
Greedy Approximation for the Source

Location Problem with Vertex-Connectivity

Requirements in Undirected Graphs ?

Toshimasa Ishii a,∗

aDepartment of Information and Management Science,
Otaru University of Commerce,

Otaru-city Hokkaido 047-8501 Japan

Abstract

Let G = (V, E) be a simple undirected graph with a set V of vertices and a set E
of edges. Each vertex v ∈ V has a demand d(v) ∈ Z+, and a cost c(v) ∈ R+, where
Z+ and R+ denote the set of nonnegative integers and the set of nonnegative reals,
respectively. The source location problem with vertex-connectivity requirements in
a given graph G asks to find a set S of vertices minimizing

∑
v∈S c(v) such that there

are at least d(v) pairwise vertex-disjoint paths from S to v for each vertex v ∈ V −S.
It is known that the problem is not approximable within a ratio of O(ln

∑
v∈V d(v)),

unless NP has an O(N log log N )-time deterministic algorithm. Also, it is known that
even if every vertex has a uniform cost and d∗ = 4 holds, then the problem is
NP-hard, where d∗ = max{d(v) | v ∈ V }.

In this paper, we consider the problem in the case where every vertex has uni-
form cost. We propose a simple greedy algorithm for providing a max{d∗, 2d∗ − 6}-
approximate solution to the problem in O(min{d∗,

√
|V |}d∗|V |2) time, while we also

show that there exists an instance for which it provides no better than a (d∗ − 1)-
approximate solution. Especially, in the case of d∗ ≤ 4, we give a tight analysis to
show that it achieves an approximation ratio of 3. We also show the APX-hardness
of the problem even restricted to d∗ ≤ 4.
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1 Introduction

Problems of selecting the best location of facilities in a given network to satisfy
a certain property are called location problems [12]. Recently, the location
problems with requirements measured by a network-connectivity have been
studied extensively [2,3,5,7,6,9–11,15–18].

Connectivity and/or flow-amount are very important factors in applications to
control and design of multimedia networks. In a multimedia network, a set S
of some specified network nodes, such as the so-called mirror servers, may have
functions of offering the same services for users. A user at a node v can use the
service by communicating with at least one node s ∈ S through a path between
s and v. The flow-amount (which is the capacity of paths between S and v)
affects the maximum data amount that can be transmitted from S to a user
at a node v. Also, the edge-connectivity or the vertex-connectivity between
S and v measures the robustness of the service against network failures. The
concept of such connectivity and/or flow-amount between a node and a set
of specified nodes was given by H. Ito [8], considering design of a reliable
telephone network with plural switching apparatuses.

Given a graph, the problem of finding the best location of such a set S of
vertices, called sources, under connectivity and/or flow-amount requirements
from each vertex to S is called the source location problem, which is formulated
as follows:

Problem 1 (Source location problem with meausre ψ)
Input : A graph G = (V,E) with a set V of vertices and a set E of edges with
nonnegative real capacities, a cost function c : V → R+ (where R+ denotes
the set of nonnegative reals), and a demand function d : V → R+.
Output : A vertex set S ⊆ V such that ψ(S, v) ≥ d(v) holds for every vertex
v ∈ V − S and

∑
v∈S c(v) is minimized, where ψ(S, v) is a measure based on

the edge-connectivity, vertex-connectivity or flow-amount between S and a
vertex v in the input graph G.

For such measures ψ(S, v), one may consider the minimum capacity λ(S, v) of
an edge cut C ⊆ E that separates v from S, the minimum size κ(S, v) of a
vertex cut C ⊆ V − S − v that separates S and v, or the maximum number
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κ̂(S, v) of paths between S and v such that no pair of paths has a common
vertex in V − v.

Here let us review the developments in the source location problems in undi-
rected graphs. The problem with ψ = λ was first considered by Tamura et al.
[17]. They showed that the problem with uniform costs and uniform demands
can be solved in polynomial time. Also, Tamura et al. [18] showed that the
case of uniform costs and general demands is solvable in polynomial time,
while the fastest known algorithm for it achieves complexity O(mM(n,m))
due to Arata et al. [2], where n = |V |, m = |{{u, v} | u, v ∈ V }|, and M(n,m)
denotes the time for max-flow computation in the graph with n vertices and
m edges. In general, Sakashita et al. [16] showed that the problem is strongly
NP-hard. It is also known that when a given graph is a tree, the problem is
weakly NP-hard [2] and there exists a pseudo-polynomial time algorithm for
it [11,16].

For ψ = κ, Ito et al. [9] investigated the problem with uniform costs and
uniform demands d(v) = k, presented a polynomial time algorithm in the case
of k ≤ 2, and showed the NP-hardness of the problem in the case of k ≥ 3.
They also showed that in the case of k ≤ 2, even if a measure λ(S, v) ≥ ` is
added, then the problem is still solvable in polynomial time.

For ψ = κ̂, Nagamochi et al. [15] showed that the problem with uniform
demands d(v) = k can be solved in O(min{k,

√
n}kn2) time. In [7], Ishii et al.

considered the problem with uniform costs and general demands, and showed
that it can be solved in linear time in the case of d∗ ≤ 3, while it is NP-hard
even restricted to d∗ = 4, where d∗ = max{d(v)|v ∈ V }. They also showed
that if d∗ ≤ 3, then even in the case of general costs, it is also solvable in
polynomial time[6].

Also for directed graphs, many variants of problems have been investigated
(see [3,5,10] for ψ = λ, [15] for ψ = κ̂, and [14] for a survey).

Recently, Sakashita et al.[16] showed that no problems of the above three types
of connectivity requirements in undirected/directed graphs are approximable
within the ratio of O(ln

∑
v∈V d(v)), unless NP has an O(N log log N)-time de-

terministic algorithm. They also gave (1 + ln
∑

v∈V d(v))-approximation algo-
rithms for all such problems if the capacity and demand functions are integral.

