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Abstract

Let g be an analytic function on the open unit disk D in the complex plane C. We
will study the following operator

Ig(f)(z) :=

∫ z

0

f ′(ζ)g(ζ)dζ , Jg(f)(z) :=

∫ z

0

f(ζ)g′(ζ)dζ.

In this paper we study the operators Ig, Jg from BMOAα to BMOAβ ( from Dα to
Dβ) (α ≤ β). And we study pointwise multipliers from BMOAα to BMOAβ ( from
Dα to Dβ) (α ≤ β).

Key Words and Phrases : integration operator, Bloch space, Dirichlet spaces,
BMOA, boundedness, multiplier.

§1. Introduction

Let D = {z ∈ C : |z| < 1} denote the open unit disk in the complex plane C
and let ∂D = {z ∈ C : |z| = 1} denote the unit circle. For 1 ≤ p < +∞, the Lebesgue
space Lp(D, dA) is defined to be the Banach space of Lebesgue measurable functions on
the open unit disk D with

‖ f ‖Lp(dA):=

(∫

D
|f(z)|pdA(z)

) 1
p

< +∞ ,

where dA(z) is the normalized area measure on D. The Bergman space Lp
a(D) is defined

to be the subspace of Lp(D, dA) consisting of analytic functions. For 0 < p < +∞, the
Hardy space Hp is defined to be the Banach space of analytic functions f on D with

‖ f ‖p:=
(

sup
0<r<1

1

2π

∫ 2π

0
|f(reiθ)|pdθ

) 1
p

< +∞ .

For z, w ∈ D, let β(z, w) := 1
2 log

1+|ϕz(w)|
1−|ϕz(w)| , where ϕz(w) =

z−w
1−zw . For 0 < r < +∞
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and z ∈ D, let D(z) = D(z, r) = {w ∈ D : β(z, w) < r} denote the Bergman disk.
|D(z, r)| denotes the normalized area of D(z, r) and |D(z, r)| is comparable to (1− |z|2)2.

The space of analytic functions on D of bounded mean oscillation , denoted by
BMOA, consists of functions f in H2 for which

‖ f ‖BMOA := sup
z∈D

‖ f ◦ ϕz − f(z) ‖2< +∞ .

Let α > 0. Then α-Bloch space Bα is defined to be the space of analytic functions
f on D such that

‖ f ‖Bα := sup
z∈D

(1− |z|2)α
∣∣f ′(z)

∣∣ < +∞ .

And the little α-Bloch space, denoted by Bα
0 , is the closed subspace of Bα consisting of

functions f with (1 − |z|2)αf ′(z) → 0 (|z| → 1−). Note that B1, B1
0 are the Bloch space

B, the little Bloch space B0, respectively.
The space BMOAα is defined to be the space of analytic functions f on D such that

‖ f ‖2BMOAα := sup
a∈D

∫

D
(1− |z|2)2α−2

∣∣f ′(z)
∣∣2 (1− |ϕa(z)|2)dA(z) < +∞.

The space BMOAα is defined to be the space of analytic functions f on D such that

‖ f ‖2BMOAα
:= sup

I⊂∂D

|I|2α−2

|I|

∫

S(I)

∣∣f ′(z)
∣∣2 (1− |z|2)dA(z) < +∞,

where I is any arc on the unit circle ∂D, S(I) = { z ∈ D : |z| > 1− |I|, z
|z| ∈ I }, and |I|

is the normalized arc length on ∂D.
The space Dα is defined to be the space of analytic functions f on D such that

‖ f ‖2Dα
:=

∫

D
(1− |z|2)α

∣∣f ′(z)
∣∣2 dA(z) < +∞.

Then note that BMOA = BMOA1 = BMOA1, L
2
a = D2 and H2 = D1.

Let X and Y be Banach spaces. Then a function f on D is a multiplier of X into Y
if fg ∈ Y for all g in X. In this case, we write fX ⊂ Y .

For g analytic on D, the operators Ig , Jg and Mg are defined on the above spaces
by the following:

Ig(h)(z) :=

∫ z

0
g(ζ)h′(ζ)dζ , Jg(f)(z) :=

∫ z

0
f(ζ)g′(ζ)dζ , Mg(f)(z) := g(z)f(z).

In [P], Ch. Pommerenke showed that Jg is a bounded operator on Hardy space H2

if and only if g is in BMOA , and this result was extended to other Hardy spaces Hp

1 ≤ p < +∞ in [AS1]. In [AS2], A.Aleman and A.G.Siskakis studied the operator Jg
defined on weighted Bergman spaces.

