# On E-kKP as a knapsack problem related to the conventional 2-approximation algorithm for the 0-1 knapsack problem 

Hiroshi Iida*


#### Abstract

This piece picks up E-kKP as a knapsack problem in relation to the conventional and the simplest 2-approximation algorithm for the 0-1 knapsack problem. Taking account of the similarity between E-kKP and the multiple-choice knapsack problem, we mention how to produce two candidates onto the conventional and also how to obtain an optimal solution of LP-relaxed E-kKP that we require so as to produce the two candidates. keywords: combinatorial optimization, knapsack problem, approximation algorithm


## 1 Introduction

We treat E-kKP as a knapsack problem that relates to the conventional 2-approximation algorithm for the classical $0-1$ knapsack problem ( $0-1 \mathrm{KP}$ ). Before entering the main, we briefly describe $0-1 \mathrm{KP}$ and the conventional 2 -approximation algorithm for the $0-1 \mathrm{KP}$.

With $N:=\{1,2, \ldots, n\}, 0-1 \mathrm{KP}$ is written as $z^{*}:=\max \left\{\sum_{j \in N} p_{j} x_{j} \mid\right.$ $\left.\sum_{j \in N} w_{j} x_{j} \leq c, x_{j} \in\{0,1\}\right\}$ where variable $x_{j}$ indicates the choice of item $j \in N$

[^0]of two attributes－that is，profit $p_{j}$ and weight $w_{j}$（both are positive integers） —as $x_{j}=1$（packed into a knapsack of capacity $c$ ）$/ x_{j}=0$（otherwise）．While we call an $n$－vector of $0-1$ variables $x:=\left(x_{j}\right)_{j \in N}$ a solution according to the literature，we identify solution $x$ with $S \subseteq N$ as $x_{j}=1 \Leftrightarrow j \in S$ ．Further we call the $z^{*}$ optimal value，and a solution that gives $z^{*}$ an optimal solution．

On the other hand，a conventional 2－approximation algorithm for $0-1 \mathrm{KP}$ （for the sake of brevity we hereafter call it the conventional）is as follows： after sorting all items in nonascending order of efficiency $p_{j} / w_{j}$ ，let $s:=$ $\min \left\{k \mid \sum_{j=1}^{k} w_{j}>c\right\}$ and we choose the best between $\{1,2, \ldots, s-1\}$ and $\{s\}$ （i．e．，one that has non－smaller value between $\sum_{j=1}^{s-1} p_{j}$ and $p_{s}$ ）．The solution obtained（we hereafter call it 2－approximation solution）fulfills all constraints and has value $\left\lceil z^{*} / 2\right\rceil$ or more．Also，its time complexity is actually the linear time of $n$ ，that is，$O(n)$ ．As regards the performance ratio（guarantee） 2 （i．e．， value given by a solution returned is the half of optimal value or more）of the conventional，for the following instance of $0-1 \mathrm{KP}$

| $j$ | 1 | 2 | 3 |
| :---: | :--- | :--- | :--- |
| $p_{j}$ | 2 | 2 | 3 |
| $w_{j}$ | 3 | 3 | 5 |
| $c$ |  | 5 |  |

$\max \left\{\sum_{j=1}^{s-1} p_{j}, p_{s}\right\}=2 \geq\left\lceil z^{*}(=3) / 2\right\rceil$ holds as an equality．In actual fact，the performance ratio 2 is tight．Indeed if we consider the following $0-1 \mathrm{KP}$ with huge $M$ as in Kellerer et al．［4，p．34］，

| $j$ | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| $p_{j}$ | 2 | $M$ | $M$ |
| $w_{j}$ | 1 | $M$ | $M$ |
| $c$ |  | $2 M$ |  |

then, because value given by a solution returned from the conventional is $M+2$ and optimal value is $2 M$, we have $(M+2) / 2 M \rightarrow 1 / 2(M \rightarrow \infty)$, which validates the ' 2 ' of the 2 -approximation is tight and precise as a performance indicator of the conventional.