In this paper, we focus on the problem with ψ = κ̂ in undirected graphs.
As shown in [16], in general, it is unlikely that it is approximable within a
ratio of O(ln

∑
v∈V d(v)). Moreover, it was shown in [7] that even if the cost

function is uniform and d∗ is bounded from above by a constant, the problem
is NP-hard. In this paper, after describing some definitions and preliminaries
in Section 2, we show in Section 3 that if the cost function is uniform, then a
simple greedy algorithm provides a max{d∗, 2d∗ − 6}-approximate solution in
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O(min{d∗,√n}d∗n2) time; the approximation ratio is constant if d∗ is bounded
from above by a constant. Especially, in Section 4, in the case of d∗ ≤ 4, we
give a tight analysis to show that it achieves an approximation ratio of 3. We
also show that the problem is APX-hard even restricted to uniform costs and
d∗ ≤ 4.

Before closing this section, we summarize our method. First, we start with
the source set S = V . Then, we pick vertices v, one by one, in nondecreasing
order of their demands; only when S − {v} remains feasible, then update
S := S−{v}. It was shown in [2] that for the problem with ψ = λ and uniform
costs in undirected graphs, this algorithm provides an optimal solution. In our
problem, this method may not achieve an optimal, but an approximation ratio
of max{d∗, 2d∗ − 6}.

2 Main Theorems

Let G = (V, E) be a simple undirected graph with a set V of vertices and
a set E of edges, where we denote |V | by n and |E| by m. A singleton set
{x} may be simply written as x, and “⊂” implies proper inclusion while “⊆”
means “⊂” or “=”. The vertex set and edge set of a graph G are denoted by
V (G) and E(G), respectively. For a vertex subset V ′ ⊆ V , G[V ′] means the
subgraph induced by V ′. For a vertex set X ⊆ V , NG(X) is defined as the set
of all vertices in V −X which are adjacent to some of vertices in X. Moreover,
let NG(∅) = ∅. For a vertex set Y ⊆ V and a family X of vertex sets, Y covers
X if each X ∈ X satisfies X ∩ Y 6= ∅. For a family X of vertex sets in V , the
frequency of a vertex v (with respect to X ) is defined as the number of sets
of X which includes v, and let f(V,X ) denote the maximum frequency with
respect to X of a vertex in V .

For a vertex v ∈ V and a vertex set X ⊆ V −{v} in G, we denote by κ̂G(X, v)
the maximum number of paths from v to X such that no pair of paths has a
common vertex in V − v. For a vertex v ∈ V and a vertex set X ⊆ V with
v ∈ X, let κ̂G(X, v) = ∞. By Menger’s theorem, the following lemma holds.

Lemma 2 For a vertex v ∈ V and a vertex set X ⊆ V − {v}, κ̂G(X, v) ≥ k
holds if and only if |NG(W )| ≥ k holds for every vertex set W ⊆ V −X with
v ∈ W .

In this paper, each vertex v ∈ V in G = (V,E) has a nonnegative integer
demand d(v). Let d∗ = max{d(v) | v ∈ V }. A vertex set S ⊆ V is called a
source set if it satisfies

κ̂G(S, v) ≥ d(v) for all vertices v ∈ V − S, (1)
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and we call each vertex v ∈ S a source. In this paper, we consider the follow-
ing source location problem with local vertex-connectivity requirements in an
undirected graph (shortly, LVSLP or d∗LVSLP).

Problem 3 (LVSLP or d∗LVSLP)
Input : An undirected graph G = (V,E) and a demand function d : V → Z+

(where Z+ denotes the set of nonnegative integers).
Output : A source set S ⊆ V with the minimum cardinality.

The main results of this paper are described as follows.

Theorem 4 Given an undirected graph G = (V, E) and a demand function
d : V → Z+, LVSLP is max{d∗, 2d∗−6}-approximable in O(min{d∗,√n}d∗n2)
time.

Theorem 5 A 3-approximate solution to 4LVSLP can be found in O(n2)
time, while 4LVSLP is APX-hard.

In the subsequent sections, we will prove these theorems constructively by
giving an approximation algorithm for LVSLP. Also, we will show that there
exists an instance for which the proposed algorithm provides no better than
a (d∗ − 1)-approximate solution.

In the rest of this section, we introduce several properties for LVSLP, which
will be used in the subsequent sections. For a vertex set X ⊆ V , d(X) denotes
the maximum demand among all vertices in X, i.e., d(X) = maxv∈X d(v) (note
that we define max∅ = 0). A vertex subset W ⊆ V with d(W ) > |NG(W )| is
called a deficient set. We have the following property by Lemma 2.

Lemma 6 A vertex set S ⊆ V is a source set if and only if S satisfies W∩S 6=
∅ for every deficient set W .

A deficient set W is minimal if no proper subset of W is deficient. For a vertex
v ∈ V , we say that a deficient set W ⊆ V with v ∈ W is a minimal deficient
set with respect to v, if W is minimal deficient and d(v) > |NG(W )|. A minimal
deficient set has the following properties.

Lemma 7 [7] Every minimal deficient set W with respect to v ∈ W induces
a connected graph.

Lemma 8 Let W be a minimal deficient set with respect to v ∈ W . If there
is a set X with v /∈ X, |NG(X) ∩ W | = 1, and X ∩ NG(W ) 6= ∅, then
NG(X) ∩W = {v}.