In [Yo1], we proved the following result:
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Theorem 1.1. The operator Jg is a bounded operator on B if and only if

sup
z∈D

(1− |z|2)
(
log

1

1− |z|2
)
|g′(z)| < +∞,

and the operator Jg is a compact operator on B if and only if

lim
|z|→1−

(1− |z|2)
(
log

1

1− |z|2
)
|g′(z)| = 0.

And let α > 1. Then the operator Jg is a bounded operator on Bα if and only if g ∈ B .
And the operator Jg is a compact operator on Bα if and only if g ∈ B0 .

In [Yo2], we also proved the following results :

Theorem 1.2. Let α ≥ 1 and g be analytic on D. Then the operator Ig is a
bounded operator on Bα if and only if g ∈ H∞. And the operator Ig is a compact operator
on Bα if and only if g ≡ 0 .

Theorem 1.3. For g analytic on D, the following are equivalent :

(i) gB ⊂ B (gB0 ⊂ B0) ;

(ii) Both Ig and Jg are bounded operators on B ( or B0) ;

(iii) g ∈ H∞ , sup
z∈D

(1− |z|2)
(
log

1

1− |z|2
)
|g′(z)| < +∞.

And let α > 1. The following are equivalent :

(i)′ gBα ⊂ Bα (gBα
0 ⊂ Bα

0 ) ;

(ii)′ Ig is a bounded operator on Bα ( or Bα
0 ) ;

(iii)′ g ∈ H∞.

In Theorem 1.3, the equivalence of (i) and (iii), the equivalence of (i)′ and (iii)′

were proved in [Zhu3] and [Zhu4].

The space BMOAα has been previous studied by R.Zhao in [Z1, p.51]. So BMOAα

is the same as BMOAα
2 in [Z1]; Pointwise multipliers on BMOA have been characterized

by D.Stegenga in [St] and J.M.Ortega and J.Farega in [OF]. Also , the boundedness of the
operator Jg on BMOA has been characterized by Siskakis and Zhao in [SZ].

In this paper we study the operators Ig, Jg from Dα to Dβ (from BMOAα to
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BMOAβ) (α ≤ β). And we also study the multipliers from Dα to Dβ (from BMOAα to
BMOAβ) (α ≤ β). And some of the techniques used to prove theorems were inspired by
[OSZ] and [W]. Throughout this paper, C ,K will denote positive constant whose value
is not necessary the same at each occurrence.

§2. Multipliers from BMOA to Bloch space

In this section, we study multipliers from BMOA to Bloch space.

Theorem 2.1. For g analytic on D, the following are equivalent:

(i) gBMOA ⊂ B ;

(ii) Ig, Jg : BMOA → B are bounded operators ;

(iii) g ∈ H∞ , sup
z∈D

(1− |z|2)
(
log

1

1− |z|2
)
|g′(z)| < +∞ .

Proof. First, we prove that Jg : BMOA → B is bounded operator if and only if

sup
z∈D

(1− |z|2)
(
log

1

1− |z|2
)
|g′(z)| < +∞.

Let f ∈ BMOA. Put L := Jgf . Then we see

(1− |z|2)|L′(z)| = (1− |z|2)|f(z)||g′(z)| = (1− |z|2) log 1

1− |z|2
|g′(z)| |f(z)|

log 1
1−|z|2

.

Since |f(z)| ≤ C ‖ f ‖BMOA log
1

1− |z|2
( see [SZ] ), hence we have

‖ Jgf ‖B= sup
z∈D

(1− |z|2)|L′(z)| ≤ C sup
z∈D

(1− |z|2) log 1

1− |z|2
|g′(z)| ‖ f ‖BMOA .

To prove the converse, suppose that Jg is bounded onBMOA. For a ∈ D, put fa(z) =
log 1

1−az . Then it is clear that {fa} is a bounded set in BMOA. For z ∈ D(a, r), we have

log
1

1− |a|2
≤ C

∣∣∣∣log
1

1− az

∣∣∣∣. So by using the subharmonicity of |g′(z)| and the fact that
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there is a constant C1 > 0 ( depending only on r ) such that

∫

D(a,r)

1

(1− |z|2)2
dA(z) ≤ C1 < ∞,

(1− |a|2)2
(
log

1

1− |a|2

)2

|g′(a)|2 ≤ C ′
(
log

1

1− |a|2

)2 ∫

D(a,r)
|g′(z)|2dA(z)

≤ CC ′
∫

D(a,r)

∣∣∣∣log
1

1− az

∣∣∣∣
2

|g′(z)|2dA(z)

≤ CC ′ sup
z∈D(a,r)

(1− |z|2)2
∣∣∣∣log

1

1− az

∣∣∣∣
2

|g′(z)|2
∫

D(a,r)

1

(1− |z|2)2
dA(z)

≤ CC ′C1 sup
z∈D

(1− |z|2)2
∣∣∣∣log

1

1− az

∣∣∣∣
2

|g′(z)|2

≤ CC ′C1 sup
a∈D

‖ Jgfa ‖2B

≤ CC ′C1 ‖ Jg ‖2 sup
a∈D

‖ fa ‖2BMOA< ∞.