In the remainder we mention how to produce two candidates that appear when we apply the conventional to $\mathrm{E}-k \mathrm{KP}$ in Section 2 and also how to obtain an optimal solution of LP-relaxed $\mathrm{E}-k \mathrm{KP}$ that we need in order to produce the two candidates in Section 3.

## 2 Two candidates for E-kKP

As a special case of the multi-constrained (multidimensional) knapsack problem [4, Chap 9], we have $k \mathrm{KP}$ that has the 2 nd constraint $\sum_{j \in N} x_{j} \leq k$ on $0-1 \mathrm{KP}$, which is dealt with in [3] as a knapsack problem related to the conventional. The replacement of the inequality by an equality leads to E-kKP. It is known that we easily have a 2 -approximation algorithm for E-kKP by tweaking the one for $k K P$ proposed by Caprara et al. [1]—as introduced in [3], it's similar to the conventional-named $H^{1 / 2}$ (Kellerer et al. call it LP-Approx [4, Fig 9.3]) [4, Subsect 9.7.4].

Concretely, since in an LP-solution (an optimal solution of linear programming relaxed problem, i.e. admitting $0 \leq x_{j} \leq 1$ as a relaxation of $x_{j} \in\{0,1\}$ ) of E- $k \mathrm{KP}$ there are 0 or 2 variables of $x_{j} \notin\{0,1\}$ fractional (in $k K P$ having the same number of constraints as $\mathrm{E}-k \mathrm{KP}$, it's 2 or less; however, $\sum_{j} x_{j}=k$ eliminates the case of 1 . Then, in the case where there is no fractional variable in an LP-solution obtained, the algorithm returns the LP-solution optimal; otherwise, supposing two fractional variables, say $i, j\left(w_{i}<w_{j}\right)^{1}$ the

[^1]best of the following two gives a 2 －approximation solution．

1．A set being made up of all items of $=1$ in the LP－solution，the number of which is $k-1$ ，and item $i$ lighter：This candidate is the same as that of the multiple－choice knapsack problem（MCK［4，Chap 11］）．In fact，the number of fractional variables in an LP－solution of MCK is also 0 or 2； nonetheless，the next one is different from that of MCK．

2．A set comprising the lightest $k-1$ items among $N \backslash\{j\}$ and item $j$ heavier

Like this，due to $\sum_{j} x_{j}=k$ ，the 2 nd candidate including the heavier $j$ is constructed in a different way of $H^{1 / 2}$ —Differing from $k \mathrm{KP}$ that admits a solution including item $j$ only， $\mathrm{E}-k \mathrm{KP}$ is a little bit similar to MCK in which any solution has a fixed cardinality，viz．equal to the number of classes（we must select only one item in each class）．More precisely in MCK，on the 2nd candidate，items added to the heavier $j$ are the lightest item in each class except a class extracting the $j$［4，p．338］．

[^2]
## 3 How to solve an LP-relaxed E-kKP

As in Section 2, when we apply the conventional to E-kKP given, we need an LP-solution of the E-kKP in the same way as $k K P$. Can we solve LPrelaxed E-kKP in easier way like MCK? As we have seen, E-kKP is similar to MCK. In particular, (albeit it's obvious) E-kKP of $k=1$ has the same structure as MCK of one class only. Taking an algorithm for LP-relaxed MCK into account, the following one for LP-relaxed E-kKP will naturally be drawn (for more details around how to solve LP-relaxed MCK, see, e.g., Iida [2]).