PROOF. Assume by contradiction that v ∈ (W−X)−NG(X). Now we have
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NG((W − X) − NG(X)) ⊆ (NG(W ) − X) ∪ (W ∩ NG(X)). Hence, it follows
from |NG(W )∩X| ≥ 1 and |W ∩NG(X)| = 1 that |NG((W −X)−NG(X))| ≤
|NG(W )−X|+|W ∩NG(X)| ≤ |NG(W )|−|NG(W )∩X|+1 ≤ |NG(W )| < d(v)
and (W −X)−NG(X) is also a deficient set, contradicting the minimality of
W . 2

For two vertex sets X and Y , we say that X and Y intersect each other, if
none of X ∩ Y , X − Y , and Y − X is empty. For two vertex sets X and Y ,
the following holds.

|NG(X)|+ |NG(Y )| ≥ |NG(X ∩ Y )|+ |NG(X ∪ Y )|. (2)

|NG(X)|+ |NG(Y )| ≥ |NG((X − Y )−NG(Y ))|+ |NG((Y −X)−NG(X))|.(3)

Lemma 9 Let Wi, i = 1, 2 be minimal deficient sets with respect to wi ∈ Wi.
If W1 and W2 intersect each other, w1 ∈ W1 −W2, and w2 ∈ W2 −W1, then
w1 ∈ NG(W2) or w2 ∈ NG(W1) hold.

PROOF. Assume by contradiction that {w1, w2}∩ (NG(W1)∪NG(W2)) = ∅.
By w1 ∈ (W1 − W2) − NG(W2) and w2 ∈ (W2 − W1) − NG(W1), we have
(W1−W2)−NG(W2) 6= ∅ 6= (W2−W1)−NG(W2). Now we have |NG(W1)| <
d(w1) and |NG(W2)| < d(w2), since W1 and W2 are both deficient sets. It
follows from (3) that we have d(w1) > |NG((W1−W2)−NG(W2))| or d(w2) >
|NG((W2−W1)−NG(W1))| (say, d(w1) > |NG((W1−W2)−NG(W2))|). Then
(W1−W2)−NG(W2) is also deficient, which contradicts the minimality of W1.
Hence, it follows that {w1, w2} ∩ (NG(W1) ∪NG(W2)) 6= ∅. 2

3 Greedy Algorithm

For a given graph G = (V, E) and a demand function d : V → Z+, let opt(G, d)
denote the optimal value to LVSLP. In this section, we give a simple greedy al-
gorithm, named GREEDY LVSLP, for finding a max{d∗, 2d∗−6}-approximate
solution S to LVSLP in O(min{d∗,√n}d∗ n2) time. Below, assume that the
given graph G is connected, since if G is disconnected, then we can consider
the problem for each connected component separately.

The algorithm GREEDY LVSLP is a greedy method to find a minimal feasible
solution S0. We start with the source set S0 = V , and pick vertices v ∈ V , one
by one, in nondecreasing order of their demands. Only when S0−{v} remains
to be a source set, we update S0 := S0 − {v}.
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Algorithm 1 Algorithm GREEDY LVSLP

Require: An undirected connected graph G = (V, E) and a demand function
d : V → Z+.

Ensure: A source set S such that |S| ≤ max{d∗, 2d∗ − 6}opt(G, d).
1: Order vertices of V such that d(v1) ≤ · · · ≤ d(vn).
2: Initialize j := 1 and S0 := V .
3: for j = 1 to n do
4: if S0 − {vj} is a source set then
5: S0 ← S0 − {vj}.
6: end if
7: end for
8: Output S0 as a solution.

Let S0 = {s1, s2, . . . , sp} be a source set obtained by the algorithm. Here we
observe the following property, which will be used for proving the approxima-
tion results.

Lemma 10 For each s ∈ S0, there is a deficient set W satisfying the following
conditions (i)–(iii):

(i) W ∩ S0 = {s}.
(ii) W is minimal with respect to s.
(iii) d(W ) = d(s).

PROOF. From the construction, when the vertex s is picked in lines 4–6,
S ′0 − {s} does not satisfy (1) for the current source set S ′0. Before deleting s
from S ′0, S ′0 is feasible and hence by Lemma 6, every deficient set contains a
source in S ′0. On the other hand, S ′0 − {s} is infeasible. Again by Lemma 6,
there is a deficient set W with W ∩ S ′0 = {s} such that W − {s} is not
deficient. Moreover, since all vertices in W − {s} have been already deleted,
we can observe that d(s) = max{d(v) | v ∈ W} = d(W ) holds by the sorting
in line 1, and that d(s) > |NG(W )|. It follows that there is a minimal deficient
set W with respect to s satisfying W ∩ S ′0 = {s} and d(W ) = d(s). Moreover,
by S0 ⊆ S ′0, we have W ∩ S0 = {s}. 2

By this lemma and observations in its proof, we can see that for s and S ′0
defined in the proof, if there is no deficient set W with respect to s such that
W ∩ S ′0 = {s} (i.e., κ̂G(S ′0 − {s}, s) ≥ d(s)), then S ′0 − {s} is a source set.
Hence, we also have the following lemma.

Lemma 11 In lines 4–6 of the algorithm GREEDY LVSLP, a vertex set S0−
{vj} is a source set if and only if κ̂G(S0 − {vj}, vj) ≥ d(vj).

Let W0 = {W1,W2, . . . , Wp} be a family of deficient sets such that Wi satifies
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(i)–(iii) of Lemma 10 for si ∈ S0. Here we observe that S0 is max{d∗, 2d∗−6}-
approximate.

Lemma 12 |S0| ≤ max{d∗, 2d∗ − 6}opt(G, d).

PROOF. If d∗ = 1, then |S0| = 1 clearly holds; S0 is optimal. Consider
the case where d∗ ≥ 2. Let S be an arbitrary source set. From the definition
of f(V,W0), we can observe that S can cover at most |S|f(V,W0) sets in
W0. On the other hand, Lemma 6 indicates that we have S ∩ W 6= ∅ for
every W ∈ W0. Therefore, |S|f(V,W0) ≥ |W0| must hold. It follows that we
have opt(G, d) ≥ |W0|/f(V,W0) = |S0|/f(V,W0). We will prove this lemma
by showing that if f(V,W0) ≥ d∗ + 1, then f(V,W0) ≤ 2d∗ − 5 and that
whenf(V,W0) = 2d∗ − 5 ≥ d∗ + 1, we have opt(G, d) < 2d∗ − 5.

