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Abstract

A sequential allocation problem in which a decision maker cannot
observe appearing targets directly, is considered. There are finite types of
targets, and the types of actually appearing targets (core process)constitute
a temporally nonhomogeneous -Markov chain. During a finite number of
periods, the decision maker observes not the core process directly but
another process (observation process) which is stochastically related to the
~ core process, and allocates some of his resources on hand to acquire some
reward dependent on the number of resources expended and the type of
actually appearing target. The objective is to find a sequence of number
of resources to be expended that maximizes the total expected reward. .

. Some properties of an optimal policy are investigated.

-

I. Introduction

A decision maker will allocate his resources to appearing targets
during the given periods. The target appears one by one at the beginning

of each period and the types of actually appearing targets (core process)
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constitute a temporally nonhomogeneous Markov chain.  The decision
maker obtains the reward which depends on the numbér of resources
expended and the actually appearing target. How does he allocate his
resources to maximize the total expected reward? .

ASequential allocation problems described above were studied by many
authors when the decision maker can observe the appearing tafget directly
[for example, 1,2,3,5,8 (2 and 8 treat the continuous-time version)]: The
present paper considers the sequential alloqation problem in which the
decision maker observes not the coré process directly but another process
(observation process) that is stochastically related to the core process. .
This type of problem is modeled as a partially observable Markov decision
process [9]. For example, in [6,7,10] the machine replacement problem
-with partial information are considered and some structural properties of
an optimal policy are derived. In [6,7] the actions available at each
decision epoch are ‘replace’, ‘inspect’; and ‘do nothing’ such that ‘replace’
and ‘inspect’ actions give the decision maker the true state of the machine,
and ‘do nothing’ action gives him no information about the machine. In
[10] two actions, ‘replace’ and ‘do nothing’, such that ‘replace’ indicatés
the true state and ‘do nothing’ gives some information about the machine,
are available. And two extreme cases, complete information case and no
information case, are considered in detail. In [4] the problem of optimal
stopping with imperfect information was investigated. Three actiong,
‘accept’, "(;ontinue’, and. ‘inspect’ are available at each decision epoch.
‘Continue’ action gives no information. ‘Inspect’ actién indicates some
information about the core process, and this action can be taken many
times successively without any change of core process.

In thepresent paper the sequential allocation problem with partial

information is in{restigated. This generalizes the model in Section 4 of [5]
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since it is the case where the transition probability matrix of the core
process has the same rows and the @ matrix is an identity matrix (full
information). Actions consist of the number of resources expended from
the resources on hand. The case is considered where all actions give the
same information about the core process. Later the case is discussed
where all .actions but ‘expend né unit’ indicate the true state of the core
process.

An outline of the paper is as follows: In Section 2 our problem is
formulated as a partially observable Markov decision process. In Section
3 some properties of an optimal policy are discussed. Two-state-case and
the case of transition probability matrix with the same rows are of special
interest. In -Section 4 some examples,are presented to 'illuStraté our

model.

2. Model and Formulation

The decision maker will allocate M units of his resources to appearing
targets during a given period N. There are I types of targets. We assume
that the target appears one by one at the beginning of each period and the
types of actually appearing targets (core process) constitute a temporally
nonhomogeneous Markov chain. Let X,= the type of target actually
appearing at the #n-th period, then {X,, n=1,..., N} is ‘a Markov chain
with known transition matrix P(n)=(p;;(n)), i, 7=0,..., I, n=2,..., N,
where pij(n) =Pr{ X y_n+2=jl X n_s +1=1} (# denotes the number of remaining
periods.) State.O means no appearance of target. The decision maker
cannot observe the core process { X4, #=1,..., N}, instead can observe the
observation process {Y,, #n=1,..., N} which takes a value in {0,1,..., L}
and is stochastically related to the core process as follows: @=(gi,),

i=0,..., 1, j=0,..., L. Pr{¥,=j|X,=i}=qij fori=0,..., I, j=0,..., L, n=
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1,..., N. If the decision maker allocates j units froin his resources on
hand, and tHe'type i(i=1,..., I) target is actually appearing, then he obtains
the immediate reward R;(7). It is assumed that R;(j) is a nondecreasing
and concave function of j with R;(0)=0 for i=1,..., I. The objective is to
find an optimal sequential allocation procedure which maximizes the total
expected reward by allocating M units of resources vto the appearing
targets during N periods. )

Consider, for example, the targets some types of which resemble one
another in look but differ in essence. So the time needed to identify the
appearing target is long. And suppose that the reward acquired at each
period does not directly become known to the decision maker until the end
of planning horizon. Therefore the model discussed in the above paragraphs
may apply to this §ituat’ion if the decision maker has to determine his
choice within a fairly short period of time.