Next, we prove that Ig : BMOA → B is a bounded operator if and only if
g ∈ H∞. Let f ∈ BMOA. Put L := Igf . Then we see for some constant C > 0,

(1− |z|2)|L′(z)| = (1− |z|2)|f ′(z)||g(z)|
≤ ‖ g ‖∞ (1− |z|2)|f ′(z)|
≤ C ‖ g ‖∞‖ f ‖BMOA .

Hence ‖ Igf ‖B≤ C ‖ g ‖∞‖ f ‖BMOA.
To prove the converse, suppose that Ig is bounded on BMOA. For a ∈ D, put

fa(z) = log 1
1−az . Then

|a|2|g(a)|2 ≤ C
|a|2

(1− |a|2)2
∫

D(a,r)
|g(z)|2dA(z)

∼ C

∫

D(a,r)

∣∣∣∣
(
log

1

1− az

)′∣∣∣∣
2

|g(z)|2dA(z)

∼ C

∫

D(a,r)

dA(z)

(1− |z|2)2
sup

z∈D(a,r)
(1− |z|2)2|f ′

a(z)|2|g(z)|2

∼ C ‖ Igfa ‖2B≤ C ‖ Ig ‖2‖ fa ‖2BMOA< ∞.

Hence we see sup
z∈D

|g(z)| < ∞. Thus we see that the equivalence of (ii) and (iii) holds. So it

suffices to show that gBMOA ⊂ B implies g ∈ H∞. Put ka(z) := log
1

1− az
− log

1

1− |a|2
(a, z ∈ D). Since gBMOA ⊂ B and ka(a) = 0,

|a||g(a)| = (1− |a|2)
∣∣ka(a)g′(a) + k′a(a)g(a)

∣∣
≤ sup

z∈D
(1− |z|2)

∣∣ka(z)g′(z) + k′a(z)g(z)
∣∣ < +∞.
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Hence we see that g ∈ H∞. �

We also get the following results, but we omit to prove them because we can prove
as the proof of the previous theorem. In the following theorem, the equivalence of (ii) and
(v) was proved in [OSZ].

Theorem 2.2. Let 0 < α < 1 and α ≤ β. For g analytic on D, the following are
equivalent:

(i) gBMOAα ⊂ Bβ ;

(ii) gBα ⊂ Bβ ;

(iii) Jg : BMOAα → Bβ is a bounded operator ;

(iv) Jg : Bα → Bβ is a bounded operator ;

(v) sup
z∈D

(1− |z|2)β |g′(z)| < +∞ .

In the following theorem, the equivalence of (ii) and (v) was proved in [OSZ].

Theorem 2.3. Let α = 1 and β > 1. For g analytic on D, the following are
equivalent:

(i) gBMOAα ⊂ Bβ ;

(ii) gBα ⊂ Bβ ;

(iii) Jg : BMOAα → Bβ is a bounded operator ;

(iv) Jg : Bα → Bβ is a bounded operator ;

(v) sup
z∈D

(1− |z|2)β
(
log

1

1− |z|2
)
|g′(z)| < +∞ .

In the following theorem, the equivalence of (ii) and (vii) was proved in [OSZ].

Theorem 2.4. Let α > 1 and α < β. For g analytic on D, the following are
equivalent:

(i) gBMOAα ⊂ Bβ ;

(ii) gBα ⊂ Bβ ;

(iii) Ig : BMOAα → Bβ is a bounded operator ;

(iv) Jg : BMOAα → Bβ is a bounded operator ;
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(v) Ig : Bα → Bβ is a bounded operator ;

(vi) Jg : Bα → Bβ is a bounded operator ;

(vii) sup
z∈D

(1− |z|2)β−α+1|g′(z)| < +∞ .

In the following theorem, the equivalence of (ii) and (v) was proved in [OSZ].

Theorem 2.5. Let α > 1 and α = β. For g analytic on D, the following are
equivalent:

(i) gBMOAα ⊂ Bβ ;

(ii) gBα ⊂ Bβ ;

(iii) Ig : BMOAα → Bβ is a bounded operator ;

(iv) Ig : Bα → Bβ is a bounded operator ;

(v) g ∈ H∞.

§3. Multipliers from BMOAα to BMOAβ

In this section we study the operators Ig and Jg from BMOAα to BMOAβ , and
the operators Ig and Jg from BMOAα to BMOAα.