Assume that there is a family W ′ ⊆ W0 of deficient sets with |W ′| = `, ` ≥
d∗ + 1, and

⋂
W∈W ′ W 6= ∅. We first claim that for each W ∈ W ′, the number

of sets Wi ∈ W ′ with si ∈ NG(W ) is at most d∗ − 3. From |NG(W )| ≤ d∗ − 1,
` ≥ d∗ + 1, and Lemma 10(i), there exists a set Wj ∈ W ′ with sj /∈ NG(W )
(notice that |NG(W )| ≤ d∗ − 1 holds for every W ∈ W0 since W is deficient
and d∗ = max{d(v) | v ∈ V }). Again by Lemma 10(i), if this claim would not
hold, then such Wj would satisfy |Wj ∩NG(W )| ≤ 1. Then |Wj ∩NG(W )| = 0
would imply that Wj −W and Wj ∩W are disconnected, which contradicts
Lemma 7, and |Wj ∩ NG(W )| = 1 would indicate that the vertex v with
Wj ∩ NG(W ) = {v} satisfies v = sj by Lemmas 8 and 10(ii) (note that
W ∩NG(Wj) 6= ∅ holds by Lemma 7).

Consider the directed graph H = (V1, E1) such that each vertex vi ∈ V1

corresponds to a set in Wi ∈ W ′, and that a directed edge (vi, vj) belongs to
E1 if and only if sj ∈ NG(Wi). From the above claim, the outdegree of each
vertex in V1 is at most d∗ − 3. On the other hand, |E1| ≥ `(` − 1)/2 holds,
since Lemmas 9 and 10 imply that for every two sets Wi,Wj ∈ W ′, we have
si ∈ NG(Wj) or sj ∈ NG(Wi). It follows that (d∗ − 3)` ≥ |E1| ≥ `(` − 1)/2;
` ≤ 2d∗ − 5.

Finally, we consider a special case of ` = 2d∗−5. Then, by the above inequality,
the outdegree of each vertex in V1 is exactly d∗−3. Now notice that every Wi ∈
W ′ satisfies |NG(Wi)| ≤ d∗−1 and |NG(Wi)∩Wj| ≥ 2 for each Wj ∈ W ′−{Wi}
with sj /∈ NG(Wi) as observed above. It follows that we have |NG(Wi)| =
d∗ − 1 and NG(Wi) ⊆ ⋃

W∈W ′ W for each Wi ∈ W ′; NG(
⋃

W∈W′ W ) = ∅,
V =

⋃
W∈W ′ W , W0 = W ′, and each si ∈ S0 satisfies d(si) = d∗ (note that

G is connected and that by V =
⋃

W∈W ′ W and Lemma 10(i), any set in
W0 −W ′ cannot exist). Observe that opt(G, d) ≥ 2 since if {v} would be an
optimal solution for some v ∈ V , then V − {v} would be a deficient set with
respect to some s ∈ S0 − {v} and hence {v} would be infeasible (note that
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|NG(V − {v})| = 1 < d∗ and |S0| ≥ d∗ + 1 > 1). It follows that if ` = 2d∗ − 5,
|S0| = ` ≤ (2d∗ − 5)opt(G, d)/2. 2

Finally, we show that the algorithm GREEDY LVSLP can be implemented to
run in O(min{d∗,√n}d∗n2) time. From Lemma 11, we can observe that the
procedure in lines 4–6 can be done in O(min{d∗,√n}m) time by using the
network flow computation [4]. Since the procedure in lines 4–6 is executed at
most n times, it follows that the total complexity is O(min{d∗,√n}mn).

Moreover, it was shown in [13] that for any graph H and any integer k, a sparse
subgraph Hk of H with O(d∗n) edges satisfying the following (i) and (ii) can
be obtained in O(|E(H)|) time. (i) The local vertex-connectivity less than k
in H is preserved also in Hk. (ii) The local vertex-connectivity at least k in H
is at least k also in Hk. Notice that since d∗ is the maximum demand, what
we need to concern is the connectivity less than d∗. Hence, by computing such
a sparse subgraph Gd∗ of G with O(d∗n) edges and applying the algorithm
GREEDY LVSLP to this Gd∗ , we can reduce the above complexity to O(m +
min{d∗,√n}d∗n2).

Summarizing the arguments given so far, Theorem 4 is now established.

4 The case of d∗ ≤ 4

In this section, we consider 4LVSLP. Let S0 and W0 be a set of vertices ob-
tained by algorithm GREEDY LVSLP and the family of deficient sets corre-
sponding to S0, respectively, as defined in the previous section. Here we show
that S0 is 3-approximate and that this analysis is tight for the algorithm. We
also show that 4LVSLP is APX-hard.

Assume that d∗ = 4, since the case of d∗ ≤ 3 is solvable in polynomial time,
as shown in [7]. Also assume that |S0| ≥ 4, since |S0| ≤ 3 implies that S0

is 3-approximate. If the frequency of each vertex with respect to W0 is at
most three, then S0 is 3-approximate as observed in the proof of Lemma 12.
However, there exists an instance which has a vertex with frequency four. We
first start with characterizing such cases through the following preparatory
lemmas.

Lemma 13 Let Wi and Wj denote deficient sets in W0 with Wi ∩Wj 6= ∅.