A main result of the theory of paftially observable Markov decision
process is that the process with incompletely known states can be
transformed into a ‘isual’ Markov decision process by enlarging the state
space. The new state space is the set of probability distribution over the
unobservable states in the original process. Therefofe the enlarged new
state space is denoted by S={(xo,..., x;); xi=0,1=0,..., I, xo+ **>+x,=1},
and x= (%q,..., ¥/)eS means that the probabiljty of appearance of type i
target is %; just before the decision-making. The sequence of events,
transition of core process, observation, and decision-making, is given in
Fig. 1. The following quantities are calculate'd. immediately by Bayes’
rule:

(1) 0:(n, x)=probahility of observing output # at the next period given
that there are n periods remaining and the cﬁrrent state is

denoted by x’
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"transition of observation decision-

core process | i making number of - -
: : remaining

_ periods

Fig. 1

=Z,~-{,(Z,-={,x,-p,-,~(n))q,-k, n=2,..., N, k=0,..., L, xeS.

Ti(n, k, x)=probability of appearance of type ¢ target at the next
period given that there are n periods remaining, the

current state is denoted by x, and output % is observed

=(T;-0x;0;i(n)qix)/0k(m, x), n=2,..., N,
. 1=0,..., I, k=0,..., L; x&S.

Let »

@) T(n, b ©)=(Toln, & 2),eeey Tin, by 2)), 0=2,..., N,
k=0,..., L, S,

thén T(n, k, ) denotes the state in the next period provided that there are
n periods remaining, the current state is ¥, and output % is observed. Also
define |
Va(m, x)=the maximum total. expected reward when there are =z
| periods remaining, m units of resources are on hand, the
‘current state is éiven by x, and an optimal policy follows.
Then the following recursive relation follows [for example, 9].

(8) Valm, x)=max  {Z;-ix:R:i(/)

T=0ieser m

+Zk=30k(n, x)Vn—l(m—j, T(n: k: x))}r
n=1,..., N, m=0,..., M, xsS,

where Vo(+,+)=0. If j(j=0,..., m) units of resources are expended, then



7 BmE N R FENE RIS

the immediate expected reward is given by L;-% %iRi(j), output & ‘s
observed at the next period ‘with probability 8:(#, x), and the maximum
total expected reward from the resultant state is denoted by
Vyer(m—j, T(n, k, ). Therefore (3) follows. '

If the recursive relation (3) is solved, an optimal policy is presented.

| 3. Structure of Optimal Policy

We can find an optimal policy if the equation (3) is solved. Unfor-
tunately we cannot solve them explicitly in genefal. So we develop some
properties of an optimal policy.

To express one of the optimal policies we define 2(n, m, x) as the
smallest value of j that maximizes the braces of the right hand side of

equation (3), that is,

(4) k(n m 2)=minls; Zi-ﬁxiR,-(t)v“ka;léﬁk(”’ #)WVa-r(lm=1,T(n, k, 2))
: : =max  {X;-1%Ri(5)

7=0,...,

+ X 4=508(n, IVaor(m—j, T(m, b, 2))}},
n=1,..., N, m=0,..., M, zeS.
Using this notation it is the optimal policy that allocates £(#n, m, x) units
of resources when there are # periods remaining, 7 units of resources are
on hand, and the current subjective probability about the types of
appearing target is denoted by x. ‘
' The monotonicity of & (n, m, x) with respect to m is i)roved in
Theorem 1. The following lemma needed in Theorem 1 is introduced
without proof since it is obvious.
Lemma 1. V,(m, z) is a nondecreasing and concave function of m for
n=1,.., N, xeS.

. The following theorem presents the monotonicity of the optimal
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number of resources to be expended with respect to the number of resources
on hand. The result seems to meet with our intuition thaf the more units
of fesources are on hand the more units of resourceé should be expended.
The proof is similar to Proposition 2 and Theorem'é in [1] since R;(+)and
Tr-60k(n, Va1 (o, T(n, &, x)) are concave.