Theorem 3.1. Let α ≤ β. For g analytic on D, the operator Ig : BMOAα →
BMOAβ is a bounded operator if and only if

sup
z∈D

(1− |z|2)β−α|g(z)| < ∞.

Proof. If supz∈D(1 − |z|2)β−α|g(z)| < ∞, it is trivial that Ig : BMOAα →
BMOAβ is bounded. So we only need to prove the converse. Firstly, we prove the
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Thus we see BMOAα ⊂ H∞. Hence we have

‖ Jgf ‖2BMOAβ =

∫

D
(1− |z|2)2(β−1)|g′(z)f(z)|2(1− |ϕa(z)|2)dA(z)

≤ ‖ f ‖2∞‖ g ‖2BMOAβ

≤ C ‖ f ‖2BMOAα‖ g ‖2BMOAβ

Hence we have that Jg : BMOAα → BMOAβ is a bounded operator.
It is trivial that the converse holds. In fact, since a non-zero constant c belongs to

BMOAα, we have Jgc ∈ BMOAβ . Hence g ∈ BMOAβ . �

By using Theorem 3.1 and Theorem 3.2, we have the following corollary :

Corollary 3.3. Let α ≤ β and 0 < α < 1. For g analytic on D, the following
are equivalent:

(i) gBMOAα ⊂ BMOAβ ;

(ii) Jg : BMOAα → BMOAβ is a bounded operator ;

(iii) g ∈ BMOAβ .

Proof. We only prove the case β > α, because we can prove the case β = α as
well. Then, since supz∈D(1− |z|2)β−α|g(z)| ∼ supz∈D(1− |z|2)β−α+1|g′(z)| and

sup
z∈D

(1− |z|2)β−α+1|g′(z)| ≤ sup
z∈D

(1− |z|2)β |g′(z)| ≤ C ‖ g ‖BMOAβ ,

we see that the boundedness of Jg implies the boundedness of Ig because of Theorem 3.1
and Theorem 3.2. So it follows that (ii) implies (i). To prove that (i) implies (iii), suppose
that gBMOAα ⊂ BMOAβ . Since a non-zero constant c belongs to BMOAα, we have
cg ∈ BMOAβ . Thus we have g ∈ BMOAβ . �

Proposition 3.4. Let 1 < α ≤ β. For g analytic on D, if Jg : BMOAα →
BMOAβ is a bounded operator, then

g ∈ BMOAβ−α+1.

And if g ∈ BMOAβ−α+1, then Jg : BMOAα → BMOAβ is a bounded operator.

Proof. Let 1 < α ≤ β. Suppose that Jg : BMOAα → BMOAβ is a bounded
operator. For any arc I ⊂ ∂D, let a = (1 − |I|)ζ, where ζ is the center of I. Put
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fa(z) = (1 − az)1−α, (a ∈ D). Then {fa} is a bounded set in BMOA, and for any
z ∈ S(I), there is a constant C > 0, such that 1

C |I|
1−α ≤ |fa(z)| ≤ C|I|1−α. So we have

|I|2(β−α)

|I|

∫

S(I)
|g′(z)|2(1− |z|2)dA(z)

≤ 1

C

|I|2(β−1)

|I|

∫

S(I)
|fa(z)|2|g′(z)|2(1− |z|2)dA(z)

=
1

C

|I|2(β−1)

|I|

∫

S(I)
|(Jgfa)′(z)|2(1− |z|2)dA(z)

≤ 1

C
‖ Jgfa ‖2BMOAβ

≤ 1

C
‖ Jg ‖2‖ fa ‖2BMOAα

< ∞.

Thus we have g ∈ BMOAβ−α+1.
Next, suppose that g ∈ BMOAβ−α+1. Since |f(z)| ≤ C(1−|z|2)1−α ‖ f ‖BMOAα for

all f ∈ BMOAα for some constant C > 0, we have

‖ Jgf ‖2BMOAβ = sup
a∈D

∫

D
(1− |z|2)2(β−1)|f(z)|2|g′(z)|2(1− |ϕa(z)|2)dA(z)

≤ C2 ‖ f ‖2BMOAα

∫

D
(1− |z|2)2(β−α)|g′(z)|2(1− |ϕa(z)|2)dA(z)

= C2 ‖ f ‖2BMOAα‖ g ‖2BMOAβ−α+1 .

Hence Jg : BMOAα → BMOAβ is bounded operator. In the case of α = 1, we can
prove it by using a test function fa(z) = log 1

1−az for all a ∈ D and the estimate |f(z)| ≤
C

(
log 1

1−|z|2
)
‖ f ‖BMOA for all f ∈ BMOA as well. So we omit it. �

Proposition 3.5. Let 1 < α ≤ β. For g analytic on D, then Jg : BMOAα →
BMOAβ is a bounded operator if and only if g ∈ Bβ−α+1.

