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ON MULTIPLICATIVE PARTITION FUNCTION 

By 

Ryuji KAKEIW A 

1. Introduction. 

Let n be a positive integer. A multiplicative partition of the number n is 

a representation of n as the product of any number of integers that are greater 

than 1. Thus 

·12=3· ·6=2·2·6=2·3· ·2·2·3 

7 multiplicative partitions (d. the table annexed at the end of this paper). 

Let us denote the number of mutiplicative partitions of n by X(n), namely 

X(n)= 1 (n>l); 

XCI) is defined to be 1. This arithmetical function, we call it the mUltiplication 

partition function, was introduced by MacMahon 

X(n) has a generating function 

def = = 
(1) G(S) ~ X(n)n- S II (l-m- S)-l , 

n=l m=2 

who noted that the function 

s>l. 

Making use of this relation, Oppenheim [7J, [8] found an asymptotic formula 

~ X(n)= 
n;i;x 

{ 

N-l 15 
.1..L'): it--

I ~1 (log X)'/f 2 

where the 15/1 are certain constants, for each N and all large x. He also obtained 

a approximation 

(2) ~ X(n)=x ~ d k_I~~==~-c-:.'-+O (x e,vIOgX_) 
n:?iX k=O 

to the sum ~n"xX(n), where the I k(X) are modified Bessel functions, and the 

numbers d /1 are the coefficients in the Taylor expansion 

(3) G(s) e-1/(S-ll 

s 
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In this note, vve 

lowing 

prove (2) with sharper error term. is fol-

THEOREM. 

(4) 

jor any 

Concerning 

(5) log 

x cl !, }h+l(2-v/iog 
, ,"/log x 

--,-O(x 

and sujJiciently large x ~ xoUl). 

G(s), we have immediately 

where is zeta-function. This last converges uniformly 

in any 

lemma is 

set {s;Res>O}-{l, 1/2, 1/3, , .. }, following 

to Oppenheim [8J 

LEMMA l. 

where 

1, 2, .,,). In 

(6) 

By this lemma, we 

(7) 

Moreover 

the 

log G(s) is regular jor 5 >0 

poles oj the junction 

near jJoint 5=1, we 

log G(s)= 

the Taylor expansion (3) with 

do=1. 

showed that the junction G(s) zs 

s 1,2, ... ), 

(n-

at every jx)int 

In order to prove our theorem, in the next section we shall estimate the 

function 

(8) 

using of Hardy and Littlewood (see Chandrasekharan that 

(9) O(t4C1 -0")!IOg(1/0-V» t 
log log t ' 

for 3, uniformly for 63/64<u< 1, where u=Re sand 

will lead us our estimate (Ll) of ';o(x) in § 3. Finally 

numbers d k in the Taylor expansion (3) an effective form. 

s. This argument 

§ 4, we shall give the 
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2. of (x). 

By Perron's formula, we have 

(10) 
G(s) 

1) ds (c > 1) . 

It is plain that 

and l- s. By (5) we have 

(0'22/3). 

Let be any fixed number. From (9) we get for t;:o; 3. 

uniformly for 1- 1. Thus in the 3, 1-- ;£0' 1, 
log t 

(j 

we have 

o Al( loiro~ t-) . 
On other hand for (j 1, t 1, we have 

(13) log G(s) i 0(1) 

log t+O(l) (see p. 

We now choose, 

r 
is;O' 1-1 ' l og t 

where 

0'0=1- log to . 

The curve C is oriented by the parameter t. By (10), and (13), we obtain 

1 \ 
\ ---·-ds 2ITi vC s(s 1) c. 

We divide the integral on the right-hand side into several parts. Let 
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(15) 

dt (s=O'o+ti) , 

(s= 

ds, 

and (f 3) are complex conjugates of E j. 

Estimation of E 1• s 0'0 (It I ~3). 

G(s) _L __ ~O(I)\ 
s-l· , 

Re 0(1) . 

Since 0'0-1<0, G(s) we have for x> 1, 

(16) 

(ii) Estimation of 

x x 1(A 1) we have 

((s) 

(11), we get 

Thus we have for 

(17) 

(iii) Estimation of 

us to 

large Al and x 

Al 
Let 0'=1--

log t 

1 we have 

(9), for sufficiently 

The estimate (12) leads 
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(18; 

for sufficiently large x:2: x 2(A 1). By (14)-(18), we obtain the following 

LEMMA 2. 

(19) 

for any ,IJositiue A2 and sufficiently large x:::: X3(!-l~). 

3. Proof of the theorem. 

Let 

(20) 

T11en \ve h3. ve 

(21) 

def G(S)X ST1 

U (X) = Res ---------
3=1 s(s+l) 

G(S)X8 
U'(x)= Res ---- , U"(x)= Res G(s)X S

- 1 • 
S=l S 8=1 

Since ~oC;:) is an increasing function, we have 

by the definition (8). Suppose that 

(22) h=h(x»O, h=o(x). 

Then, by (19) we have 

and 

Since 

we have 

(23) 

In connection with functions U'(x), U"(x), we can show 

359 
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LEMMA 3. 

=X 

(25) 

PROOF. definition of modified Bessel functions 

and 

(3) and 

such that 

1 

es-i X'~ 1 exp 

n=-1Xl 

Res e1 /(S-1) _1)11 

we (24). 

00 

G(s)e- lI (S-!) L; C 
k=u 

(s 1h/loi'~t)} 

k-l 

we show (25). Let C k 

1) II ) is 1 <1/2 

(d. Lemma 1). Then for some positive constant iVI, 

=0,1,2, ... ) 

and we have 

co=1. 