Theorem 1. k(n, m, x)<k(n, m+1, x)<k(n, m, x)+1 for n=1,...,
N, m=0,..., M—1, and xeS. _

Next we con.sider whether k(n, m, x) is monotone in x with some
partial order. on S. This conjecture does not always hold in general even if
P (transition matrix of core process) is increasing failure rate (IFR) or
totally positive of order two (TP2) as will be shown in Section 4. So we

restrict our attention to the following two cases:

(,i.) I=1 and
1—pon) poln) '
P(n)=( puin) ol )with poln)=p1(n) and 0 <p:(n),
1=pi(n) pi(n) .

(this transition matrix is TP»).

(i1) P(n) with the same rows, that is,

ro(n) «oo71(n)
P(n)= <o

ro(n.) ceori(n)

with r;(n) =0, 1=0,..., I, vro(n)+°--+7’1(n)=1,

(this fransition matrix is also TPy).

3.1. Case (i)

We consider the first case (i) in this subsection.
Let ’
1—po(n) polmd

)with po(n) < p1(n) and 0< p1(n),
1—p1(n) p(n)

P(n)=(
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Q=(do dL)With ;i #0 for i=0,..., L
/90 e ,BL .

Then (1), (2), and (3) are rewritten as

") 0e(m )=(Br—ar)(p1(n)—po(n)dx+ar+ (ﬂé—dk)ﬁo(ﬂ)

n=2,..., N, k=0,..., L,
@) Teln, »)=08:((pr(n)— po(n))x+po(n))]/0k(n %),

n=2,.., N, k=0,..., L,
() Valm )= max {xR1(j)+2k=30k(n,x)Vn-l(m—J', T(n k x))},

.....

' n=1,..., N, m=0,..., M,
where xe [0,1] represents the probability that the appearing target is of

type 1. The following lemma will be used in the proof of Theorem 2.
Lemma 2. [Zk=30k(n,.x)(v,,(m+1,T(n, k, 2))—Valm, T(n, k, 2)))])/x

is nonincreasing in 260,17 for n= 1,...., N, m=0,..., M—1.

Proof: First we show that

(5) [Valm+1, £)—Vu(m, £)1/x

is nonincreasing in xe(0,1) for n=1,..., N, m=0,..., M— 1, by induction on
n. For n=1, (5) becomes Ri(m+1)— R;(m), so (5) is nonincreasing in xe

(0,1) for n=1. Suppose that (5) is nonincreasing in xe (0,1) for ».

WVaer(m+1, ©)=Vurslm, 1/z= max{ R+ 1)~ Rijo),
S i=50k(n, 2)T(n, &, x)/x)
[Valm+1=jo, T(n, b, 2))—Valm~jo, T(n, ks £))1/T(n, k, 2)},

where jo=k(n+1, m, x) and the equality follows from Theorem 1. Since

0:(n, x)T(n, k, x)/x is nonnegative and nonincreasing in xe(0, 1),
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T(n, k, x) is nondecreasing in x¢(0, 1), and [(V,(m+1—j, T(m, &k, x))
~Valm—js, T(n, &, x))1/T(n, &, x) is nonnegative and nonincreasing by

induction hypothesis, (5) is nonincreasing in xe (0, 1) for n+1. Therefore,

[Te-50Cn, 2)(V,(m+1, T(nm, by £))=Vau(m, T(n, k, £)))1/x
=%,-50:(n, )T (n, kb, 2)/2)[(Vo(m+1, T(n, b, x)) .
=Vaulm, T(n, k, )] /T(n, k, %)

1s nonincreasing in x¢(0,1), and is continuous in x¢(0,1]. So the expression
is nonincreasing in xe(0,1]. Q. E. D.

The following theorem says that the more strongly the decision maker
believes that the appearing target is of type 1, the more units of resources
should be expended. '

Theorem 2. k(n, m, x)=<k(n, m, ') for 0=x<x'=1;n=1,...,N,m=
0,..., M. .