Proof. Let g ∈ Bβ−α+1. Let f ∈ BMOAα. Then

‖ Jgf ‖2BMOAβ = sup
a∈D

∫

D
(1− |z|2)2(β−1)|f(z)|2|g′(z)|2(1− |ϕa(z)|2)dA(z)

≤ ‖ g ‖2Bβ−α+1 sup
a∈D

∫

D
(1− |z|2)2(α−2)|f(z)|2(1− |ϕa(z)|2)dA(z).

Since f ∈ BMOAα we get

sup
a∈D

∫

D
(1− |z|2)2(α−1)|f ′(z)|2(1− |ϕa(z)|2)dA(z) < ∞.
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Applying Proposition 2 in [Z2] to the antiderivative F of f we see that the above inequality
is equivalent to

sup
a∈D

∫

D
(1− |z|2)2(α−2)|f(z)|2(1− |ϕa(z)|2)dA(z) < ∞.

Therefore ‖ Jgf ‖BMOAβ< ∞ and so Jgf ∈ BMOAβ . An application of the Closed Graph
Theorem gives the boundedness of the operator Jg.

Conversely, let Jg : BMOAα → BMOAβ be bounded. It is easy to see that {fa(z) =
(1− az)1−α} is a bounded set in BMOAα. So

∞ > sup
a∈D

‖ Jgfa ‖2BMOAβ

= sup
a∈D

∫

D
(1− |z|2)2(β−1)|fa(z)|2|g′(z)|2(1− |ϕa(z)|2)dA(z)

≥ sup
a∈D

∫

D(a,r)

(1− |z|2)2(β−1)

|1− az|2(α−1)
|g′(z)|2(1− |ϕa(z)|2)dA(z)

≥ C sup
a∈D

(1− |a|2)2(β−α)
∫

D(a,r)
|g′(z)|2dA(z)

≥ C sup
a∈D

(1− |a|2)2(β−α)(1− |a|2)2|g′(a)|2

= C ‖ g ‖2Bβ−α+1

Thus g ∈ Bβ−α+1. The proof is complete. �

Corollary 3.6. Let 1 < α < β. For g analytic on D, if g ∈ BMOAβ−α+1, then
gBMOAα ⊂ BMOAβ .

Proof. Let 1 < α < β. If g ∈ BMOAβ−α+1, then Jg : BMOAα → BMOAβ is
bounded operator. And if g ∈ BMOAβ−α+1,

sup
z∈D

(1− |z|2)β−α+1|g′(z)| < ∞.

Since supz∈D(1− |z|2)β−α+1|g′(z)| ∼ supz∈D(1− |z|2)β−α|g(z)|, Ig : BMOAα → BMOAβ

is bounded operator. Hence we have gBMOAα ⊂ BMOAβ . �

Together with Corollary 3.3, the following result gives a relative complete descrip-
tion of multipliers between BMOAα and BMOAβ ( except for the case α = 1, β �= 1).

11



商　学　討　究　第64巻　第１号148

Corollary 3.7. (i) Let 1 < α < β. Then g is a multiplier from BMOAα into
BMOAβ if and only if g ∈ Bβ−α+1.
(ii) Let α > 1. Then g is a multiplier from BMOAα into itself if and only if g ∈ H∞.
(iii) Let α > β and g is a multiplier from BMOAα into BMOAβ , then g ≡ 0.

Proof. Let 1 < α < β. Let g ∈ Bβ−α+1 as α < β and g ∈ H∞ as α = β. Since
H∞ ⊂ B, by Theorem 3.1 and Theorem 3.2, both Ig and Jg are bounded operators from
BMOAα into BMOAβ . So g is a multiplier from BMOAα into BMOAβ .

Conversely, suppose that g is a multiplier from BMOAα into BMOAβ . As in the
proof of Proposition 3.5, for any a ∈ D, {fa(z) = (1−az)1−α} is a bounded set in BMOAα.
Thus {gfa} is a bounded set in BMOAβ . Thus by Proposition 2 of [Z2] we have

∞ > sup
a∈D

∫

D
(1− |z|2)2(β−2)|fa(z)|2|g(z)|2(1− |ϕa(z)|2)dA(z)

≥ sup
a∈D

∫

D(a,r)

(1− |z|2)2(β−2)

|1− az|2(α−1)
|g(z)|2(1− |ϕa(z)|2)dA(z)

≥ C sup
a∈D

(1− |a|2)2(β−α−1)
∫

D(a,r)
|g(z)|2dA(z)

≥ C sup
a∈D

(1− |a|2)2(β−α−1)(1− |a|2)2|g(a)|2

= C sup
a∈D

(1− |a|2)2(β−α)|g(a)|2

which implies that g ∈ Bβ−α+1 as α < β; g ∈ H∞ as α = β and g ≡ 0 as α > β. The
proof is complete. �

Theorem 3.8. Let α > 0, the operator Ig : BMOAα → BMOAα is bounded
if and only if

g ∈ H∞.