First of all we sort all items in ascending order of weight, and let $K:=\{1$, $2, \ldots, k\}$ and $\bar{K}:=N \backslash K$. Following, $w(K)$ means $\Sigma_{j \in K} w_{j}$. In MCK, an initial set for solving LP-relaxed problem is one including the lightest item in each class, which corresponds to $K$. After plotting all items onto a plane with $x$-axis indicating weight and $y$-axis profit, we consider a bipartite graph consisting of $K$ and $\bar{K}$. As an edge, from each element in $K$, if there is an item in $\bar{K}$ of more valuable and non-lighter than the element then we connect the two. If there are plural candidates in $\bar{K}$ for connecting with some item in $K$ then we select the largest gradient among those. After the preparation above, we iterate the following operation until $w(K)>c$. Namely, this operation corresponds to the exchange of items along a slope in a class on MCK.

Operation: Choose an edge $(i, j) \in K \times \bar{K}$ of the largest gradient among at most $k$ edges and exchange $i$ and $j$ between $K$ and $\bar{K}$, that is, $K:=$ $(K \backslash\{i\}) \cup\{j\}$. According to this, we make edges up-to-date concerning new $K, \bar{K}$. Specifically we connect a new $j \in K$ with an item in $\bar{K}$ if possible. In addition, on an item in $K$ connected to $j \in \bar{K}$
removed，we provide a new edge from the item to $\bar{K}$ if possible． Moreover if there is an item in $K$ such that we can provide a new edge or can augment a gradient by connecting with new $i \in \bar{K}$ ，we connect or update the one in $K$ with the new $i$ ．

If we have no edge against $w(K) \leq c$ ，we have the most valuable set of cardinality $k$ within $c$ ；thus，it＇s optimal（we will mention it afterward）； otherwise we stop by $w(K)>c$ ，suppose an edge corresponding to the last exchange is $(i, j)$ ．On $K$ just before exceeding $c$ ，including $i, x_{q}=1$ for all $q \in K \backslash\{i\}$ and

$$
\left\{\begin{array}{l}
x_{i}=\left(w(K)-w_{i}+w_{j}-c\right) /\left(w_{j}-w_{i}\right) \\
x_{j}=1-x_{i}=(c-w(K)) /\left(w_{j}-w_{i}\right)
\end{array}\right.
$$

（otherwise $=0$ ）will be an LP－solution of E－kKP．Do we lose something？
For instance we consider $k=2, c=5$ in Fig 1．In this example，$K$ moves $\{1,2\} \rightarrow\{1,3\} \rightarrow\{2,3\}$ and reaches the optimal（the most valuable $k$ items）， consuming all edges at last．One more instance，we consider $k=2, c=9$ in Fig 2．Starting at $K=\{1,2\}$ ，we move $\rightarrow\{1,3\} \rightarrow\{1,4\} \rightarrow\{3,4\}$ and gain


Figure 1：Example 1 of E－kKP $(n=3)$


Figure 2：Example 2 of E－kKP $(n=4)$
value 15 given by $x_{1}=x_{3}=1 / 2, x_{4}=1$ (a solution of $x_{1}=1 / 4, x_{3}=1, x_{4}=3 / 4$ gives 14.5 below it).

In what follows we define a gradient of an edge $(i, j) \in K \times \bar{K}$ as an angle between the vector $(i, j)$ and the $x$-axis representing weight. As in Example 2, a gradient just $\pi / 2$ appears in the case where the $k$ th item has the same weight as the $(k+1)$-st item when we select the $k$ lightest items as an initial $K$. Then, does an edge of a gradient greater than or equal to $\pi / 2$ appear during operations? Why do we think about such a thing? The reason for which is that we assume $w(K)$ increases by an exchange of items. Under the assumption, we can exit at $w(K)>c$ in short order. In MCK, for example, there are no two items of the same weight in a class (an item of more valuable remains in the two of the same weight), and the weight strictly increases by an exchange of items along a slope.