Proof: Since k(n, m, 0)=0, it is sufficient to prove the theorem for
0<jr<x'§1. : »Let jo=Fk(n, m, x). If j=0, then the result is obvious.
Suppose jo>> 0. Since

2R 1(j0) + Zp= 0 (n, £)Vaes(m— jo, T, k, 1))
>‘xR1(]')+Zk=ink(n, XWaoi(m—73, T(m, k, x)) for 0< i< fo,
RiG)=Ri(D>Tp=50(n, £)[Va_i(m—7, T(m, &, %))
 ~Valm—jo, T(n, k, 2)1/22E4-0 0k (1, ' ) Vaos (m=5, T(n, b, 5))
~Vurlm—3go, T(n, &k, 2'))1/x" for 0<j<jo,

by Lemma 2. The first and the last terms imply

k(n, m, &)z jo=k(n, m, x) for 0<x<# =1. Q.E.D.
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3.2. Case (ii)
The second case (ii) is considered in this subsection. Since

roln) oo ri(m)\ . . .
P(n)= o o o with 7 (#)=0,:=0,..., I, re(n)+...+7;(n)=1,
roln) «-v r/(n)
0:(n, ) and T (n, &, %) are independent of x and are abbréviated as 0:(n)

T (n, k) respectively. Then the recursive relation (3) is rewritten as

(3”) Va.(m, x)=max (X inRi ()
1 =04000, M . .
’ S k08 (Ve sCm— j, Ty 2.

As in [10], we introduce the partial order C on S as follows:
x=(%0,..., )C& =(x0,..., £7)
if and only if

Lot veveset < xp+ seseset g7,
X1t eeeta =g+ oot ],

x1§x},

The following theorem shows the monotonicity of the optimal number of
resources to be expended with respect to the degree of belief of the decision
maker. This is a generalization of Remark (2) in [5].

Theorem 3. If Ri(m+1)—Ri(m)=Rivi(m+1)—R;1(m) for i=1,...,
I—i, m=0,..., M—1, then +Cx’ implies &(n, m, x)<k(n, m, x') for n=
1,.., N, m=0,..., M. |

Proof: As in the proof of Theorem 2, suépose jo=k(n, m, x)>0.
Then, A
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3t R (§0) + X1 -50x(n)Vaori(m— jo, T(m, k)
>34 Ri () + X450 (n)Vaor(m—j, T(n, k)) for 0= j<jo.

~ Since xCx’,
PR EY (Ri(jo)—Ri(j)).Z_Zi=ll %:(Ri(jo)— R:(j)) for 0= j<j,.
The above two inequalities yield

A ARG + X k50 () uoi(m— jo, T(m, k)
>Y A G Ri(D+ T 50 (n)Vuos(m—j, T(n, k) for 0= j< j.

This implies &(n, m, x°)=zjo=k(n, m, x). Q. E.D.
The following theorem which presents the monotonicity of the optimal
number of resources to be expended with respect toA the number iof
refnaining periods is proved similarly to Theorem 5 (ii) in [5].
Theorem 4. k(n, m, x)=k(n+1, m, x) fof n=1,..., N—1, m=0,..., M,

xeS.

3.3

We discuss in this subsection the case in which the decision maker
knows the true type of appearing target.from the knowledge of the
expenditure of resources. The recursive relation corresponding to (3)

becomes

(6) Vaulm, x)= max {Z4-50:(n, 2)Vaoilm, T(n, k, 2));
max {2 xR:() v

F=1eee,

5 A Y500 (n, e Vaoi(m—34, T(m, k, €))}},

where ¢;¢S has 1 as its (i+ 1)—st element and Vo, <)=0. Since V,(m, x)

is a piecewise-linear and convex function of x (see [9]) and the terms
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corresponding to j=1,..., m in the right hand side of (6) are linear
functions of «x, it readily follows that for each fixed (#, m) (n=1,..., N,
m=1,..., M) the set {xeS; k(n, m, x)=t} is convex for f=1,.., m."
Furthermore if /=1, the following property is derived. -
Theorem 5. Forun=1,..., N, m=1,..., M,
i) ifA0<x<x’, k(n, m, x)>0, and k(n, m, ') >0,
then &(n, m, >x)§k'(n, .m, x), _
(i) if p1(n)<1, then E(n, m, 1)>0.
Proof: (i) Note that V,(m, x) is nondecreasing in .

