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On E-kKP as a knapsack problem related
to the conventional 2-approximation algorithm

for the 0-1 knapsack problem

Hiroshi Iida＊

Abstract

　This piece picks up E-kKP as a knapsack problem in relation to the 

conventional and the simplest 2-approximation algorithm for the 0-1 

knapsack problem. Taking account of the similarity between E-kKP and the 

multiple-choice knapsack problem, we mention how to produce two 

candidates onto the conventional and also how to obtain an optimal solution 

of LP-relaxed E-kKP that we require so as to produce the two candidates.
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1　Introduction

　We treat E-kKP as a knapsack problem that relates to the conventional 

2-approximation algorithm for the classical 0-1 knapsack problem （0-1KP）. 

Before entering the main, we briefly describe 0-1KP and the conventional 

2-approximation algorithm for the 0-1KP.

　With N :＝ { 1, 2, . . . , n }, 0-1KP is written as z* :＝ max {∑j∈N pj xj ￨

∑j∈N wj xj < c, xj ∈ {0, 1 }} where variable xj indicates the choice of item j ∈ N
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of two attributes―that is, profit pj and weight wj （both are positive integers）

―as xj=1 （packed into a knapsack of capacity c）/xj=0 （otherwise）. While 

we call an n-vector of 0-1 variables x :＝ （xj）j∈N a solution according to the 

literature, we identify solution x with S ⊆ N as xj ＝1 ⇔ j ∈ S. Further we 

call the z* optimal value, and a solution that gives z* an optimal solution.

　On the other hand, a conventional 2-approximation algorithm for 0-1KP 

（for the sake of brevity we hereafter call it the conventional） is as follows: 

after sorting all items in nonascending order of efficiency pj /wj, let s :＝ 

min {k ￨∑j
k
＝1 wj > c} and we choose the best between {1, 2, . . . , s－1 } and { s } 

（i.e., one that has non-smaller value between ∑s－1 
j＝1  pj and ps）. The solution 

obtained （we hereafter call it 2-approximation solution） fulfills all constraints 

and has value 「z*/ 2  or more. Also, its time complexity is actually the linear 

time of n, that is, O（n）. As regards the performance ratio （guarantee） 2 （i.e., 

value given by a solution returned is the half of optimal value or more） of 

the conventional, for the following instance of 0-1KP

j 　1　2　3

pj 　2　2　3

wj 　3　3　5

c 　　 5

max {∑s－1 
j＝1  pj, ps} =2 > 「z*（＝3）/ 2  holds as an equality. In actual fact, the 

performance ratio 2 is tight. Indeed if we consider the following 0-1KP with 

huge M as in Kellerer et al. ［4, p. 34］,

j 　1　 2 　 3

pj 　2　M　M

wj 　1　M　M

c 　　 2M
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then, because value given by a solution returned from the conventional is 

M＋2 and optimal value is 2M, we have （M＋2）/2M ↗ 1/2（M↗ ∞）, which 

validates the ‘2’ of the 2-approximation is tight and precise as a performance 

indicator of the conventional.

　In the remainder we mention how to produce two candidates that appear 

when we apply the conventional to E-kKP in Section 2 and also how to 

obtain an optimal solution of LP-relaxed E-kKP that we need in order to 

produce the two candidates in Section 3.

2　Two candidates for E-kKP

　As a special case of the multi-constrained （multidimensional） knapsack 

problem ［4, Chap 9］, we have kKP that has the 2nd constraint ∑j∈N xj < k 

on 0-1KP, which is dealt with in ［3］ as a knapsack problem related to the 

conventional. The replacement of the inequality by an equality leads to 

E-kKP. It is known that we easily have a 2-approximation algorithm for 

E-kKP by tweaking the one for kKP proposed by Caprara et al. ［1］―as 

introduced in ［3］, it’s similar to the conventional―named  H1/2 （Kellerer et 

al. call it LP-Approx ［4, Fig 9.3］） ［4, Subsect 9.7.4］.