Then during operations, we assume that such an edge ( $i, j$ ) in Fig 3 appears for the first time. If $j$ has been in $\bar{K}$ from the initial stage, it implies that item $i$ heavier than $j$ was into $K$ as a result of some exchange. However, considering an edge corresponding to the exchange, an item on the $K$ side (by the assumption, it's lighter than $j$ ) produces a larger gradient by connecting not $i$ but $j$. Therefore an exchange should firstly be done with not $i$ but $j$ and $j$ has been into $K$ before $i$ entering $K$. Thus at the stage of $i \in K$, it's hard to claim that $j$ has been in $\bar{K}$ from the initial stage and no exchange as to $j$ has been done. As a consequence we can contend that for $i \in \bar{K}$, an exchange that removes $j$ from $K$ shall be done. Here let an edge corresponding to the exchange be $(j, q)$ (by the assumption, $q$ is heavier than $i$ ). According to the same argument as the previous, since the gradient of $(i, q)$ is greater than that of $(j, q)$, an exchange as to $(i, q)$ should firstly be done, and an exchange as to $(j, q)$ must not be done under $i \in K$. Consequently, it will be possible to conclude that the edge ( $i, j$ ) cannot


Figure 3：Does an edge of a gradient $>\pi / 2$ appear？
appear．
Here，in another view，we take a look at the argument hitherto with regard to the gradient $\pi / 2$ or more again．Before any exchange，the elements of $K$ and $\bar{K}$ are divided into the left hand side and the right hand side， respectively．As in Fig $3, i \in K$ and $j \in \bar{K}$ imply that an exchange as to $i$ or $j$ has been done．If，in an initial stage，$j \in K$ and $i \in \bar{K}$ ；then，it＇s impossible to connect $j$ with $i$ of less valuable than $j$ ；thus，either stage of $i, j \in K$ or $i$ ， $j \in \bar{K}$ should be passed through before reaching Fig 3．Therefore in the same argument as the previous：in the case of $i, j \in \bar{K}$ ，before $i$ is in $K, j$ shall be in $K$ ；in the case of $i, j \in K$ ，before $j$ is removed from $K$ ，$i$ shall be removed from $K$ ，I guess．

## References

[1] Alberto Caprara, Hans Kellerer, Ulrich Pferschy and David Pisinger, Approximation algorithms for knapsack problems with cardinality constraints. European J Oper Res 123, 333-45 (2000) http://dx.doi.org/10.1016/S0377-2217 (99) 00261-1.
[2] Hiroshi Iida, Towards an alternative relaxation for the multiple-choice knapsack problem. Economic Review 52.4, 267-82 (Otaru Univ of Commerce, 2002) http://hdl.handle.net/10252/496.
[3] Hiroshi Iida, A further addendum to "Some thoughts on the 2-approximation algorithm for knapsack problems: a survey." Discussion paper series no. 167, CBC at Otaru Univ of Commerce, 2014; http://hdl.handle.net/10252/5386.
[4] Hans Kellerer, Ulrich Pferschy and David Pisinger, Knapsack Problems. Springer 2004.


[^0]:    * E-mail address: oggi@res.otaru-uc.ac.jp

[^1]:    ${ }^{1}$ If $w_{i}=w_{j}$, without considering the combination of $x_{i}+x_{j}=1$, we can augment

[^2]:    value given by the LP－solution with taking an item of more valuable；thus，it implies $p_{i}=p_{j}$ too．Therefore without considering the combination of the two same items，we can set all variables of the LP－solution to $0-1$ by taking either item only．In consequence setting $w_{i}<w_{j}$ doesn＇t loose the generality．This will also be the case as for $\mathrm{E}-k \mathrm{SSP}$（an $\mathrm{E}-k \mathrm{KP}$ of $p_{j}=w_{j}, \forall_{j}$ ）or $k \mathrm{KP}$ ．We can further set $p_{i}<p_{j}$ ，because $p_{i} \geq p_{j}$ and $w_{i}<w_{j}$ have made a chance to consider $x_{i}=1$ ， $x_{j}=0$（see Lemma 9．7．2 in Kellerer et al．［4，p．277］－$I=\{i, j\}$ that appeared therein is a tiny misprint and should be $F=\{i, j\}$ ．Moreover at the beginning of its proof，the description of＂By definition of $I$＂should be＂By definition of $F$＂）．