(i) |NG(Wi ∪Wj)| ≥ 1.
(ii) Wi ∩NG(Wj) 6= ∅ 6= Wj ∩NG(Wi) holds; |NG(Wi ∩Wj)| ≥ 2.
(iii) If |NG(Wi ∩ Wj)| = 2, then no set W ∈ W0 − {Wi,Wj} satisfies W ∩

Wi ∩Wj 6= ∅.
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(iv) If |NG(Wi ∪Wj)| = 1, then at most one set W ∈ W0−{Wi,Wj} satisfies
W ∩Wi ∩Wj 6= ∅.

(v) If |NG(Wi∪Wj)| = 2, then for every W ∈ W0−{Wi,Wj} with Wi∩Wj ∩
W 6= ∅, we have NG(Wi ∪Wj) ∩W ∩ S0 6= ∅.

PROOF. (i) Lemma 10(i) implies that S0 − {si, sj} ⊆ V − (Wi ∪Wj) (note
that S0−{si, sj} 6= ∅ by |S0| ≥ 4). Hence, NG(Wi ∪Wj) = ∅ would contradict
the connectedness of G.

(ii) This follows from Lemma 7.

(iii) By (ii), we have |Wi ∩ NG(Wj)| = |Wj ∩ NG(Wi)| = 1. It follows from
Lemma 8 that Wi∩NG(Wj) = {si} and Wj ∩NG(Wi) = {sj}; NG(Wi∩Wj) =
{si, sj}. Lemma 10(i) indicates that any set W ∈ W0 − {Wi,Wj} satisfies
W ∩NG(Wi ∩Wj) = ∅ and W − (Wi ∪Wj) 6= ∅. Hence, we can observe that
no set W ∈ W0 − {Wi,Wj} satisfies W ∩Wi ∩Wj 6= ∅, since if such a set W
would exist, then G[W ] would be disconnected, contradicting Lemma 7.

(iv) Let {v} = NG(Wi ∪Wj). Assume that there is a set W` ∈ W0−{Wi,Wj}
with Wi ∩ Wj ∩ W` 6= ∅. Then by applying Lemma 8 as X = Wi ∪ Wj and
W = W`, we have v = s`. Hence, from Lemmas 7 and 10, we can observe that
for any set W ∈ W0 − {Wi, Wj,W`}, we have W ∩Wi ∩Wj = ∅.

(v) Let W` ∈ W0 − {Wi,Wj} be a set with Wi ∩Wj ∩W` 6= ∅. If |NG(Wi ∪
Wj) ∩W`| = 1, then NG(Wi ∪Wj) ∩W` = {s`} holds by Lemma 8. Consider
the case where |NG(Wi ∪ Wj) ∩ W`| = 2; NG(Wi ∪ Wj) ⊆ W`. Assume by
contradiction that s` ∈ W` − (Wi ∪ Wj ∪ NG(Wi ∪ Wj)) holds. Lemma 9
indicates that {si, sj} ⊆ NG(W`). From the connectedness of G, |S0| ≥ 4,
and NG(Wi ∪ Wj) ⊆ W`, we can observe that NG(W`) − (Wi ∪ Wj) 6= ∅.
It follows from|NG(W`)| ≤ d∗ − 1 = 3 that |NG(W`)| = 3 and d(s`) = 4;
NG(W`) ∩ (Wi ∪ Wj) = {si, sj} and |NG(W`) − (Wi ∪ Wj)| = 1. Moreover,
NG(W`− (Wi ∪Wj ∪NG(Wi ∪Wj))) ⊆ NG(Wi ∪Wj)∪ (NG(W`)− (Wi ∪Wj))
and hence |NG(W`−(Wi∪Wj∪NG(Wi∪Wj)))| ≤ |NG(Wi∪Wj)|+ |NG(W`)−
(Wi ∪Wj)| ≤ 3, contradicting the minimality of W`. 2

Lemma 14 f(V,W0) ≤ 4 holds. In particular, for a vertex v ∈ V whose
frequency is four, the four distinct sets Wi ∈ W0, i = 1, 2, 3, 4 with v ∈ Wi

satisfy the following (4):

For some two sets W1,W2, d(s1) = 4 and d(s2) ≥ 3 hold and

any set in W0 − {W1,W2,W3,W4} is disjoint with W1 ∪W2.
(4)

PROOF. Let W1 and W2 denote deficient sets in W0 with W1 ∩ W2 6= ∅.
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We observe how many sets in W0 − {W1,W2} can intersect with W1 ∩ W2.
From Lemma 13(i)(ii), we have |NG(W1 ∪W2)| ≥ 1 and |NG(W1 ∩W2)| ≥ 2.
Moreover, Lemma 13(iii) says that if |NG(W1 ∩ W2)| = 2, then every set
W ∈ W0 − {W1,W2} is disjoint with W1 ∩W2.

Consider the case where |NG(W1 ∩ W2)| ≥ 3. By (2) and |NG(W )| ≤ d∗ −
1 ≤ 3 for each W ∈ W0, we have |NG(W1 ∪ W2)| ≤ 3. In particular, if
|NG(W1 ∪ W2)| = 3 (resp. |NG(W1 ∪ W2)| = 2), then we have |NG(W1)| =
|NG(W2)| = |NG(W1 ∩ W2)| = 3 (resp. |NG(W1)| = 3 and |NG(W2)| ≥ 2
without loss of generality). There are the following three possible cases (I)
|NG(W1∪W2)| = 1, (II) |NG(W1∪W2)| = 2, |NG(W1)| = 3, and |NG(W2)| ≥ 2,
and (III) |NG(W1∪W2)| = 3 and |NG(W1)| = |NG(W2)| = |NG(W1∩W2)| = 3.

(I) Lemma 13(iv) implies that the frequency of each vertex in W1 ∩W2 is at
most three.