(21) and we 

E, 

where 

0'1=.0 
(O<p 1/2). 

If j\1p 1, we 

px p . 

By taking p we obtain 

we 

constants 
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Since we have, as is well known, 

I 

we get (25). This completes the proof. 

By using this lemma with 

(see (22)) 

(23) leads us to 

Thus our theorem is proved. 

REMARK. In our approximation (4), we may conjecture that the best order 

of the error term would be 

for reason that 

where are defined by 

s 
1 II (Is G(s) 

e 
2 

However, it seems very difficult to prove this. 

4. numbers d ". 

rn and an respectively denote the constants defined by 

=lim (~ 
J.V _00 ;.;=1 lJ 

(n2::0) 

and 

n 
(28) an :E (m (n >0) , 

1It=1 
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(29) 

and 

(32) 

The 
(-
\ 
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1) 
-:--------- if 111 1, 

if m> 1, 

are numbers of the second kind, that 

);11_ 

we have the following 

d 

71==(-

r n (1!11 (17 >0). 

'lye 

1 Q 
,)--L-I..Jl-

It is not 

by 

log G(s) 

obviously get 

was found by Stieltjes, 

It ! been calculated by 

-1) ... (x-m 1). 

be fonn 

! ... 

to see 

And also we 

and Briggs-Chowla 

with 16 decimals. 

(71. >0), 

can 



where 

(33) 

(5), 

have 
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=, = 
kn-1(n) = 2:: logn;; 2:: kn-1))-k , 

:,;=1 1~=2 

and (32). It is enough to show (28) from the definition (33) 

(m 1) 1 1) 

may for all positive integers )), 

= 
(34) L P-l())-i- -1) ! 

1:=2 

This us to =1,2, •.• ) "CClftJlt" rational functions 

1 
1) 

and m) III o m~n. If w 

n 
L (m 1) 

7/1,=2 

1\, ) ~ / rn ___ c, __ " ______ "-__ c~" ___ : __ 

n, ... (k 

I: (izi <1), 

by (29). we LV 1/).). completes 

The author not paper 

to 

The author to Prof. S. 

T. and S. for advice. 
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Table of X en) *) 

X(10a+b) lOa+9 
z::: X(n) 

a b 0 1 2 3 4 5 6 7 8 9 n=l 

0 1 1 1 2 1 2 1 3 2 14 
1 2 1 4 1 2 2 5 1 4 1 37 
2 4 2 2 1 7 2 2 3 4 1 65 
3 5 1 7 2 2 2 9 1 2 2 98 
4 7 1 5 1 4 4 2 1 12 2 137 
5 4 2 4 1 7 2 7 2 2 1 169 
6 11 1 2 4 11 2 5 1 4 2 212 
7 5 1 16 1 2 4 4 2 5 1 253 
8 12 5 2 1 11 2 2 2 7 1 298 
9 11 2 4 2 2 2 19 1 4 4 349 

10 9 1 5 1 7 5 2 1 16 1 397 
11 5 2 12 1 5 2 4 4 2 2 436 
12 21 2 2 2 4 3 11 1 15 2 499 
13 5 1 11 2 2 7 7 1 5 1 541 
14 11 2 2 2 29 2 2 4 4 1 600 
15 11 1 7 4 5 2 11 1 2 2 646 
16 19 2 12 1 4 5 2 1 21 2 715 
17 5 4 4 1 5 4 12 2 2 1 755 
18 26 1 5 2 7 2 5 2 4 7 816 
19 5 1 30 1 2 5 9 1 II 1 882 
20 16 2 2 2 11 2 2 4 12 2 937 
21 15 1 4 2 2 2 31 2 2 2 1000 
22 II 2 5 1 19 9 2 1 11 1 1062 
23 5 5 7 1 11 2 4 2 5 1 ll05 
24 38 1 4 7 4 4 5 2 7 2 1179 
25 7 1 26 2 2 5 22 1 5 2 1252 
26 II 4 2 1 21 2 5 2 4 1 1305 
27 21 1 12 5 2 4 11 1 2 4 1368 
28 21 1 5 1 4 5 5 2 47 2 1461 
29 5 2 4 1 11 2 7 7 2 2 1504 
30 26 2 2 2 12 2 11 1 11 2 1574 
31 5 1 21 1 2 II 4 1 5 2 1628 
32 30 2 5 2 29 4 2 2 7 2 1713 
33 15 1 4 4 2 2 38 1 4 2 1786 
34 11 2 11 3 7 5 2 1 11 1 1840 
35 11' 7 19 1 5 2 4 5 2 1 1897 
36 52 2 2 4 11 2 5 1 12 4 1992 
37 5 2 11 1 5 7 7 2 21 1 2054 
38 11 2 2 1 45 5 2 4 4 1 2131 
39 15 2 16 2 2 2 26 1 2 5 2204 
40 29 1 5 2 4 12 5 2 21 1 2286 
41 5 2 4 2 11 2 19 2 5 1 2339 
42 36 1 2 4 7 4 5 2 4 5 2409 
43 5 1 57 1 5 5 4 2 5 1 2495 
44 21 9 5 1 II 2 2 2 30 1 2579 
45 26 2 4 2 2 5 21 1 2 7 2651 
46 11 1 15 1 12 5 2 1 26 2 2727 
47 5 2 7 2 5 4 11 4 2 1 2770 
48 64 2 2 5 9 2 19 1 7 2 2883 
49 11 1 11 2 5 II 12 2 5 1 2944 

*l Extracted and reproduced by kind permission from an unpublished table made by 
Mr. Yoshiyuki Miyata. 