Let jo=k(n, m, x°), then

2 (R\(Go)+Xp=50,(n, 1)Vaos(m—jo, T(n, k, 1))
T =" ) (X664 (n, 0)Vuzilm—jo, T, &, O))
22 (RU(D+Zp-§0e(n, DV,oilm—j, T(n, k, 1)) ,
+ (1= NEaeb04(n, 0Vanr(m—j, T, &, 0 for jos jSm.

This yields

(R(D+Xp-56k(n, 1IVai(m—j, T(n, b, 1)
—24=60(n, 0)Vuos(m—j, T(m, &k, 0))]
—[R\(Jo) +24=665(n, 1DV,_ilm— jo, T(n, &, 1))
= 24=60%(n, 0)Vuoi(m— jo, T(m, k, 0]
S[X4-50:(n, 0)(Vacilm— o, T(n, B, O =Voaei(m—j, T(n, B, 00 1/%
=2e=50k(n, Y (Vouoylm—= jo, T(n, b, ON—Vourlm—j, T(n, k, 0O/

for jo=j=<m,

The first and the third terms imply that &(n, m, x) < jo=&(n, m, 5’ ).
To prove (ii), it is sufficient to show that
Ri(1)+Zp-60:(n, 1)Vas(m—1, T(n, &, 1))
>X-60k(n, 1Va_s(m, T(n, b, 1)),
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that is,

Taeb04Cn, DIVaosCm, T by 1D =Vooi(m=1, Tn, b, 1D I<R(L)
. form=2,.., N, m=1,..., M.

Since p1(n) <1 implies T(n, &, 1)<1 for some %, it suffices to show that
forn=1,..., N? m=0,..., M

(1) Valm+1, 1) =Va(m, 2)<(=)R:i(1) for z< (=)1. - -

For n=1, since Vi(m+1, x)—Vi(m, x)=x(R(m+1)—R(m))<xR(1),
inequality (7) is satisfied. Suppose (7) holds for n—1.
Let op=k(n, m+1, %), then

Valm+1, £)—Valm, )
2 hes 0, ) [Vailm+1, T(n, k, x))
=Vpilm, T(n, k, )], if jo=0,
2k 0; (n, 1 Vaoi(m+1~jo, T(n, &, 1))
—Vaueilm— jo. T(nm, b, 1))]
+ (1= 2024505, 0)[Vailm+1—jo. T(n, £,0))
—Vauilm—go, T(n, k, ON] if 0<jo<m+1,
{x(Rl(m+1)—R1(m)),ifj0=m+1, ‘
<(=)R (1), for x<(=)1. Q. E. D.

A

By the preceding facts énd k(n, m, 0)=0, the interval [0,1] may be
devided as is shown in Fig. 2.

As for the property of 2(n, m, x) with respect to m, the following
theorem is proved.

k(n,m,x)0|1020- s+ 0 m




81 | ¥ N K BHE BT

Theorem 6. k&(n, m+1, x)<k(n, m, x)+1 for n=1,..., N,m=0,..., M,
and xeS.

Proof: Let jo=k(n, m, x). If jo>0,

A iR () + it 2 a=604(n, e)Vuosm— jo, Tn, &, &)
22 xRN+ T 58450k (n, €)Vas(m—j, Tn, k. e:)

for josj=m.
Since R; (") is coﬁcave, :
YA i (RiGo+r D =R =X, L 4 (R (j+1)— Ri(§)) for jo=j<m.
These two inequalities yield

YA %iRi(jo+1)
+ b % 5606 n, e)Vusilm+1—(Go+1), T(n, &, &))
=¥ LR '
+ ikt a50:(n, e)Vu i (m+1—(G+1), T(n kb, &)
for jorl=<j+1l=m+1. ‘

This implies £(n, m+1, )< jo+ 1=k(n, m, )+ 1. If jo=0,

Ze=60s(n, Vailm, T(m, &, %)) |
gzh-llxiRi(j)+Zi={)xiZk'60k(.n' eilWVaslm—7, T(n, k, &)

forl=<j=m.
~ From the convexity of V,_i(m, +),

Zi=6x,-2,,-’50k_(n, i Woilm, T(n, &, e:))
23 ,-50:(n, £)Vaoi(m, T(n, &, '1)).

And from the concavity of R;(+)

AR (D) 2X A xi(Ri(G+1)—Ri())) for 1< jsm.
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Therefore,
2i=§7-‘i‘Ri(1)+Zi=(’)'hzk-1&0k(_n, e,-)'V,‘_l(m+v1—1, T(n, bk, ¢))
2T nRGH1) - o
+ =0 %5 k=608 (0, €)Vai(m+1-(5+1), T(n, k, €))
for 2= j+1<sm+1.