　Concretely, since in an LP-solution （an optimal solution of linear programming 

relaxed problem, i.e. admitting 0 < xj < 1 as a relaxation of xj ∈ {0, 1 }） of 

E-kKP there are 0 or 2 variables of xj ∈/ {0, 1 } fractional （in kKP having the 

same number of constraints as E-kKP, it’s 2 or less; however,∑j xj ＝k 

eliminates the case of 1. Then, in the case where there is no fractional 

variable in an LP-solution obtained, the algorithm returns the LP-solution 

optimal; otherwise, supposing two fractional variables, say i, j （wi < wj）
1 the 

�
1�　If wi＝wj, without considering the combination of xi＋xj＝1, we can augment 
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best of the following two gives a 2-approximation solution.

　1�. A set being made up of all items of＝1 in the LP-solution, the number 

of which is k－1, and item i lighter: This candidate is the same as that of 

the multiple-choice knapsack problem （MCK ［4, Chap 11］）. In fact, the 

number of fractional variables in an LP-solution of MCK is also 0 or 2; 

nonetheless, the next one is different from that of MCK.

　2�. A set comprising the lightest k －1 items among N { j } and item j 

heavier

Like this, due to ∑j xj ＝k, the 2nd candidate including the heavier j is 

constructed in a different way of H1/2―Differing from kKP that admits a 

solution including item j only, E-kKP is a little bit similar to MCK in which 

any solution has a fixed cardinality, viz. equal to the number of classes （we 

must select only one item in each class）. More precisely in MCK, on the 2nd 

candidate, items added to the heavier j are the lightest item in each class 

except a class extracting the j ［4, p. 338］.

value given by the LP-solution with taking an item of more valuable; thus, it 
implies pi＝pj too. Therefore without considering the combination of the two 
same items, we can set all variables of the LP-solution to 0-1 by taking either 
item only. In consequence setting wi < wj doesn’t loose the generality. This will 
also be the case as for E-kSSP （an E-kKP of pj＝wj, ∀j） or kKP. We can further 
set pi < pj , because pi > pj and wi < wj have made a chance to consider xi＝1, 
xj＝0 （see Lemma 9.7.2 in Kellerer et al. ［4, p. 277］― I = { i, j } that appeared 
therein is a tiny misprint and should be F = { i, j }. Moreover at the beginning of 
its proof, the description of “By definition of I” should be “By definition of F”）.

�
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3　How to solve an LP-relaxed E-kKP

　As in Section 2, when we apply the conventional to E-kKP given, we need 

an LP-solution of the E-kKP in the same way as kKP. Can we solve LP-

relaxed E-kKP in easier way like MCK? As we have seen, E-kKP is similar 

to MCK. In particular, （albeit it’s obvious） E-kKP of k =1 has the same 

structure as MCK of one class only. Taking an algorithm for LP-relaxed 

MCK into account, the following one for LP-relaxed E-kKP will naturally be 

drawn （for more details around how to solve LP-relaxed MCK, see, e.g., 

Iida ［2］）.

　First of all we sort all items in ascending order of weight, and let K :＝ {1, 

2, . . . , k } and K̄ :＝N K. Following, w（K） means ∑j∈K wj. In MCK, an initial 

set for solving LP-relaxed problem is one including the lightest item in each 

class, which corresponds to K. After plotting all items onto a plane with 

x-axis indicating weight and y-axis profit, we consider a bipartite graph 

consisting of K and K̄. As an edge, from each element in K, if there is an 

item in K̄ of more valuable and non-lighter than the element then we 

connect the two. If there are plural candidates in K̄ for connecting with some 

item in K then we select the largest gradient among those. After the 

preparation above, we iterate the following operation until w（K）> c. 

Namely, this operation corresponds to the exchange of items along a slope in 

a class on MCK.

Opera�tion: Choose an edge （i, j）∈ K×K̄ of the largest gradient among at 

most k edges and exchange i and j between K and K̄, that is, K :＝ 

（ K  { i }）∪ { j } . According to this, we make edges up-to-date 

concerning new K, K̄. Specifically we connect a new j ∈ K with an 

item in K̄ if possible. In addition, on an item in K connected to j ∈ K̄ 
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removed, we provide a new edge from the item to K̄ if possible. 