(II) Assume that there are two distinct sets W3,W4 ∈ W0 − {W1,W2} such
that W1 ∩ W2 ∩ W3 ∩ W4 6= ∅. Lemma 13(v) implies that NG(W1 ∪ W2) =
{s3, s4}. Hence, any other set W ∈ W0 cannot intersect with W1 ∪ W2 by
W ∩ {s3, s4} = ∅ and the connectedness of G[W ]. Therefore, we can observe
that the frequency of each vertex in W1 ∩ W2 is at most four and that if
W1 ∩W2 ∩W3 ∩W4 6= ∅ holds, then (4) holds.

(III) Assume that there is a set W3 ∈ W0 − {W1,W2} with W1 ∩W2 ∩W3 6=
∅. We also assume that |NG(W3 ∪ W1)| = |NG(W2 ∪ W3)| = 3 and hence
|NG(W3)| = 3, since otherwise we can apply the above arguments. Note that
d(s1) = d(s2) = d(s3) = 4. Then we have the following claim, which proves
this lemma. 2

Claim 15 Every set in W0 − {W1, W2, W3} is disjoint with W1 ∩W2 ∩W3.

PROOF. We have |NG(W3) ∩ (W1 ∪W2)| ≥ 2, since otherwise if |NG(W3) ∩
(W1 ∪ W2)| = 1 would hold, then Lemma 8 would indicate that NG(W3) ∩
(W1 ∪W2) = {s1} = {s2}, a contradiction.

Now by |NG(W1 ∩W2)| = 3, there are the following two possible cases: (III-1)
|NG(W1) ∩W2| = |NG(W2) ∩W1| = |NG(W1 ∩W2)− (W1 ∪W2)| = 1, (III-2)
|NG(W1)∩W2| = 2 and |NG(W2)∩W1| = 1 without loss of generality. In both
cases, we have NG(W2) ∩W1 = {s1}.

(III-1) By Lemma 8, we have NG(W1)∩W2 = {s2}. Let {v12} = NG(W1∩W2)−
(W1∪W2). By the connectedness of G[W3] and {s1, s2}∩W3 = ∅, we have v12 ∈
W3. If v12 = s3, then NG(W1 ∩W2) = {s1, s2, s3} holds and hence every set in
W0−{W1,W2,W3} is disjoint with W1∩W2. Consider the case where v12 6= s3.
Note that from the connectedness of G[W1], NG(W3)∩ ((W1∩W2)∪{s1}) 6= ∅
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holds. Then (W1 ∩W2) ∪ {s1} has a neighbour in W3 other than v12, since if
NG((W1 ∩W2) ∪ {s1}) ∩W3 = {v12} would hold, then by applying Lemma 8
as X = (W1 ∩W2) ∪ {s1} and W = W3, v12 = s3 would hold. It follows that
s1 ∈ NG(W3). Similarly, s2 ∈ NG(W3) holds. On the other hand, we have
NG(W2) − {s1} ⊆ W3, since otherwise |NG(W2) ∩ W3| = |{v12}| = 1 would
hold and Lemma 8 would imply that v12 = s3. It follows that NG(W2) ⊆
W3∪NG(W3) and |NG(W3)−W2| ≤ 2. Therefore, we have |NG(W2∪W3)| ≤ 2,
contradicting the assumption.

(III-2) Let {v1, v2} = NG(W1)∩W2, {v3} = NG(W1)−{v1, v2}, and {v4, v5} =
NG(W2) − {s1}. By the connectedness of G[W3], we have {v1, v2} ∩ W3 6= ∅
(say, v1 ∈ W3) and {v4, v5} ∩ W3 6= ∅ (say, v4 ∈ W3). Then we claim that
(W1 ∩ W2) ∪ {s1} has a neighbour in W3 other than v1, since if |NG((W1 ∩
W2) ∪ {s1}) ∩W3| = 1, then by applying Lemma 8 as X = (W1 ∩W2) ∪ {s1}
and W = W3, s3 = v1 ∈ W2 would hold, contradicting Lemma 10(i) (note
that NG(W3) ∩ ((W1 ∩W2) ∪ {s1}) 6= ∅ by the connectedness of G[W1]).

Here we claim that s1 ∈ NG(W3). If v2 /∈ W3, then (NG((W1 ∩W2) ∪ {s1}) ∩
W3)−{v1} is included in ((W1−W2)−{s1})∪{v3}; s1 ∈ NG(W3). If v2 ∈ W3,
then |NG(W3)∩W1| ≥ 2 cannot hold, since otherwise |NG(W1∪W3)| ≤ 2 would
hold. It follows from Lemma 8 that v2 ∈ W3 indicates NG(W3) ∩W1 = {s1}.

We next claim that NG(W3)−(W2∪{v5, s1}) 6= ∅ and NG(W3)∩(W2∪{v5}) =
{s2}. If NG(W3) ⊆ W2∪{v5, s1}, then it follows that NG(W3) ⊆ W2∪NG(W2)
and |NG(W2 ∪W3)| ≤ 2, a contradiction. Note that |NG(W3)− {s1}| ≤ 2 and
W2 ∩ NG(W3) 6= ∅. Hence, we have |W2 ∩ NG(W3)| = 1, v5 /∈ NG(W3), and
NG(W3) − (W2 ∪ {v5, s1}) 6= ∅. Moreover, by applying Lemma 8 as X = W3

and W = W2, we have NG(W3) ∩W2 = {s2}.

On the other hand, v5 /∈ W3, since otherwise we would have NG(W2) ⊆ W3 ∪
NG(W3) and |NG(W2 ∪ W3)| ≤ 2, a contradiction. By Lemma 8 and W3 ∩
NG(W2) = {v4}, we have v4 = s3. It follows that NG(W2 ∩W3) = {s1, s2, s3},
and every set W ∈ W0 − {W1,W2,W3} is disjoint with W1 ∩W2 ∩W3. 2

Lemma 16 Let Wi,Wj be two minimal deficient sets with respect to vi and
vj, respectively, such that Wi ∩Wj 6= ∅, |NG(Wi ∪Wj)| ≤ 2, d(vi) = 4, and
{vi, vj}∩ (Wi∩Wj) = ∅. Then for any feasible solution S to 4LVSLP, we have
|S ∩ (Wi ∪Wj)| ≥ 2.