Proof. If supz∈D |g(z)| < ∞, it is trivial that Ig : BMOAα → BMOAα is
bounded. So we only need to prove the converse. Note that the quantity

sup
a∈D

(1− |a|2)2α−2
∫

D

∣∣f ′(z)
∣∣2 (1− |ϕa(z)|2)dA(z)

is comparable to the quantity

‖ f ‖2BMOAα
:= sup

I⊂∂D

|I|2α−2

|I|

∫

S(I)

∣∣f ′(z)
∣∣2 (1− |z|2)dA(z).

12
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Suppose that Ig is bounded on BMOAα. In the case of α �= 1, consider the test
function ha(z) := (1− az)1−α for all a ∈ D. Then it is clear that {ha} is a bounded set in
BMOAα. For any a ∈ D,

|a|2|g(a)|2 ≤ C
|a|2

(1− |a|2)2
∫

D(a,r)
|g(z)|2dA(z)

∼ C(1− |a|2)2(α−1)
∫

D(a,r)
|h′a(z)|2|g(z)|2dA(z)

∼ C(1− |a|2)2(α−1)
∫

D(a,r)
|h′a(z)|2|g(z)|2(1− |ϕa(z)|2)dA(z)

≤ C(1− |a|2)2(α−1)
∫

D
|h′a(z)|2|g(z)|2(1− |ϕa(z)|2)dA(z)

≤ C ‖ Igha ‖2BMOAα
≤ C ‖ Ig ‖2‖ ha ‖2BMOAα

≤ 22αC ‖ Ig ‖2< ∞.

Hence we see sup
z∈D

|g(z)| < ∞.

In the case of α = 1, we can prove it by using the test function ha(z) := log 1
1−az as

well. So we omit to prove it. �

Theorem 3.9. Let α > 1, the operator Jg : BMOAα → BMOAα is bounded
if and only if

g ∈ BMOA.

Proof. Suppose that g ∈ BMOA. Then we have

‖ Jgf ‖2BMOAα
= sup

I⊂∂D

|I|2α−2

|I|

∫

S(I)
|g′(z)|2|f(z)|2(1− |z|2)dA(z)

≤ sup
I⊂∂D

2|I|2α−2

|I|

∫

S(I)
|g′(z)|2|f(z)− f(u)|2(1− |z|2)dA(z)

+ sup
I⊂∂D

2|I|2α−2

|I|

∫

S(I)
|g′(z)|2|f(u)|2(1− |z|2)dA(z)

=: I1 + I2.

Since g ∈ BMOA, we see g ◦ ϕu ∈ BMOA. Thus dµg = |(g ◦ ϕu)
′(z)|2(1− |z|2)dA(z) is a

Carleson measure. So we have for u = (1− |I|)ζ, ζ the center of I,

I1 ≤ C ‖ g ‖2BMOA (1− |u|2)2(α−1)
∫ 2π

0

∣∣∣f ◦ ϕu(e
iθ)− f(u)

∣∣∣2 dθ.

(1− |u|2)2(α−1)
∫ 2π

0

∣∣∣f ◦ ϕu(e
iθ)− f(u)

∣∣∣2 dθ ≤ sup
u∈D

(1− |u|2)2(α−1) ‖ f ◦ ϕu(z)− f(u) ‖2H2

∼ sup
u∈D

(1− |u|2)2(α−1)
(∫

D
|f ′(z)|2(1− |ϕu(z)|2)dA(z)

)

∼ ‖ f ‖2BMOAα
.
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Hence there exist some positive constant K > 0 such that

I1 ≤ K ‖ g ‖2BMOA‖ f ‖2BMOAα
.

On the other hand, since BMOAα ⊂ Bα, we have that ‖ f ‖Bα≤‖ f ‖BMOAα and

|f(u)| ≤ C

(1− |u|)α−1
‖ f ‖Bα . So we have

|f(u)| ≤ C

(1− |u|)α−1
‖ f ‖BMOAα . Hence we see

I2 ≤ sup
I⊂∂D

C|I|2α−2

|I|
‖ f ‖2BMOAα

(1− |u|)2(α−1)

∫

S(I)
|g′(z)|2(1− |z|2)dA(z).

Thus
I2 ≤‖ f ‖2BMOAα

‖ g ‖2BMOA .