Moreover if there is an item in K such that we can provide a new 

edge or can augment a gradient by connecting with new i ∈ K̄, we 

connect or update the one in K with the new i.

If we have no edge against w（K） < c, we have the most valuable set of 

cardinality k within c; thus, it's optimal （we will mention it afterward）; 

otherwise we stop by w（K） > c, suppose an edge corresponding to the last 

exchange is （i, j）. On K just before exceeding c, including i, xq＝1 for all 

q ∈ K { i } and

　  xi＝（w（K）－wi＋wj－c）/（wj－wi）

　xj＝1－xi＝（c－w（K））/（wj－wi）

（otherwise = 0） will be an LP-solution of E-kKP. Do we lose something?

　For instance we consider k＝2, c＝5 in Fig 1. In this example, K moves 

{1, 2 } ↗ {1, 3 } ↗ {2, 3 } and reaches the optimal （the most valuable k items）, 

consuming all edges at last. One more instance, we consider k＝2, c＝9 in 

Fig 2. Starting at K＝ {1, 2 }, we move ↗ {1, 3 } ↗ {1, 4 } ↗ {3, 4 } and gain 
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Figure 1: Example 1 of E-kKP （n＝3）

1

p

w
2 64

10

4

6

2

3

2

4

Figure 2: Example 2 of E-kKP （n＝4）
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value 15 given by x1＝x3＝1/2, x4＝1 （a solution of x1＝1/4, x3＝1, x4＝3/4  

gives 14.5 below it）.

　In what follows we define a gradient of an edge （i, j）∈ K×K̄ as an angle 

between the vector （ i, j） and the x-axis representing weight. As in 

Example 2, a gradient just π/2 appears in the case where the kth item has 

the same weight as the （k ＋ 1）-st item when we select the k lightest items 

as an initial K. Then, does an edge of a gradient greater than or equal to π/2 

appear during operations? Why do we think about such a thing? The reason 

for which is that we assume w（K） increases by an exchange of items. Under 

the assumption, we can exit at w（K） > c in short order. In MCK, for 

example, there are no two items of the same weight in a class （an item of 

more valuable remains in the two of the same weight）, and the weight 

strictly increases by an exchange of items along a slope.

　Then during operations, we assume that such an edge （i, j） in Fig 3 

appears for the first time. If j has been in K̄ from the initial stage, it implies 

that item i heavier than j was into K as a result of some exchange. However, 

considering an edge corresponding to the exchange, an item on the K side 

（by the assumption, it's lighter than j） produces a larger gradient by 

connecting not i but j. Therefore an exchange should firstly be done with 

not i but j and j has been into K before i entering K. Thus at the stage of 

i ∈ K, it’s hard to claim that j has been in K̄ from the initial stage and no 

exchange as to j has been done. As a consequence we can contend that for 

i ∈ K̄, an exchange that removes j from K shall be done. Here let an edge 

corresponding to the exchange be （j, q） （by the assumption, q is heavier 

than i）. According to the same argument as the previous, since the gradient 

of （i, q） is greater than that of （j, q）, an exchange as to （i, q） should firstly 

be done, and an exchange as to （ j, q） must not be done under i ∈ K. 

Consequently, it will be possible to conclude that the edge （i, j） cannot 
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appear.

　Here, in another view, we take a look at the argument hitherto with 

regard to the gradient π/2 or more again. Before any exchange, the elements 

of K and K̄ are divided into the left hand side and the right hand side, 

respectively. As in Fig 3, i ∈ K and j ∈ K̄ imply that an exchange as to i or 

j has been done. If, in an initial stage, j ∈ K and i ∈ K̄ ; then, it’s impossible 

to connect j with i of less valuable than j; thus, either stage of i, j ∈ K or i, 

j ∈ K̄ should be passed through before reaching Fig 3. Therefore in the 

same argument as the previous: in the case of i, j ∈ K̄, before i is in K, j shall 

be in K; in the case of i, j ∈ K, before j is removed from K, i shall be 

removed from K, I guess.

j q

i
Figure 3: Does an edge of a gradient > π/2 appear?
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