PROOF. By Lemma 6, S ∩ (Wi ∪ Wj) 6= ∅ holds; let s ∈ S ∩ (Wi ∪ Wj).
Now we have |NG(Wi ∪Wj − {s})| ≤ |NG(Wi ∪Wj)|+ 1 ≤ 3 < d(vi). Hence,
if s 6= vi, then again by Lemma 6, we have S ∩ (Wi ∪ Wj − {s}) 6= ∅ and
|S ∩ (Wi ∪Wj)| ≥ 2. If s = vi, then s = vi /∈ Wj holds and hence by Lemma 6
we have (S − s) ∩Wj 6= ∅. Also in this case, |S ∩ (Wi ∪Wj)| ≥ 2. 2
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Lemma 17 S0 is 3-approximate.

PROOF. Let S∗ denote an optimal solution. Since S∗ is feasible, we have
W ∩ S∗ 6= ∅ for every W ∈ W0. Consider a mapping g : W0 → S∗ such that
for each set W ∈ W0, g(W ) = s∗ holds for some source s∗ ∈ S∗ with s∗ ∈ W .
If |{W ∈ W0 | g(W ) = s∗}| ≤ 3 holds for each source s∗ ∈ S∗, then we have
|W0| ≤ 3|S∗|, from which |S0| = |W0| ≤ 3|S∗|. We claim that there is such a
mapping.

Assume that for a mapping g, there is a source s∗1 ∈ S∗ which at least
four sets in W0 is mapped to. By Lemma 14, f(V,W0) ≤ 4 holds, and
hence the number of sets in W0 mapped to s∗1 is exactly four. Moreover,
the four sets W1,W2,W3,W4 in W0 with g(Wi) = s∗1, i = 1, 2, 3, 4 satisfy
(4); |NG(W1 ∪ W2)| = 2, d(s1) = 4, and W ∩ (W1 ∪ W2) = ∅ for each
W ∈ W0 − {W1,W2,W3,W4} (notice that in this case, |NG(W1 ∪ W2)| = 2
holds by the proof of Lemma 14).

Now Lemma 16 implies that W1 ∪ W2 includes a source s∗2 ∈ S∗ − {s∗1}.
Notice that no set in W0 is mapped to s∗2 in g because every set W ∈
W0 − {W1,W2,W3,W4} satisfies s∗2 /∈ W and each of Wi, i = 1, 2, 3, 4 has
been mapped to s∗1. So, we can decrease the number of sets in W0 mapped
to s∗1 by one, by remapping one of two sets W1 and W2 including s∗2 to s∗2.
Consequently, by repeating this arguments, we can obtain a mapping with
the required property. 2

(a) (b)

Fig. 1. Illustration of a tight example G for the algorithm GREEDY LVSLP in
4LVSLP. (a) shows the graph Hi which is a subgraph of G in (b). In G, each vertex
v with d(v) = 4 is drawn as double circles.
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We now give a tight example for the algorithm GREEDY LVSLP. Let Hi =
(Vi, Ei) be the graph where Vi =

⋃3
j=1{vi

j, u
i
j1, u

i
j2, u

i
j3} and Ei = (

⋃
j,`(v

i
j, v

i
`))

∪ (
⋃3

j=1{(ui
j1, u

i
j2), (u

i
j1, ui

j3), (u
i
j1, v

i
1), (u

i
j1, v

i
2), (u

i
j1, v

i
3)}) (see Fig. 1(a)). Let

Gq = (V, E) be the graph where V = {u1, u2, u3} ∪ (
⋃q

i=1 Vi), q ≥ 4 and E =⋃q
i=1(Ei ∪ (

⋃3
j=1{(uj, u

i
j2), (uj, u

i
j3)})), d(ui

j1) = 4 for each i ∈ {1, 2, . . . , q} and
j ∈ {1, 2, 3}, and d(v) = 0 for all other vertices (see Fig. 1(b)). For Gq and d,
the algorithm GREEDY LVSLP returns a source set S0 =

⋃q
i=1{ui

11, u
i
21, u

i
31}

and W0 =
⋃q

i=1{{ui
11, u

i
12, u

i
13, v

i
1, v

i
2, v

i
3}, {ui

21, u
i
22, u

i
23, v

i
1, v

i
2, v

i
3}, {ui

31, u
i
32, u

i
33,

vi
1, vi

2, vi
3}}. On the other hand, {v1

1, v
2
1, . . . , v

q
1} is an optimal solution. This

example shows that our analysis of the algorithm is tight. Here we remark
that in a similar way, we can construct an instance in which GREEDY LVSLP
returns a solution S with |S| = (d∗ − 1)opt(G, d) for a general d. Namely, we
have the following lemma.

Lemma 18 For d∗LVSLP, there exists a graph for which the algorithm
GREEDY LVSLP provides no better than a (d∗ − 1)-approximate solution.
In particular, for 4LVSLP, such a graph is a tight example. A graph in Fig. 1
(b) is one of such examples.

Finally, we show that the problem is APX-hard. In [7], it was shown that
4LVSLP is NP-hard by a reduction from the minimum vertex cover problem
restricted to 3-regular graphs:

Vertex-cover problem in a 3-regular graph (VC3R)

INSTANCE: (G = (V, E), k) : A 3-regular graph G = (V, E) and an integer k.