Hence the operator Jg is bounded on BMOAα.
To prove the converse, suppose that for a = (1− |I|)ζ, ζ the center of I. Then there

exists a bounded set {fa} in BMOAα such that
1

|I|α−1
≤ C1|fa(z)| for all z ∈ S(I). Let

I ⊂ ∂D and a = (1− |I|)ζ, ζ the center of I.Then we have

1

|I|

∫

S(I)
|g′(z)|2(1− |z|2)dA(z)

≤ C1|I|2(α−1)

|I|

∫

S(I)
|g′(z)|2|fa(z)|2(1− |z|2)dA(z)

≤ C1|I|2(α−1)

|I|

∫

S(I)

∣∣∣(Jgfa(z))′
∣∣∣2 (1− |z|2)dA(z)

≤ C1 ‖ Jgfa ‖2BMOAα

≤ C1 ‖ Jg ‖2‖ fa ‖2BMOAα
< +∞.

Hence we have that g ∈ BMOA. �

By using Theorem 3.8 and Theorem 3.9, we have the following corollary :

Corollary 3.10. Let α > 1. For g analytic on D, the following are equivalent:

(i) gBMOAα ⊂ BMOAα ;

(ii) Ig : BMOAα → BMOAα is bounded operator ;

(iii) g ∈ H∞.

14
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Proof. Since
‖ g ‖BMOA≤ sup

z∈D
|g(z)|,

we see that the boundedness of Ig implies the boundedness of Jg because of Theorem 3.8
and Theorem 3.9. So it follows that (ii) implies (i). To prove that (i) implies (iii), suppose
that gBMOAα ⊂ BMOAα. Put ka(z) := (1− az)1−α − (1− |a|2)1−α (a, z ∈ D). Since
gBMOAα ⊂ BMOAα and ka(a) = 0,

|a||g(a)| = (1− |a|2)α
∣∣ka(a)g′(a) + k′a(a)g(a)

∣∣
≤ sup

z∈D
(1− |z|2)α

∣∣ka(z)g′(z) + k′a(z)g(z)
∣∣

= ‖ kag ‖Bα≤‖ kag ‖BMOAα< +∞.

Hence we see that g ∈ H∞. �

§4. Multipliers from Dα to Dβ

As α > 1, it is known that the space Dα is exactly the weighted Bergman space
L2,α−2
a which contains analytic functions f on D satisfying

∫

D
|f(z)|2(1− |z|2)α−2dA(z) < ∞

(see, for example, [HKZ, p12, Proposition 1.11]). But pointwise multipliers between
weighted Bergman spaces have been completely characterized recently by R.Zhao in [Z2,
Theorem 1]. In this section we study the operators Ig and Jg from Dα to Dβ .

Theorem 4.1. Let α ≤ β. For g analytic on D, the operator Ig : Dα → Dβ is
bounded if and only if

sup
z∈D

(1− |z|2)
1
2
(β−α)|g(z)| < ∞.

Proof. Suppose that

sup
z∈D

(1− |z|2)
1
2
(β−α)|g(z)| < +∞.

15
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Let f ∈ Dα. Then we have

‖ Igf ‖2Dβ
=

∫

D
|g(z)f ′(z)|2(1− |z|2)βdA(z)

=

∫

D

(
|g(z)|(1− |z|2)

1
2
β− 1

2
α
)2

|f(z)|2(1− |z|2)αdA(z)

≤
(
sup
z∈D

(1− |z|2)
1
2
β− 1

2
α|g(z)|

)2 ∫

D
|f(z)|2(1− |z|2)αdA(z)

≤
(
sup
z∈D

(1− |z|2)
1
2
β− 1

2
α|g(z)|

)2

‖ f ‖2Dα

To prove the converse, for a ∈ D,m > 1−1
2α, let ga(z) = (1− |a|2)m+ 1

2
α−1 z − a

(1− az)m+α
.

Then g′a(a) = (1− |a|2)−
1
2
α−1. Since g(a)g′a(a) = (1− |a|2)−

1
2
α−1g(a), we have

(1− |a|2)−(α+2)|g(a)|2 = |g(a)g′a(a)|2

≤ C
1

(1− |a|2)2
∫

D(a,r)
|g(z)g′a(z)|2dA(z)

≤ C
1

(1− |a|2)2+β

∫

D(a,r)
|(Igga)′(z)|2(1− |z|2)βdA(z)

≤ C
1

(1− |a|2)2+β
‖ Igga ‖2Dβ

≤ C
1

(1− |a|2)2+β
‖ Ig ‖2‖ ga ‖2Dα

Hence
sup
z∈D

(1− |z|2)
1
2
(β−α)|g(z)| < ∞. �

Lemma A.( [AS2, Lemma 2] ) Let α > 1. There is a constant C1 such that
∫

D
|f(z)|2(1− |z|2)α−2dm(z) ≤ C1

∫

D
|f ′(z)|2(1− |z|2)αdm(z),

for all analytic functions f on D.