So k(n, m+1, x) < jo+ 1=k(n, m, x)+1. Q. E. D.
4. Examples

In this section two examples are presented. One shows that the total
positivity of order two (TP:) is not sufficient to the monotonicity of

k(n, m, x) with respect to x. The other is a numerical example of 3.3 for I=1.

4.1.

Let N=2, M=1, I=2, and

1 0. 0 ‘
(0<R<1, this transition matrix is
. P(2)=|1-R R/2 R/2 o
. TP,).
0 0 1

And R;(+) (i=1,2) are listed in Table 1. .

Then it is easily checked that V3(1, e1)=R, V2(1, e)=1, £(2, 1, e;)=1, and
k(2, 1, e2)=0. This concludes that ¢;=(0, 1, 0)Ce;=(0, 0, 1) but
B2, 1, e1)>k(2, 1, e2). |

Table 1. Ri(+), i=1,2

J 0 1

1 0 R(0<R<1)
2 0 1




86 ¥ N K FIE BLS

4.2,
As an example of 3.3 for /=1, N=5, M=5,

0.9 0.1

P('n)=P=(
0.5 0.5

0.3 0.7
for n=2,..., 5, and Q= .

0.8 0.2

And R;(+) is given in Table 2. Then the o.ptimal policy is obtainéd in Fig.
1-Fig. 4. For example, if there are 5 periods remaining, 5 units of
resources are on hand, and the decision maker has his subjective prbbability
0.5 that the target is appearing after the observation.of Y, fhen it.is
optimal to allocate 2 units. Fig. 1-Fig. 4 show that k(nm, m, x)<
k(n, m+1, x) for n=1,..., 5, m=0,..., 4, x¢(0,1] do hold, which we
could not pfove in 3. 3. Also note that for (n, m), n=1,..., 5, m=0,..., 5,
the set {x¢[0, 11; £(n, m, x)=0} is convex, which we could not prove in

3. 3 either.

Table 2. R,(+)

j J 0 1 2 3 4 5

' R | 0 1.0 1.5 1.8 1.9 1.91

[

m .
5 0 1 2 i3
4l 0 1 2 3
3! 0 1 ; 2
L 1
2 0
1] P
{ i I L ¢ : '
0 0.001. 0.010 0.022 0.034 0.063 0.079 0.167 0.500 1

Fig. 1. ®(2, m, 1)
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m

5/0 § ' 1 2 3

i o 1 2 ‘
-3 0 1 L2

2i 0 1>
S . ’ 0 ‘ | ; 1

0 0.038 0.058 0.073 0.120 0.137 0.198 0.229 0.341 0.553 1
Fig. 2. k(3,'m, x)

m

5[0 1 2 3

4 0 1 2

3 0 1 ‘ 2

2 0 1

1 ' 0 E 1

x

0 0.063 0.080 0.101 0.175 0.198 0.272 0.291 0.463 0.739 1

Fig. 3. k(4, m, x)

m
5[0 1 2 3
4 o 1 j 2
3 0 1 P
2 0 1
1 0 :
L 1 ) 1 ! i | [ -
0 0.083 0.099 0.139 0.208 0.259 0.300 -0.379 0.514 0.900 1

Fig. 4.

k(5, m, x)

5. Conclusion

In this paper, we considered the discrete-time sequential allocation

problem with partial observations.

First we developed the structural

properties of an optimal policy for the case where all actions gave the

same information about the unobservable core process. Secondly the case
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where all actions but ‘expend no unit’ indicated the true state of the

unobservable core process. We gave the properties of an optiinal policy

with respect to the number of resources on hand and with respect to the

decision maker’s belief about the appearing target. As for the property of

an optimal policy with respect to the decision maker’s belief about the .
appearing target, two special cases werevof sp'egial interest: One was of

only one type of A target. The other assﬁmed the transition brobabili’cy

matrix had the same rows.

Tt is a future problem to consider the more realistic case where the
true type of actually appearing target gets known to the decision maker
with some probability (the probability with which the expended résource§
hit the appearing target in the context of the example in [5]) instead of

with certainty if some resources on hand are expended.
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