QUESTION: Is there a vertex cover X with |X| ≤ k in G?

where a set V ′ ⊆ V of vertices is called a vertex cover if every edge e =
(u, v) ∈ E satisfies {u, v} ∩ V ′ 6= ∅, and a graph is called k-regular if the
degree of every vertex is exactly k. As shown in [1], the minimum vertex cover
problem is APX-hard, even restricted to 3-regular graphs. We can prove the
APX-hardness of 4LVSLP by using the same reduction as [7].

Lemma 19 4LVSLP is APX-hard.

PROOF. We start with reviewing a reduction from the minimum vertex
cover problem in a 3-regular graph to 4LVSLP, which was shown in [7].

Take an instance IV C3R = (G1 = (V1, E1), k) of VC3R, where n1 = |V1|
and m1 = |E1|. Let G2 = (V2, E2) be the graph obtained from G1 by re-
placing each edge e = (vi, vj) ∈ E1 with three edges (vi, vi,j), (vi,j, vj,i),
and (vj,i, vj) introducing two new vertices vi,j and vj,i; V2 = V1 ∪ V2,E and
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Fig. 2. Illustration of an edge (vi, vj) in G1 and the corresponding edges in G2 in
the proof of Lemma 19.

E2 = ∪(vi,vj)∈E1{(vi, vi,j), (vi,j, vj,i), (vj,i, vj)}, where V2,E =
⋃

(vi,vj)∈E1
{vi,j, vj,i}

(see Fig. 2). From G2, we construct an instance ILV SLP = (G3 = (V3, E3), d)
of 4LVSLP as follows.

Fig. 3. Illustration of a subgraph of G3 in the proof of Lemma 19 con-
structed from G2, where {wi2 , wi3} ⊆ V2,E , {wi1 , wi4} ⊆ V2 − V2,E , and
{(wi1 , wi2), (wi2 , wi3), (wi3 , wi4)} ⊆ E2. Each vertex in V3,1 and V3,2 is drawn as
a black square and a black circle, respectively.

For each wi ∈ V2, we construct the complete graph (V i, Ei) with |V i| = 4.
For each e = (wi, wj) ∈ E2, we construct one vertex wij. Let V3,1 = {wij |
(wi, wj) ∈ E2, i < j, {wi, wj} ⊆ V2,E} and V3,2 = {wij | (wi, wj) ∈ E2,
wi ∈ V2,E, wj ∈ V2−V2,E}. We construct G3 from G2 by replacing each vertex
wi ∈ V2 by (V i, Ei) and each edge e = (wj, w`) ∈ E2 by the vertex wj`, and
adding edges connecting wj` and V j ∪ V ` for each edge e = (wj, w`) ∈ E2; let
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V3 = (∪wi∈V2V
i)∪ V3,1 ∪ V3,2 and E3 = (∪wi∈V2E

i)∪ (∪wij∈V3,1∪V3,2{(wij, u)|u ∈
V i ∪ V j}) (see Fig. 3). Let d(x) = 3 for each vertex x ∈ V3,1 and d(x) = 4 for
each vertex x ∈ V3,2 and d(x) = 0 otherwise. Clearly, G3 can be constructed
in polynomial time in n1 and m1.

In [7], the following properties were shown.

Claim 20 (i) Let X1 be a vertex cover in G1. Then, X2 = X1∪{vi,j ∈ V2,E |
(vi, vj) ∈ E1, vi /∈ X1} ∪{vi,j ∈ V2,E | (vi, vj) ∈ E1, i < j, {vi, vj} ⊆ X1}
is a vertex cover in G2. Moreover, the vertex set obtained by choosing
exactly one vertex in V i for each wi ∈ X2 is a source set in G3.

(ii) Let S be a source set in G3. Let S ′ be the vertex set obtained from S
by replacing each wij ∈ (V3,1 ∪ V3,2) ∩ S with some w′ ∈ V i ∪ V j, and
X2 = {wi ∈ V2 | V i∩S ′ 6= ∅} be the vertex set in G2. Let X ′

2 be the vertex
set obtained from X2 by replacing each vi,j with {vi,j, vj,i} ⊆ V2,E ∩ X2

with vi. Then X ′
2 ∩ V1 is a vertex cover in G1.

By this claim, we observe that G1 has a vertex cover with cardinality at most k
if and only if G3 has a source set with cardinality at most k+m1; opt(G3, d) =
optV C(G1) + m1 holds, where optV C(G) denotes the minimum size |X| of a
vertex cover X in G. Now since G1 is 3-regular, we have m1 ≤ 3optV C(G1). It
follows that opt(G3, d) = optV C(G1) + m1 ≤ 4optV C(G1).

Let S be an arbitrary source set in G3, and X be a vertex cover in G1 obtained
from S according to Claim 20(ii). Note that |X| ≤ |S| −m1. Then, we have

|X|−optV C(G1)
optV C(G1)

≤ 4 (|S|−m1)−(opt(G3,d)−m1)
opt(G3,d)

= 4 |S|−opt(G3,d)
opt(G3,d)

.

Therefore, if we would have a polynomial-time approximation scheme for
4LVSLP, then we would have a polynomial-time approximation scheme for
VC3R. 2

5 Concluding Remarks

In this paper, given an undirected graph G = (V, E) and a demand function
d : V → Z+, we have considered the problem of finding a set S ⊆ V with
the minimum cardinality such that for every vertex v, there exist d(v) paths
between every vertex v ∈ V − S and S such that no pair of paths has a
common vertex in V −v. We have shown that a simple greedy algorithm finds a
max{d∗, 2d∗−6}-approximate solution to the problem in O(min{d∗,√n}d∗n2)
time. Especially, restricted to d∗ ≤ 4, we have given a tight analysis to show

16



that it achieves an approximation ratio of 3, while the problem is APX-hard.
However, it is still open whether the problem is approximable within a constant
which is independent of d∗.
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