Proof. This follows from Lemma 2 of [AS2]. �

Theorem 4.2. Let 1 < α ≤ β. For g analytic on D, the operator Jg : Dα → Dβ

is a bounded operator if and only if

sup
z∈D

(1− |z|2)
1
2
(β−α)+1|g′(z)| < ∞.

16
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Proof. Let f ∈ Dα. Then we see by Lemma A,

‖ Jgf ‖2Dβ
=

∫

D
|g′(z)f(z)|2(1− |z|2)βdA(z)

=

∫

D

(
|g′(z)|(1− |z|2)

1
2
β− 1

2
α+1

)2
|f(z)|2(1− |z|2)α−2dA(z)

≤
(
sup
z∈D

(1− |z|2)
1
2
β− 1

2
α+1|g′(z)|

)∫

D
|f(z)|2(1− |z|2)α−2dA(z)

≤ ‖ g ‖2
B

1
2 (β−α)+1

∫

D
|f ′(z)|2(1− |z|2)αdA(z) =‖ g ‖2

B
1
2 (β−α)+1

‖ f ‖2Dα

To prove the converse, put ga(z) = (1− |a|2)
1
2
α 1

(1− az)α
. Then we see that ga(z) ∈

Dα. Since (1− |z|2) is comparable to (1− |a|2) for all z ∈ D(a, r), we have

|g′(a)|2(1− |a|2)β−α+2 ≤ C

∫

D(a,r)
|g′(z)|2(1− |z|2)β−αdA(z)

= C

∫

D(a,r)
|g′(z)|2 (1− |a|2)α

|1− az|2α
|1− az|2α

(1− |a|2)α
(1− |z|2)β−αdA(z)

∼ C

∫

D(a,r)
|g′(z)|2|ga(z)|2(1− |z|2)βdA(z)

≤ C

∫

D
|(Jgga)′(z)|2(1− |z|2)βdA(z) = C ‖ Jg ‖2‖ ga ‖2Dα

< ∞

Hence we have
sup
z∈D

(1− |z|2)
1
2
(β−α)+1|g′(z)| < +∞. �

Corollary 4.3. Let 1 < α < β. For g analytic on D, the following are equivalent:

(i) gDα ⊂ Dβ ;

(ii) Ig : Dα → Dβ is a bounded operator ;

(iii) Jg : Dα → Dβ is a bounded operator ;

(iv) sup
z∈D

(1− |z|2)
1
2
(β−α)+1|g′(z)| < +∞ .

Proof. Since the equivalence of supz∈D(1−|z|2)
1
2
(β−α)|g(z)| < ∞ and supz∈D(1−

|z|2)
1
2
(β−α)+1|g′(z)| < ∞ follows from the result of [Zhu3], the equivalence of (ii),(iii),(iv)

follows from Theorem 4.1 and Theorem 4.2. It is trivial that (iv) implies (i). In fact,
supposing (iv), by using the equivalence of (ii),(iii),(iv), for all f ∈ Dα,
∫

D
(1−|z|2)β |f ′(z)g(z)+f(z)g′(z)|2dA(z) ≤‖ Jgf ‖2Dβ

+ ‖ Igf ‖2Dβ
≤

(
‖ Ig ‖2‖ + ‖ Ig ‖2

)
‖ f ‖2Dβ

.
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So we have gDα ⊂ Dβ .
To prove the converse, suppose that gDα ⊂ Dβ . Then for a ∈ D, m > 1 − 1

2α,

let ga(z) = (1− |a|2)m+ 1
2
α−1 z − a

(1− az)m+α
. Then g′a(a) = (1 − |a|2)−

1
2
α−1 and ga(a) = 0.

Since g(a)g′a(a) = (1− |a|2)−
1
2
α−1g(a) and g′(a)ga(a) = 0, we have

(1− |a|2)−(α+2)|g(a)|2 = |g(a)g′a(a) + g′(a)ga(a)|2

≤ C
1

(1− |a|2)2
∫

D(a,r)
|g(z)g′a(z) + g′(z)ga(z)|2dA(z)

≤ C
1

(1− |a|2)2+β

∫

D(a,r)
|(gga)′(z)|2(1− |z|2)βdA(z)

≤ C
1

(1− |a|2)2+β
‖ Mgga ‖2Dβ

≤ C
1

(1− |a|2)2+β
‖ Mg ‖2‖ ga ‖2Dα

Hence
sup
z∈D

(1− |z|2)
1
2
(β−α)|g(z)| < ∞. �
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