1-|z|^{2}\right)^{\frac{1}{2}(\beta-\alpha)}|g(z)|<\infty .
$$

References

［AS1］A．Aleman and A．G．Siskakis，An integral operator on H^{p} ，Complex Variables， 28（1995），149－158．
［AS2］A．Aleman and A．G．Siskakis，Integration operators on Bergman spaces，Indiana Univ．Math．J．46（1997），337－356．
［D1］P．L．Duren，Theory of H^{p} spaces（Academic Press， 1970 ）．
［D2］P．L．Duren，B．W．Romberg and A．L．Schilds，Linear functionals on H^{p} spaces with $0<p<1$ ，J．Reine Angew．Math．238（1969），32－60．
［HKZ］H．Hedenmalm，B．Korenblum and K．Zhu，Theory of Bergman spaces，Graduate Texts in Math．，Vol．199，Springer， 2000.
［OSZ］S．Ohno，K．Stroethoff and R．Zhao，Weighted composition operators between Bloch－type spaces，to appear Rocky Mout．J．Math．
［OF］J．M．Ortega and J．Fábrega，Pointwise multipliers and corona type decomposition in $B M O A$ ，Ann．Inst．Fourier（Grenoble）46（1996），111－137．
[P] Ch.Pommerenke, Schlichte Funktionen und analytische Functionen von beschran kter mittlerer Oszillation, Comment.Math.Helv.52(1977),591-602.
[SZ] A.G.Siskakis and R.Zhao, A Volterra type operator on spaces of analytic func tions, Contemporary Mathematics.232(1999),299-311.
[St] D.Stegenga, Bounded Toeplitz operators on H^{1} and applications of the duality between H^{1} and the functions of bounded mean oscillation, Amer.J.Math.,98(1976), 573-589.
[Str] K.Stroethoff, The Bloch space and Besov spaces of analytic functions, Bull.Austral. Math.Soc.54(1996), 211-219.
[W] Z.Wu, Carleson Measures and Multipliers for Dirichlet Spaces,J.Funct.Anal.169(1999), 148-163.
[Yo1] R.Yoneda, Integration operators on weighted Bloch space, Nihonkai Math.J.12(2001), 123-133.
[Yo2] R.Yoneda, Multiplication operators, integration operators and companion operators on weighted Bloch spaces, to appear in Hokkaido Math.J.
[Z1] R.Zhao, On a general family of function spaces, Ann.Acad.Sci.Fenn.Math.Dissertationes, 105(1996), 56 pp.
[Z2] R.Zhao, Pointwise multipliers from weighted Bergman spaces and Hardy spaces to weighted Bergman spaces, Ann.Acad.Sci.Fenn.Math., 29(2004), 139-150.
[Zhu1] K.Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York 1990.
[Zhu2] K.Zhu, Analytic Besov Spaces, J.Math.Anal.Appl.157(1991), 318-336.
[Zhu3] K.Zhu, Bloch type spaces of analytic functions, Rocky Mout.J.Math.23(1993), 1143-1177.
[Zhu4] K.Zhu, Multipliers of BMO in the Bergman metric with applications to Toeplitz operators, J.Funct.Anal.87(1989),31-50.

Department of Mathematics
Otaru University of Commerce
3-5-21, Midori, Otaru, 047-8501 ,Japan
ryoneda@res.otaru-uc.ac.jp

[^0]: 2000 Mathematics Subject Classification : Primary 47 B33 .

